地球科学进展 ›› 2000, Vol. 15 ›› Issue (2): 222 -227. doi: 10.11867/j.issn.1001-8166.2000.02.0222

全球变化研究 上一篇    下一篇

古气候变化的周期性与驱动机制研究的回顾
高洪林,穆治国,马配学   
  1. 北京大学地质学系同位素实验室,北京 100871
  • 收稿日期:1999-04-12 修回日期:1999-07-26 出版日期:2000-04-01
  • 通讯作者: 高洪林,男,1963年4月出生,博士生,主要从事K-Ar与39Ar/40Ar测年及古板块演化的同位素示踪方面的研究。

REVIEW OF CYCLE AND MECHANISM OF ANCIENT CLIMATE

GAO Honglin,MU Zhiguo,MA Peixue   

  1. Laboratory of Isotope Geochemistry,Department of Geology,Beijing University,Beijing100871,China
  • Received:1999-04-12 Revised:1999-07-26 Online:2000-04-01 Published:2000-04-01

冰芯、深海沉积物、黄土、石笋、湖相沉积物等这些古气候载体所记录的古气候(温度)变化广泛具有100 ka、41 ka、20 ka以及更短的千年周期性。2.45 Ma BP到1.6 Ma BP,低频率的166ka到333 ka周期存在;1.8 Ma BP到0.8 Ma BP,41 ka周期占主导。而从0.8 Ma BP至今,100 ka周期逐渐增强并占主导地位。全球性的100 ka周期的驱动机制可用地球轨道面倾斜理论或用宇宙尘在地球上的积累速率模式加以解释,而区域性的千年周期在北大西洋可用深海盐水的循环模式解释。新的资料和各种气候周期模式表明,长尺度的气候周期应是地外天体相互作用引发,短尺度高频率气候振荡应是地球内部各系统间相互制约影响的结果。

Ice core, deep sea sediment, loess, stalagmites, lake sediment, all these proxies record the ancient climatic variation which have cycles of 100 ka, 41 ka, 20 ka, and Millennium. For the age interval 2.45 Ma BP to 1.6 Ma BP, cycles of 166 ka and 333 ka were obvious; 1.8 to 0.8 Ma BP, cycle of 41 ka took place as the primary period of ancient climate. The 100 ka cycle has dominated from 0.8 Ma BP to the present.
The mechanism of globally existing 100 ka cycle is attributed to inclination of Earth' s orbital plane or to accretion rates of meteorites and cosmic dust on Earth, while the circulation of deep-sea brine model can interpret the regional millennial period in the North Atlantic Ocean area. New discoveries and various models show that long periodic (low frequency) climatic change seems to be caused by mutual effect of extraterrestrial celestial bodies, shorter periodic (high frequency) one are the result of restriction among various systems within Earth. Many climatic change-driven mechanism are unknown and therefore, data collation and to study cooperatively and comparatively through out the whole world are the key points in the future.

中图分类号: 

〔1〕Martinson D G,Pisias N G, Hays J D,et al. Age dating and the orbital theory of the ice age: development of a high-resolution 0-300,000-year chronostratigraphy〔J〕. Quaternary Research,1987,27:1~29.
〔2〕Jouzel J, Lorius C, Petit J R,et al. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years)〔J〕.Nature,1987,329: 403~408.
〔3〕Williams D F, Peck J, Karabanov E B,et al. Lake Baikal record of continental climate response to orbital insolation during the past 5 million years〔J〕. Science,1997, 278: 1 114~1 117.
〔4〕Muller R A, MacDonald G J. Glacial cycles and astronomical forcing〔J〕. Science,1997,277: 215~218.
〔5〕Delia Oppo. Millennial climate oscillations〔J〕. Science,1997,278:1 244~1 245.
〔6〕Bone G, Showers W, Cheseby M,et al. A pervasive millennial-scale cycle in north atlantic Holocene and glacial climates〔J〕. Science,1997,278:1 257~1 266.
〔7〕Broecker W S. Massive iceberg discharges as triggers for global climate change〔J〕. Nature,1994,372: 421~424.
〔8〕Richard A K. Big El Ni n~os ride the back of slower climate change〔J〕. Science,1999, 283:1 108~1 109.
〔9〕Winograd I J, Coplen T B, Landwehr J M,et al. Continuous 500,000-year climate record from vein Calcite in Devils Hole,Nevada〔J〕. Science,1997, 258:255~260.
〔10〕Petit J R, Basile I, Lerayuet A,et al. Four climate cycles in Vostok ice core〔J〕. Nature,1997, 387:359.
〔11〕Genthon C, Barnola J M, Raynaud D,et al. Vostok icecore:climatic and orbitalforcing changes over the last climatic cycle〔J〕. Nature,1987, 329: 414~418.
〔12〕Steven C C, Tledemann R. Eccentricity forcing of Pliocene-Early Pleistocene climate revealed in a marine oxygen-isotope record〔J〕. Nature, 1997, 385:801~804.
〔13〕Muller R A. Glacial cycles and extraterrestrial accretion〔R〕.Lawrence Berkeley Laboratory Report ( LBL-35665,Berkeley, CA),1994.
〔14〕Milankovitch M. Mathematische Klimalehre and Astrono-mische Theorie〔M〕. Berlin: der Khmaschwankungen Gebruder Borntreger, 1930.
〔15〕Lortenkamp S J, Dermott S F. A 100 000-year periodicity in the accretion rate of interplanetary dust〔J〕. Science, 1998,280:874~876.
〔16〕Wilson C R. Oceanic effecs on earth rotation rate〔J〕.Science,1998,281:1 623~1 624.

[1] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[2] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[3] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[4] 张洪瑞, 刘传联, 梁丹. 热带海洋生产力:现代过程与地质记录[J]. 地球科学进展, 2016, 31(3): 277-285.
[5] 刘纪远,邵全琴, 延晓冬, 樊江文, 邓祥征, 战金艳, 高学杰, 黄麟, 徐新良, 胡云峰, 王军邦, 匡文慧. 土地利用变化对全球气候影响的研究进展与方法初探[J]. 地球科学进展, 2011, 26(10): 1015-1022.
[6] 邵景安,李阳兵,魏朝富,谢德体. 区域土地利用变化驱动力研究前景展望[J]. 地球科学进展, 2007, 22(8): 798-809.
[7] 于革. 早新生代温室气候及冰期气候转型的模拟研究[J]. 地球科学进展, 2007, 22(4): 369-375.
[8] 宋治清;王仰麟. 城市景观格局动态及其规划的生态学探讨[J]. 地球科学进展, 2005, 20(8): 840-848.
[9] 万世明;李安春. 海洋风尘沉积的古气候学研究进展[J]. 地球科学进展, 2004, 19(6): 955-962.
[10] 杨 英,沈承德,易惟熙,孙彦敏. 大火历史及其与古气候关系研究[J]. 地球科学进展, 2000, 15(3): 328-334.
[11] 方文东,方国洪. 南海南部海洋环流研究的新进展[J]. 地球科学进展, 1998, 13(2): 166-172.
阅读次数
全文


摘要