地球科学进展 ›› 2003, Vol. 18 ›› Issue (3): 338 -344. doi: 10.11867/j.issn.1001-8166.2003.03.0338

研究论文 上一篇    下一篇

中国干旱内陆流域水体 N、P负荷特征与动态变化——以黑河流域为例
王根绪 1,2,程国栋 2,钱鞠 1,常娟 1   
  1. 1.兰州大学西部环境教育部重点实验室,甘肃 兰州 730000; 2.中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000
  • 收稿日期:2002-11-19 修回日期:2003-02-15 出版日期:2003-06-01
  • 通讯作者: 王根绪 E-mail:gxwang@ns.lzb.ac.cn
  • 基金资助:

    国家自然科学基金项目“干旱内流区土地利用变化的土壤养分循环迁移规律研究”(编号: 40171002);中国科学院知识创新工程重大项目“黑河流域水—生态—经济系统综合管理试验示范”(编号:KZCX01-09)资助.

N AND P LOADING FEATURES AND DYNAMICAL CHANGES IN ARID INLAND WATER BODIES OF NORTHWEST CHINA

Wang Genxu 1,2,Cheng Guodong 2,Qian Ju 1,Chang Juan 1   

  1. 1.Education Ministry Key Laboratory of West Chinese Environment, Lanzhou University, Lanzhou 730000,China;2. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000,China
  • Received:2002-11-19 Revised:2003-02-15 Online:2003-06-01 Published:2003-06-01

以黑河流域中游地区为研究区域,通过11年在不同河流断面的长期监测和区域内各类水体如地下水、泉水、水库和河流的空间选点取样分析,研究了干旱内陆流域水体 N、P等植物营养元素的负荷与时空分布及动态变化特征。浅层地下水与河水中NO3-N含量普遍较高,含量超过 1.1 m g/L,大部分平原水库水中NH4-N含量超过 0.3 m g/L;河水与浅层地下水TP、NH4-N与NO3-N含量均呈现沿流域从出山口至下游的显著递增变化,同时还具有明显的随时间递增趋势,其中NH4-N含量在河流出山口及下游断面平均年增加幅度分别为 0.11 m g/L和 0.114 m g/L;流域水体 N、P含量的季节变化明显,黑河流域春季及春夏之交的枯水期大部分河段NH4-N、NO3-N和TP等要素含量为全年最高并出现水质超标污染。控制干旱内陆流域水域尤其是枯水期的 N、P污染,应成为干旱内陆流域水资源保护问题中值得关注的关键内容。

This study was undertaken to investigate the loading features, temporal-spatial distribution and dynamical changes of plant nutrient elements N and P in arid inland water bodies including ground water, spring water, reservoir and river in the midstream area of the Heihe river basin through river section monitoring and sample analyses at selected sites over the past 11 years. NO3-N contents in shallow ground water and river water were commonly higher than 1.1 mg/L; NH4-N contents in most of plain reservoirs exceeded 0.3 mg/L; TP, NH4-N and NO3-N contents showed a significant increase tendency from the mountain valley mouth to the downstream area of the river basin. Further more, they also tended to increase significantly with time, of which NH4-N contents in the river water at themountain valley mouth and the lower reach on an average annually increased 0.11 mg/L and 0.114 mg/L respectively. N and P contents in the basin's water bodies also exhibited obvious seasonal change, during the low water period from late spring to early summer, TP, NH4-N and NO3-N contents in a large part of the river section reached a peak values of a year or even exceeded polluted water quality level. The control of N and P pollution especially in water period should be viewed as a key content for the protection of water resources in the arid inland river basin. 

中图分类号: 

[1] USEPA. National strategy for the development of regional nutrient criteria[R]. EPA 822-R-98-002, Washington DC, 1998.

[2] Newall P, Tiller D. Derivation of nutrient guidelines for streams in Victoria, Australia [J]. Environmental Monitoring and Assessment, 2002, 74: 85-103.

[3] Sanchez-Carrillo S, Alvarez-Cobelas M. Nutrient dynamics and eutrophication patterns in a semi-arid wetland: The effects of fluctuating hydrology [J]. Water, Air and Soil Pollution, 2001, 131: 97-118.

[4] Castillo M M, Allan J D, Brunzell S. Nutrient concentrations and discharges in a Midwestern agriculture catchment [J]. Journal of Environmental Quality, 2000, 29: 1 142-1 151.

