地球科学进展 ›› 2017, Vol. 32 ›› Issue (5): 524 -534. doi: 10.11867/j.issn.1001-8166.2017.05.0524

上一篇    下一篇

江苏近海有色可溶有机物时空分布特征
马其琦( ), 柯长青 *   
  1. 南京大学 地理与海洋科学学院, 江苏 南京 210023
  • 收稿日期:2016-11-13 修回日期:2017-03-20 出版日期:2017-05-20
  • 通讯作者: 柯长青 E-mail:mq113115@163.com
  • 基金资助:
    国家自然科学基金项目“冰雷达与卫星测高协同的南极冰下湖遥感识别研究”(编号:41371391);国家重点研发计划项目“海洋气候数据集生成与分析”(编号:2016YFA0600102)资助

Temporal and Spatial Distribution Characteristics of Colored Dissolved Organic Matter in Coastal Waters of Jiangsu Province

Qiqi Ma( ), Changqing Ke *   

  1. School of Geographic and Oceanographic Science, Nanjing University, Nanjing 210023, China
  • Received:2016-11-13 Revised:2017-03-20 Online:2017-05-20 Published:2017-05-20
  • Contact: Changqing Ke E-mail:mq113115@163.com
  • About author:

    First author:Ma Qiqi(1994-),male,Bengbu City,Anhui Province,Maste student.Research areas include remote sensing and its application.E-mail:mq113115@163.com

  • Supported by:
    *Project supported by the National Natural Science Foundation of China “Remote sensing identification of subglacial lakes in Antarctica by the synergy of ice radar and satellite altimetry”(No.41371391);The National Key Research and Development Program of China “Generation and analysis of climate dataset in oceans”(No;2016YFA0600102)

有色可溶有机物(CDOM)是重要的水色要素之一,在“江苏沿海大开发”背景下,利用遥感分析其时空分布特征对监测近海水质及污染状况有重要的实际意义。用高时间分辨率的韩国静止水色卫星(GOCI)影像,在日、周、月多时间尺度上分析2011年4月至2016年5月江苏近海有色可溶有机物的时空分布特征。结果表明江苏近海CDOM以陆源为主,近岸高于远岸;月平均浓度最大值(0.180~0.206 m-1)在长江口最大浑浊带外,南黄海西岸次之(0.167~0.201 m-1),南黄海中南部较低(0.086~0.187 m-1,440 nm吸收系数)。结合潮位数据,发现沿岸海域CDOM日变化与潮汐变化一致,但远海区域呈先减后增的特征。利用余弦函数对CDOM月均值进行拟合,发现南黄海月尺度变化周期性明显,其中南黄海中部海域拟合优度为0.823。南黄海主要受黄海冷水团影响,各子区季节变化显著,CDOM在冬春季高于夏秋季;长江口由于冲淡水及其他水团共同影响,情况复杂,冬春季低于夏秋季。月尺度下,CDOM浓度与悬浮物(TSM)呈正相关关系(相关系数r为0.72),且南黄海中部与南部CDOM随TSM的变化趋势较为显著。

