地球科学进展 ›› 2017, Vol. 32 ›› Issue (5): 513 -523. doi: 10.11867/j.issn.1001-8166.2017.05.0513

上一篇    下一篇

三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究
李兴文 1, 2( ), 张鹏 1, 强小科 1, 敖红 1   
  1. 1.中国科学院地球环境研究所黄土与第四纪地质国家重点实验室,陕西 西安 710061
    2.中国科学院大学,北京 100049
  • 收稿日期:2016-12-25 修回日期:2017-03-09 出版日期:2017-05-20
  • 基金资助:
    国家自然科学基金项目“中国黄土记录的布容正极性时极性漂移事件研究”(编号:41572164);黄土与第四纪地质国家重点实验室开放基金课题“汾渭地堑早期人类扩散、迁徙与融合证据”(编号:SKLLQG1502)资助

Rock Magnetism Study on Loess-Paleosol Sequence at Huixinggou Section of Sanmenxia Basin

Xingwen Li 1, 2( ), Peng Zhang 1, Xiaoke Qiang 1, Hong Ao 1   

  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061,China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-12-25 Revised:2017-03-09 Online:2017-05-20 Published:2017-05-20
  • About author:

    First author:Li Xingwen (1987-), male, Jiaozuo City, He’nan Province, Ph.D student. Research areas include quaternary geology and paleolithic archaeology.E-mail:lixw@ieecas.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Investigation of geomagnetic excursion events in the Brunhes Chron recorded in the Chinese loess”(No.41572164);State Key Laboratory of Loess and Quaternary Geology “Evidence on the early human diffusion, migration and fusion at Fenwei Graben”(No.SKLLQG1502)

岩石磁学是古地磁学和环境磁学研究的基础,是鉴定岩石和沉积物中磁性矿物种类、粒度和含量的有效途径。对黄土高原东南部三门峡盆地的水沟—会兴沟旧石器遗址会兴沟剖面黄土—古土壤序列(S0~S8)进行系统的岩石磁学研究表明:本剖面沉积物的主要载磁矿物为磁铁矿、磁赤铁矿和赤铁矿,显示准单畴(PSD)磁性颗粒特征。所有磁学参数曲线均表现出基本一致的变化特征,与深海氧同位素曲线能够很好的对应,反映了第四纪以来的冰期—间冰期旋回中,东亚季风影响下的风尘黄土堆积中磁性矿物种类、粒度和含量的周期性变化特征。黄土中高矫顽力磁性矿物的相对含量要高于古土壤中的,而随着成土作用的加强,在古土壤中细粒的低矫顽力磁性矿物显著增加的同时,其中高矫顽力磁性矿物的绝对含量也相应增加。质量磁化率(χ)与非磁滞剩磁磁化率(χARM)和饱和等温剩磁(SIRM)及磁粒度参数χARM/SIRM和χARM/χ均呈明显的正相关关系,表明由成土作用产生的单畴(SD)颗粒和较小PSD颗粒对磁化率增强有显著的贡献。

Rock magnetism is the foundation of paleomagnetism and environmental magnetism study, and is effective in identifying the components, grain size and content of magnetic minerals in rocks and sediments. A systematic rock magnetism investigation has been conducted on the Huixinggou loess-paleosol sequence at Shuigou-Huixinggou Paleolithic site of Sanmenxia Basin in the southeastern Loess Plateau. Results show that the magnetic assemblage of the section is dominated by magnetite and maghemite, as well as hematite, exhibiting the average grain size of magnetic minerals is attributed to Pseudo-Single Domain (PSD). The variation curves of magnetic parameters are consistent and well comparable to marine oxygen isotope curves, with low values corresponding to the loess deposition during glacial periods, and high values corresponding to the paleosol development during interglacial periods, jointly demonstrating the glacial-interglacial cyclicities of magnetic mineral types, composition, and grain size of Chinese loess-paleosol sequences under the influence of alternating strengthening and weakening of Eastern Asian paleomonsoon over the Quaternary period. Comprehensive analysis reveals that the relative content of high-coercivity antiferromagnetic minerals is higher in loess than in paleosol, whilst the absolute content of high-coercivity antiferromagnetic minerals in paleosol is generally higher than that in loess accompanying increasing intensity of pedogenesis. The mass-specific magnetic susceptibility (χ) shows distinctly positive correlations with anhysteretic susceptibility (χARM), Saturation Isothermal Remanent Magnetization (SIRM) and magnetic grain size dependent parameters (χARM/SIRM and χARM/χ), indicating that the pedogenic producing Single Domain (SD) and small PSD ferrimagnetic particles contribute significantly to the magnetic susceptibility enhancement.