[5] Zhang Qingzhong, Chen Xin, Shen Shanmin. Progress in the study of nitrate accumulation and leaching in farmland soils[J]. Journal of Applied Ecology, 2002,13(2):233-238.[张庆忠,陈欣,沈善敏. 农田土壤硝酸盐积累与淋失研究进展[J]. 应用生态学报, 2002, 13(2): 233-238.]

[6] Zhang Ganlin, Gong Zitong. Challenge and opportunity of soil research at the turn of this century—Look to the future of soil science from the 16th world conference on soil science[J]. Soil and Environment, 1999,8(2): 7-10.[张甘霖,龚子同.世纪之交土壤学研究的挑战和契机——从第16届世界土壤学大会看土壤学的未来[J].土壤与环境,1999,8(2): 7-10.]

[7] Smith R A, Alexander R B, Wolman M G. Water quality trends in the nation's river [J]. Science, 1995, 235: 1 607-1 615.

[8] Zhang Xingchang, Shao Ming'an. Influences of soil N loss on soil and environment under erosion condition[J]. Soil and Environment, 2000, 9(3):249-252.[张兴昌,邵明安.侵蚀条件下土壤氮素流失对土壤和环境的影响[J].土壤与环境,2000,9(3):249-252.]

[9] Quiroga-Garza H M, Picchioni G A, Remmenga M D. Bermudagrass fertilized with slow-release nitrogen sources: Nitrogen uptake and potential leaching losses[J]. Journal of Environmental Quality, 2001, 30: 440-448.

[10] Hu Guochen, Zhang Qingmin, Wang Zhong. Study on the control of nitrate pollution in ground water[J]. Agricultural Environmental Protection, 1999, 18(5):228-230.[胡国臣,张清敏,王忠. 地下水硝酸盐类污染控制研究[J]. 农业环境保护, 1999, 18(5): 228-230.]

[11] Wang Genxu, Cheng Guodong, et al. Water resource use and its eco-environmental issues in arid northwest China[J]. Journal of Natural Resources, 1999,14(2):109-116.[王根绪,程国栋,.中国西北干旱区水资源利用及其生态环境问题[J].自然资源学报,1999,14(2): 109-116.]

[12] Wang Genxu, Cheng Guodong, Shen Yongping. Eco-environmental variation features and comprehensive control strategies in Hexi Corridor region in recent 50 year[J]. Journal of Natural Resources, 2002, 17(1):78-86.[王根绪,程国栋,沈永平.50年来河西走廊地区生态环境变化特征与综合防治对策[J].自然资源学报, 2002,17(1): 78-86.]

[13] Wang Genxu, Cheng Guodong. Land resource characteristics and sustainable development in arid northwest China[J]. Advances in Earth Sciences, 1999,14(5):492-497.[王根绪,程国栋.西北干旱区土地资源特征与可持续发展[J].地球科学进展,1999,14(5): 492-497.]

[14] Zhang Hong, Sun Baoping. Influence of land reclamation on desertification[J]. Resource Sciences, 1999, 21(5):71-75.[张宏,孙保平.中国干旱与半干旱地区土地垦殖对荒漠化的影响[J]. 资源科学, 1999, 21(5): 71-75.]

[15] Randall G W, Mulla D J. Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices [J]. Journal of Environmental Quality, 2001, 30: 337-344.

[16] Gao Qianzhao, Li Fuxing. Rational Development and Utilization of Water Resources in Heihe River Basin[M]. Lanzhou: Gansu Science and Technology Press, 1990.[高前兆,李福兴.黑河流域水资源合理开发利用[M].兰州:甘肃科学技术出版社,1990.]

 

[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 赵文玥,吉喜斌. 干旱区稀疏树木冠层降雨截留蒸发的研究进展与展望[J]. 地球科学进展, 2021, 36(8): 862-879.
[3] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[4] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
[5] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[6] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[7] 管晓丹, 石瑞, 孔祥宁, 刘婧晨, 甘泽文, 马洁茹, 罗雯, 曹陈宇. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10): 995-1004.
[8] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
[9] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[10] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[11] 马其琦, 柯长青. 江苏近海有色可溶有机物时空分布特征[J]. 地球科学进展, 2017, 32(5): 524-534.
[12] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
[13] 黄鹏, 陈立奇, 蔡明刚. 全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展, 2015, 30(8): 952-959.
[14] 吴胜标, 闻建光, 刘强, 窦宝成, 游冬琴. 黑河流域地表反照率估算及其时空特征分析[J]. 地球科学进展, 2015, 30(6): 680-690.
[15] 刘军, 于志刚, 臧家业, 孙涛, 赵晨英, 冉祥滨. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564-578.
阅读次数
全文


摘要