Colored Dissolved Organic Matter (CDOM) is one of important ocean color factors. In the background of “Jiangsu Coastal Development”, it is important to monitor the water quality and pollution status of coastal waters by analyzing its spatial and temporal distribution characteristics with remote sensing data. This paper was based on the high temporal resolution of Geostationary Ocean Color Imager (GOCI) image downloaded from Korea Ocean Satellite Center. The temporal-spatial distribution of CDOM in Jiangsu coastal waters was analyzed on daily, weekly and monthly time scales from April, 2011 to May, 2016. CDOM in Jiangsu coastal waters are mainly terrigenous, and higher inshore than that of offshore. The monthly average concentration of CDOM in the western coast of the South Yellow Sea was 0.167~0.201 m-1, and those of central and southern regions were 0.086~0.187m-1. The maximum values were outside the maximum turbidity zone of the Yangtze River Estuary, which was 0.180~0.206 m-1 (absorption coefficient at 440 nm). The diurnal variation of CDOM in near shore waters was found to coincide with the change of tide, which decreased at first and then increased in the sea area. By fitting the monthly mean using cosine function, significantly cyclical variation of mean CDOM was found in the South Yellow Sea. The central region of the South Yellow Sea waters fitting coefficient was 0.823. Affected by the Yellow Sea cold water mass, the sub-regions of the South Yellow Sea changed seasonally, whose CDOM concentration in winter and spring was higher than that in summer and autumn. Because of Changjiang Diluted Water and other water masses, seasonal variation of the Yangtze River Estuary was contrary to that of the South Yellow Sea. On monthly scale, CDOM concentration was positively correlated with total suspended matter, with correlation coefficient r being 0.72. The trend of the central and southern region was more significant.

中图分类号: 