中图分类号: 

图1 会兴沟剖面的地理位置示意图
Fig.1 A sketch map of the geographical location of Huixinggou section
图2 三门峡会兴沟剖面的土壤地层、磁化率和磁性地层(据参考文献[7]修改)
Fig.2 Pedostratigraphy, magnetic susceptibility and magnetostratigraphy at Huixinggou section of Sanmenxia Basin (modified after reference[7])
图3 会兴沟剖面代表性黄土和古土壤样品的 χ-T曲线(红线和蓝线分别表示加热和冷却曲线)
Fig.3 The χ-T curves of representative loess and paleosol samples at Huixinggou section (Red and blue lines represent heating and cooling curves, respectively)
图4 会兴沟剖面代表性黄土和古土壤样品的IRM获得曲线和反向退磁曲线
Fig.4 IRM acquisition and reverse demagnetization curves for representative loess and paleosol samples at Huixinggou section
图5 经过顺磁校正后会兴沟剖面代表性黄土和古土壤样品的磁滞回线
Fig.5 Hysteresis loops of representative loess and paleosol samples at Huixinggou section after slope correction for paramagnetic contribution
表1 会兴沟剖面代表性黄土和古土壤样品的磁滞回线参数
Table 1 Hysteresis parameters of representative loess and paleosol samples at Huixinggou section
图6 会兴沟剖面代表性黄土和古土壤样品磁滞参数的Day氏投影图(据参考文献[22,23]的方法绘制)
SD.单畴;PSD.准单畴;MD.多畴
Fig.6 Hysteresis ratios plotted on a Day diagram for representative loess and paleosol samples at Huixinggou section (drawn according to the method of references[22,23])
SD.Single Domain; PSD.Pseudo-Single Domain; MD.Multidomain
图7 会兴沟剖面黄土—古土壤序列磁学参数随深度变化曲线及与深海氧同位素曲线 [ 29 ]的对比
Fig.7 Variation curves of the depth-dependent magnetic parameters for the loess-paleosol sequence of Huixinggou section and their comparisons with marine oxygen isotope curves [ 29 ]
图8 会兴沟剖面部分磁学参数的相关性
Fig.8 The correlations of part magnetic parameters at Huixinggou section
[1] Huang Weiwen.On a collection of Paleoliths from Sanmen area in Western Honan[J]. Vertebrate PalAsiatica, 1964, 8(2): 162-177.
[黄慰文. 豫西三门峡地区的旧石器[J]. 古脊椎动物与古人类, 1964, 8(2): 162-177.]
[2] Huang Weiwen.Bifaces in China[J]. Acta Anthropologica Sinica, 1987, 6(1): 61-68.
[黄慰文. 中国的手斧[J]. 人类学学报, 1987, 6(1): 61-68.]
[3] Huang Weiwen.On the typology of heavey-duty tools of the Lower Paleolithic from East and Southeast Asia—Comment on the Movius’s system[J]. Acta Anthropologica Sinica, 1993, 12(4): 297-304.
[黄慰文. 东亚和东南亚旧石器初期重型工具的类型学——评Movius的分类体系[J]. 人类学学报, 1993, 12(4): 297-304.]
[4] Huang W W, Hou Y M, Seong H.The pebble-tool tradition in China[J]. Archaeology, Ethnology and Anthropology of Eurasia, 2005, 21(1): 2-15.
[5] Lin Shenglong.Cleavers in China[J]. Acta Anthropologica Sinica, 1992, 11(3): 193-201.
[林圣龙. 中国的薄刃斧[J]. 人类学学报, 1992, 11(3): 193-201.]
[6] Li H, Li C R, Kuman K.Rethinking the “Acheulean” in East Asia: Evidence from recent investigations in the Danjiangkou Reservoir region, Central China[J]. Quaternary International, 2014, 347: 163-175,doi:10.1016/j.quaint.2014.03.059.
[7] Li X W, Ao H, Dekkers M J, et al.Early Pleistocene occurrence of Acheulian technology in North China[J]. Quaternary Science Reviews, 2017, 156: 12-22,doi:10.1016/j.quascirev.2016.11.025.
[8] Zhao Zhizhong, Wu Xihao, Jiang Fuchu, et al.The loess stratigraphy in Sanmenxia area[J]. Journal of Geomechanics, 2000, 6(4): 19-26.
[赵志中, 吴锡浩, 蒋复初, 等. 三门峡地区黄土与古季风[J]. 地质力学学报, 2000, 6(4): 19-26.]
[9] Zhao Zhizhong, Wang Shubing, Jiang Fuchu, et al.Time scale of loess in the Sanmenxia area[J]. Journal of Geomechanics, 2003, 9(4): 337-342.