图1 江苏近海地理位置与子区划分,采样区(浅蓝色方形区域)分布及潮位站(红色站点)位置
Fig.1 Location andsub-regions of Jiangsu coastal waters, distribution of sampling areas (light blue square) and location of tide stations (red site)
图2 2015年5月12日江苏近海CDOM变化
白色区域为由于云覆盖而在大气校正时被掩膜(陆架区域),或由于近红外波段反射率过高无法反演(沿岸区域)
Fig.2 CDOM variation in the coastal waters of Jiangsu on 12 May, 2015
The white areas are the regions masked byatmospheric correction due to the cloud coverage (shelf area), or too high reflectance at the near infrared wavelength to retrieve (offshore area)
图3 2015年5月12日各采样区CDOM逐时变化
数据点为成像时刻采样区内CDOM浓度的平均值
Fig.3 Hourly CDOM of sampling areas on 12 May, 2015
Points are average values of CDOM concentration in the sampling area of the imaging time
图4 2015年10月15日江苏沿海CDOM变化
Fig.4 CDOM variation in the coastal waters of Jiangsu on 15 October, 2015
图5 2015年10月15日各采样区CDOM逐时变化
Fig.5 Hourly CDOM of sampling areas on 15 October, 2015
图6 多年周平均CDOM变化
Fig.6 Multi-year variation of weekly average CDOM
图7 月平均CDOM变化
Fig.7 Variation of monthly average CDOM
表1 月平均CDOM变化拟合参数
Table 1 Fitting parameters of monthly average CDOM
图8 月平均CDOM与TSM的关系
Fig.8 Relationship of monthly average CDOM and TSM
[1] Del Castillo C E, Coble P G, Morell J M, et al. Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy[J]. Marine Chemistry, 1999, 66(1/2): 35-51.
[2] Del Vecchio R, Blough N V.Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight[J]. Marine Chemistry, 2004, 89(1/4): 169-187.
[3] Andrew A A, Del Vecchio R, Subramaniam A, et al.Chromophoric Dissolved Organic Matter (CDOM) in the Equatorial Atlantic Ocean: Optical properties and their relation to CDOM structure and source[J]. Marine Chemistry, 2013, 148: 33-43,doi:10.1016/j.marchem.2012.11.001.
[4] Steinberg D K, Nelson N B, Carlson C A, et al.Production of Chromophoric Dissolved Organic Matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacterium Trichodesmium spp[J]. Marine Ecology Progress Series, 2004, 267: 45-56.
[5] Del Vecchio R, Subramaniam A.Influence of the Amazon River on the surface optical properties of the western tropical North Atlantic Ocean[J]. Journal of Geophysical Research: Oceans, 2004, 109(C11),doi:10.1029/2004JC002503.
[6] Pan X, Mannino A, Russ M E, et al.Remote sensing of the absorption coefficients and chlorophyll a concentration in the United States southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua[J]. Journal of Geophysical Research: Oceans, 2008, 113(11): C11022.
[7] Siegel D A, Maritorena S, Nelson N B, et al.Global distribution and dynamics of colored dissolved and detrital organic materials[J]. Journal of Geophysical Research: Oceans, 2002, 107(12): C12.
[8] Mannino A, Novak M G, Hooker S B, et al.Algorithm development and validation of CDOM properties for estuarine and continental shelf waters along the northeastern U.S. Coast[J]. Remote Sensing of Environment, 2014, 152: 576-602.
[9] Wu Shaoyuan, Wu Yongsen, Zhang Shikui.The satellite retrieval of marine yellow substance in Yellow Sea and East China Sea[J]. Oceanologia et Limnologia Sinica, 2013, 44(5): 1 223-1 228.
[吴绍渊, 吴永森, 张士魁. 黄、东海海洋黄色物质的卫星反演[J]. 海洋与湖沼, 2013, 44(5): 1 223-1 228.]
[10] Kalle K.Fluorescence and contents of yellow substance in the Gulfs of Bothnia and Finland[J]. Deutsche Hydrographische Zeitschrift, 1949, 2(4): 117-124.
[11] Gagosian Robert B, Stuermer Daniel H.The cycling of biogenic compounds and their diagenetically transformed products in seawater[J]. Marine Chemistry, 1977, 4(5): 605-633.
[12] Bricaud A, Morel A, Prieur L.Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains[J]. Limnology and Oceanography,1981, 26(1): 43-53.
[13] Helms J R, Stubbins A, Ritchie J D, et al.Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955-969.
[14] Swan C M, Siegel D A, Nelson N B, et al.Biogeochemical and hydrographic controls on chromophoric dissolved organic matter distribution in the Pacific Ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56(12): 2 175-2 192.
[15] Stedmon C A, Markager S, Kaas H.Optical properties and signatures of Chromophoric Dissolved Organic Matter (CDOM) in Danish coastal waters. Estuarine[J]. Coastal and Shelf Science, 2000, 51(2): 267-278.
[16] Stedmon C A, Osburn C L, Kragh T.Tracing water mass mixing in the Baltic-North Sea transition zone using the optical properties of coloured dissolved organic matter[J]. Coastal and Shelf Science, 2010, 87(1): 156-162.
[17] Lei Hui, Pan Delu, Tao Bangyi, et al.The spectral absorption and distribution characteristics of CDOM in the typical waters of the East China Sea[J]. Acta Oceanological Scinica, 2009, 31(2): 57-62.
[雷惠, 潘德炉, 陶邦一, 等. 东海典型水体的黄色物质光谱吸收及分布特征[J]. 海洋学报, 2009, 31(2): 57-62.]
[18] Wang Lin, Zhao Dongzhi, Yang Jianhong, et al.Near ultraviolet absorption spectral properties of Chromophoric Dissolved Organic Matter in the north area of Yellow Sea[J]. Spectroscopy and Spectral Analysis, 2010, 30(12): 3 379-3 383.
[王林, 赵冬至, 杨建洪, 等. 黄海北部CDOM近紫外区吸收光谱特性研究[J]. 光谱学与光谱分析, 2010, 30(12): 3 379-3 383.]
[19] Xie Linping, Wang Baodong, Xin Ming, et al.Distribution and spectral characteristics of Colored Dissolved Organic Matter in the costal area of Bohai Sea[J]. Advance in Marine Science, 2016, 34(1): 58-69.
[谢琳萍, 王保栋, 辛明, 等. 渤海近岸水体有色溶解有机物的光吸收特征及其分布[J]. 海洋科学进展, 2016, 34(1): 58-69.]
[20] Xiao Longgeng,Chen Wensong,Chen Guofeng,et al.Fluorescence excitation-emission matrix spectroscopy of chromophoric dissolved organic matter in the South China Sea[J].Acta Scientiae Circumstantiae,2014, 34(1): 160-167.
[肖隆庚, 陈文松, 陈国丰, 等. 中国南海CDOM三维荧光光谱特征研究[J]. 环境科学学报, 2014, 34(1):160-167.]
[21] Yan Lihong, Su Rongguo, Duan Yali, et al.The fluorescence excitation emission matrix spectroscopy ofchromophoric dissolved organic matter in the Bohai Sea[J]. Oceanologia et Limnologia Sinica, 2013, 44(5):1 162-1 169.
[闫丽红, 苏荣国, 段亚丽, 等. 渤海有色溶解有机物的三维荧光光谱特征[J]. 海洋与湖沼, 2013, 44(5):1 162-1 169.]
[22] Zhang Guopeng.Temporal and Spatial Distribution Characteristics of Yellow Substance in Yellow Sea and East China Sea[D]. Qingdao: Ocean University of China, 2015.
[张国朋. 黄东海黄色物质时空分布特征[D]. 青岛: 中国海洋大学, 2015.]
[23] Zhou Hongli, Zhu Jianhua, Li Tongji.Study on the proportion distribution characteristics of three elements absorption in the coastal waters of China[J]. Journal of Ocean Technology, 2014, 33(5): 59-65.
[周虹丽, 朱建华, 李铜基. 中国近海水体三要素吸收系数的比例分布特征研究[J]. 海洋技术学报, 2014, 33(5): 59-65.]
[24] Zhou Hongli, Zhu Jianhua, Li Tongji, et al.Interannual variability analysis of yellow substance content in typical nearshore area of China[J]. Ocean Technology, 2012, 31(3): 60-63.
[周虹丽, 朱建华, 李铜基, 等. 中国近海典型海区黄色物质含量年际变化分析[J].海洋技术, 2012,31(3):60-63.]
[25] Zheng Xiaoshen, Wei Hao, Wang Yuheng.Seasonal and inter-annual variations of Chlorophyll-a concentration based on the remote sensing data in the Yellow Sea and East China Sea[J]. Oceanologia et Limnologia Sinica, 2012, 43(3): 649-654.