[赵志中, 王书兵, 蒋复初, 等. 黄土地层精确时间标尺的建立——以三门峡黄土地层研究为例[J]. 地质力学学报, 2003, 9(4): 337-342.]
[10] Wang X S, Løvlie R, Yang Z Y, et al. Remagnetization of Quaternary eolian deposits: A case study from SE Chinese Loess Plateau[J]. Geochemistry Geophysics Geosystems, 2005, 6(6): Q06H18, doi:10.1029/2004GC000901.
[11] Wang X S, Yang Z Y, Løvlie R, et al.Environmental magnetism and paleoclimatic interpretation of the Sanmenxia loess-paleosol sequence in the southeastern extremity of the Chinese Loess Plateau[J]. Chinese Science Bulletin, 2006, 51(22): 2 755-2 762.
[12] Dunlop D J, Özdemir Ö.Rock Magnetism: Fundamentals and Frontiers[M]. New York: Cambridge University Press, 1997.
[13] Feng Xingxiang.Neotectonics and seismic activities in the Sanmenxia Basin[J]. Journal of Henan Normal University (Natural Sciences), 1982, 1: 49-55.
[冯兴祥. 三门峡盆地的新构造运动与地震活动[J]. 河南师范大学学报:自然科学版, 1982, 1: 49-55.]
[14] Xie Fengchun, Jiang Zefan.The basic characteristics of the loess in western Henan Province[J]. Henan Geology, 1987, 5(3): 42-48.
[谢封春, 姜泽泛. 豫西黄土的基本特征[J]. 河南地质, 1987, 5(3): 42-48.]
[15] Liu Tungsheng.Loess and the Environment[M]. Beijing: Science Press, 1985.
[刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985.]
[16] An Zhisheng, Kukla G, Liu Tungsheng.Loess stratigraphy in Luochuan of China[J].Quaternary Sciences, 1989, 9(2): 155-168.
[安芷生, Kukla G, 刘东生. 洛川黄土地层学[J]. 第四纪研究, 1989, 9(2): 155-168.]
[17] An Zhisheng, Wei Lanying.The fifth layer paleosol in the Lishi loess and their paleoclimatic significance[J]. Acta Pedologica Sinica, 1980, 17(1): 1-12.
[安芷生, 魏兰英. 离石黄土中的第五层古土壤及其古气候的意义[J]. 土壤学报, 1980, 17(1): 1-12.]
[18] Wang X Y, Lu H Y, Li Z, et al.Paleoclimatic significance of mineral magnetic properties of loess sediments in northern Qinghai-Tibetan Plateau[J]. Chinese Science Bulletin, 2003, 48(19): 2 126-2 133.
[19] Liu Q S, Deng C L, Yu Y, et al.Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols[J]. Geophysical Journal International, 2005, 161(1): 102-112.
[20] Fukuma K, Torri M.Variable shape of magnetic hysteresis loops in the Chinese loess-paleosol sequence[J]. Earth, Planets and Space, 1998, 50(1): 9-14.
[21] Roberts A P, Cui Y L, Verosub K L.Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems[J]. Journal of Geophysical Research, 1995, 100(17): 909-924.
[22] Day R, Fuller M, Schmidt V A.Hysteresis properties of titanomagnetites: Grain-size and compositional dependence[J]. Physics of the Earth & Planetary Interiors, 1977, 13(4): 260-267.
[23] Dunlop D J.Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1.Theoretical curves and tests using titanomagnetite data[J]. Journal of Geophysical Research, 2002, 107(B3): 2 056,doi:10.1029/2001JB000486.
[24] Wu Y, Zhu Z Y, Qiu S F, et al.A rock magnetic record of Asian cooling and aridification processes during 1.95~0.40 Ma in the southeastern Chinese Loess Plateau[J]. Chinese Science Bulletin, 2013, 58(30): 3 636-3 644.
[25] Zhang Jiangyong, Wang Zhimin, Liao Zhiliang, et al.The relationship among magnetic susceptibility, grain size, anhysteretic remanent magnetization and clastic mineral abundance in core QD189 retrieved from abyssal plain of the South China Sea[J]. Advances in Earth Science, 2015, 30(9): 1 050-1 062.
[张江勇, 王志敏, 廖志良, 等. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1 050-1 062.]