[郑小慎, 魏皓, 王玉衡. 基于水色遥感的黄、东海叶绿素a浓度季节和年际变化特征分析[J]. 海洋与湖沼, 2012, 43(3): 649-654.]
[26] Ahn J H, Park Y J, Ryu J H, et al.Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI)[J]. Ocean Science Journal, 2012, 47(3): 247-259.
[27] Ahn J H, Park Y J, Kim W, et al.Vicarious calibration of the geostationary ocean color imager[J]. Optics Express, 2015, 23(18): 23 236-23 258.
[28] Tassan S.Local algorithms using seawifs data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters[J]. Applied Optics, 1994, 33(12): 2 369-2 378.
[29] Siswanto E, Tang J, Yamaguchi H,et al.Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas[J]. Journal of Oceanography, 2011, 67(5): 627-650.
[30] Devlin M J, Barry J, Mills D K, et al.Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters[J]. Estuarine, Coastal and Shelf Science,2008, 79(3): 429-439.
[31] Chen Tao, Li Wu, Wu Shuchu.The relation between suspended sediment concentration and the maximum of the spectral reflectance[J]. Acta Oceanologica Sinica, 1994, 16(1): 38-43.
[陈涛, 李武, 吴曙初. 悬浮泥沙浓度与光谱反射率峰值波长红移的相关关系[J]. 海洋学报, 1994, 16(1): 38-43.]
[32] Fan Hui, Huang Haijun, Tang Junwu.Spectral signature of waters in Huanghe Estuary and estimation of suspended sediment concentration from remote sensing data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(7): 601-604.
[樊辉, 黄海军, 唐军武. 黄河口水体光谱特性及悬沙浓度遥感估测[J]. 武汉大学学报:信息科学版, 2007, 32(7): 601-604.]
[33] Hu C, Carder K L, Muller-Karger F E. Atmospheric correction of SEAWiFS imagery over turbid coastal waters: A practical method[J]. Remote Sensing of Environment, 2000, 74(2): 195-207.
[34] Siegel D A, Wang M H, Maritorena S, et al.Atmospheric correction of satellite ocean color imagery: The black pixel assumption[J]. Applied Optics, 2000, 39(21): 3 582-3 592.
[35] Wang Menghua, Wei Shi.The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing[J]. Optics Express, 2007, 15(24): 15 722-15 733.
[36] Wang Guangsheng.A Study on the Interplay between the Coastal Economic Growth and the Marine Environmental Pollution[D]. Qingdao: Ocean University of China, 2013.
[王光升. 中国沿海地区经济增长与海洋环境污染关系实证研究[D]. 青岛: 中国海洋大学, 2013.]
[37] Liu Jun, Yu Zhigang, Zang Jiaye, et al.Distribution and budget of organic carbon in the Bohai and Yellow Seas[J]. Advances in Earth Science, 2015, 30(5): 564-578.
[刘军, 于志刚, 臧家业, 等. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564-578.]
[38] Zhu Jianrong.The distribution and dynamic analysis of chlorophyll a concentrations in Yangtze estuary[J]. Science in China (Series D), 2004, 34(8): 757-762.
[朱建荣. 长江口外海区叶绿素a浓度分布及其动力成因分析[J]. 中国科学:D辑, 2004, 34(8): 757-762.]
[39] Yu Fei, Zhang Zhixin, Diao Xinyuan, et al.Analysis of evolution of the Huanghai Sea cold water mass and its relationship with adjacent water masses[J]. Acta Oceanologica Sinica,2006, 28(5): 26-34.
[于非, 张志欣, 刁新源, 等. 黄海冷水团演变过程及其与邻近水团关系的分析[J]. 海洋学报, 2006, 28(5): 26-34.]
[40] Liu Chunying, Liu Huanhuan, Yang Guipeng, et al.Relationships among the distributions of acrylic acid marine environmental factors and chlorophyll a in the Yellow Sea Cold Water Mass in summer[J]. Advances in Earth Science, 2014, 29(3): 361-368.
[刘春颖, 刘欢欢, 杨桂朋, 等. 夏季黄海冷水团海域的丙烯酸分布与海洋环境因子和叶绿素a变化之间的关系[J]. 地球科学进展, 2014, 29(3): 361-368.]
[41] Zhao Baoren.A preliminary study of continental shelf front in the western part of Southern Huanghai Sea and circulation structure in the front region of the Huanghai Cold Water Mass(HCWM)[J]. Oceanologia et Limnologia Sinica,1987, 18(3): 218-226.