[26] Hou Zheng, Yu Changchun, Wu Yanwang, et al.Research of the rock magnetic susceptibility characteristics in southern Hotan region in Xinjiang[J]. Advances in Earth Science, 2016, 31(5): 481-493.
[侯征, 于长春, 吴彦旺, 等. 新疆和田南部地区岩石磁化率变化特征研究[J]. 地球科学进展, 2016, 31(5): 481-493.]
[27] King J, Banerjee S K, Marvin J, et al.A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments[J]. Earth and Planetary Science Letters, 1982,59: 404-419.
[28] Wu Y, Zhu Z Y, Rao Z G, et al.Mid-Late Quaternary loess-paleosol sequence in Lantian’s Yushan, China: An environmental magnetism approach and its paleoclimatic significance[J]. Chinese Science Bulletin, 2010, 55(3): 1-12.
[29] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20: PA1003,doi: 1010.1029/2004PA001071.
[30] Deng C L, Vidic N J, Verosub K L, et al.Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability[J]. Journal of Geophysical Research, 2005, 110(B03): B03103,doi:10.1029/2004JB003451.
[31] Liu Q S, Torrent J, Maher B A, et al.Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis[J]. Journal of Geophysical Research, 2005, 110(B11): B11102,doi: 10.1029/2005JB003726.
[32] Zhou L P, Oldfield F, Wintle A G, et al.Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature, 1990, 346(6 286): 737-739.
[33] Liu Q S, Jackson M J, Banerjee S K, et al.Mechanism of the magnetic susceptibility enhancements of the Chinese loess[J]. Journal of Geophysical Research, 2004, 109(B12): B12107,doi: 10.1029/2004JB003249.
[34] Deng Chenglong, Liu Qingsong, Pan Yongxin, et al.Environmental magnetism of Chinese loess-paleosol sequences[J]. Quaternary Sciences, 2007, 27(2): 193-209.
[邓成龙, 刘青松, 潘永信, 等. 中国黄土环境磁学[J]. 第四纪研究, 2007, 27(2): 193-209.]
[35] Heller F, Liu T S.Palaeoclimate and sedimentary history from magnetic susceptibility of loess in China[J]. Geophysical Research Letters, 1986, 13(11): 1 169-1 172.
[36] An Z S, Kukla G, Porter S C, et al.Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 130000 years[J]. Quaternary Research, 1991, 36(1): 29-36.
[37] Guo Zhengtang, Jiang Wenying, Lü Houyuan,et al.Pleistocene climate extremes in East Asia and their causes[J]. Earth Science Frontiers, 2002, 9(1): 113-120.
[郭正堂, 姜文英, 吕厚远, 等. 东亚季风区极端气候事件及其原因[J]. 地学前缘, 2002, 9(1): 113-120.]
[38] An Z S, Kutzbach J E, Prell W L, et al.Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times[J]. Nature, 2001, 411(6 833): 62-66.
[39] Jia Jia, Xia Dunsheng, Wei Haitao, et al.Magnetic properties of typical paleosol and loess stratum of western Loess Plateau and its signification to paleocliamte[J]. Journal of Lanzhou University (Natural Sciences), 2010, 46(6): 26-31.
[贾佳, 夏敦胜, 魏海涛, 等. 黄土高原西部典型古土壤与黄土的磁学特征及其古气候意义[J]. 兰州大学学报:自然科学版, 2010, 46(6): 26-31.]
[40] Lü Bin, Liu Xiuming, Zhao Guoyong, et al.Rock magnetic properties of Bole loess in Xinjiang and its environmental significance[J]. Journal of Lanzhou University (Natural Sciences), 2012, 48(5): 1-8.
[吕镔, 刘秀铭, 赵国永, 等. 新疆博乐黄土岩石磁学特征及环境意义[J]. 兰州大学学报:自然科学版, 2012, 48(5): 1-8.]
[1] 杨 英,沈承德,易惟熙,孙彦敏. 大火历史及其与古气候关系研究[J]. 地球科学进展, 2000, 15(3): 328-334.
[2] 高洪林,穆治国,马配学. 古气候变化的周期性与驱动机制研究的回顾[J]. 地球科学进展, 2000, 15(2): 222-227.
[3] 魏青云. 推进古地磁研究的着力点[J]. 地球科学进展, 1990, 5(5): 35-39.
阅读次数
全文


摘要