[赵保仁. 南黄海西部的陆架锋及冷水团锋区环流结构的初步研究[J]. 海洋与湖沼, 1987, 18(3): 218-226.]
[42] Ren Shihe,Wang Hui, Liu Na.Review of ocean front in Chinese marginal seas and frontal forecasting[J]. Advances in Earth Science, 2015, 30(5): 552-563.
[任诗鹤, 王辉, 刘娜. 中国近海海洋锋和锋面预报研究进展[J]. 地球科学进展, 2015, 30(5): 552-563.]
[43] Wei Qinsheng,Lü Xin’gang, Wang Zongxing, et al.A preliminary analysis of the characteristics of the continental shelf front and its ecological effects in the Yellow Sea[J]. Advances in Earth Science, 2010, 25(4): 435-443.
[韦钦胜, 吕新刚, 王宗兴, 等. 黄海陆架锋特征及其生态效应的初步分析[J]. 地球科学进展, 2010, 25(4): 435-443.]
[44] Pang Chongguang, Bai Xuezhi, Hu Dunxin.The transport and sedimentation of suspended matter and their seasonal variation are affected by circulation and tide current in the Bohai Sea, the Yellow Sea and the East China Sea[J]. Studia Marina Sinica, 2004,(46): 32-41.
[庞重光, 白学志, 胡敦欣. 渤、黄、东海海流和潮汐共同作用下的悬浮物输运、沉积及其季节变化[J]. 海洋科学集刊, 2004,(46): 32-41.]
[45] Zhu Weijian, Shen Fang, Hong Guanlin.Optical characteristics of Colored Dissolved Organic Material (CDOM) in Yangtze Estuary[J]. Environmental Science, 2010, 31(10): 2 292-2 298.
[朱伟健, 沈芳, 洪官林. 长江口及邻近海域有色溶解有机物(CDOM)的光学特性[J]. 环境科学, 2010, 31(10): 2 292-2 298.]
[46] Cheng Yuanyue, Guo Weidong, Hu Minghui.Fluorescence characteristics of dissolved organic matter released from estuarine sediments during resuspension[J]. Geochimica,2008, 37(1): 51-58.
[程远月, 郭卫东, 胡明辉. 近岸沉积物再悬浮期间所释放溶解有机物的荧光特征[J]. 地球化学,2008, 37(1): 51-58.]
[47] Chen Guanxian.Marine Fishery Environment in China[M]. Hangzhou: Zhejiang Science and Technology Publishing House, 1991.
[陈冠贤. 中国海洋渔业环境[M]. 杭州: 浙江科学技术出版社, 1991.]
[48] Wei Qinsheng, Fu Mingzhu, Li Yan, et al.Observation of the seasonal evolution of DO, chlorophyll a maximum phenomena and nutrient accumulating in the Southern Huanghai (Yellow) Sea Cold Water Mass area[J]. Acta Occanologica Sinica, 2013, 35(3): 142-154.
[韦钦胜, 傅明珠, 李艳, 等. 南黄海冷水团海域溶解氧和叶绿素最大现象值及营养盐累积的季节演变[J]. 海洋学报, 2013, 35(3): 142-154.]
[49] Kieber J D, McDaniel J, Mopper K. Photochemical source of biological substrates in sea water: Implications for carbon cycling[J]. Nature, 1989, 6 243(341): 637-640.
[50] Zhao Baoren, Ren Guangfa, Cao Deming,et al.Characteristics of the ecological environment in upwelling area adjacent to the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 2001, 32(3): 327-333.
[赵保仁, 任广法, 曹德明, 等. 长江口上升流海区的生态环境特征[J]. 海洋与湖沼,2001, 32(3): 327-333.]
[51] Kong Dexing, Yang Hong, Wu Jianhui.Optical absorption properties of chromophoric dissolvable organic matter in Changjiang Estuary[J]. Marine Environmental Science, 2008, 27(6): 629-631,646.
[孔德星, 杨红, 吴建辉.长江口海域黄色物质光吸收特性[J]. 海洋环境科学, 2008, 27(6): 629-631,646.]
[52] Shao Mihua, Li Yan, Wang Zhengfang, et al.The spatial and temporal variation of suspended substance in the Changjiang Estuary area[J]. Marine Environmental Science,1996, 15(3): 36-40.
[邵秘华, 李炎, 王正方, 等. 长江口海域悬浮物的分布时空变化特征[J]. 海洋环境科学,1996, 15(3):36-40.]
[53] Song Kaishan, Liu Dianwei, Li Lin, et al.Spectral absorption properties of Colored Dissolved Organic Matter (CDOM) and Total Suspended Matter (TSM) of inland waters[C]∥Processing for SPIE 7811, Atmospheric and Environmental Remote Sensing Data Processing and Utilization VI: Readiness for GEOSS IV, 78110B. United States: SPIE Digital Library, 2010.
[1] 张朝林, 宋长青. “中国地区整层大气甲烷柱总量及其垂直分布特征研究”研究成果介绍[J]. 地球科学进展, 2013, 28(11): 1285-1286.
[2] 张佩芳,许建初. 云南境内澜沧江流域土地利用时空变化特征及动因分析[J]. 地球科学进展, 2003, 18(6): 947-953.
阅读次数
全文


摘要