地球科学进展 ›› 2016, Vol. 31 ›› Issue (3): 277 -285. doi: 10.11867/j.issn.1001-8166.2016.03.0277.

所属专题: IODP研究

上一篇    下一篇

热带海洋生产力:现代过程与地质记录
张洪瑞( ), 刘传联 *( ), 梁丹   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2016-01-25 修回日期:2016-02-25 出版日期:2016-03-20
  • 通讯作者: 刘传联 E-mail:103443_rui@tongji.edu.cn;liucl@tongji.edu.cn

Tropical Marine Productivity:The Modern Progress and Paleoproductivity Records

Hongrui Zhang( ), Chuanlian Liu( ), Dan Liang   

  1. Ocean and Earth Sciences School, Tongji University, Shanghai 200092,China
  • Received:2016-01-25 Revised:2016-02-25 Online:2016-03-20 Published:2016-03-10
  • About author:

    First author:Zhang Hongrui(1992-), male, Panjin City, Liaoning Province, PhD candidate. Research area include paleoceanography.E-mail:103443_rui@tongji.edu.cn

    Corresponding author:Liu Chuanlian (1963-), male, Jining City,Shandong Province, Professor. Research areas include marine micropaleontology and paleoceanography.E-mail:liucl@tongji.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “From indoor culturing to geological records: Exploring the role of coccolithophores in the carbon cycle of the South China Sea” (No.91228204) and “Modern coccolithophores in the Yellow Sea and the East China Sea and their response to environment” (No.41376047)

首先综述了现代热带海洋生产力的分类与影响因素,然后讨论了古生产力替代性指标的分类与各类方法的优点与局限性。在此基础上,通过收集整理前人使用不同替代性指标对热带海洋古生产力重建的结果,讨论了热带海洋古生产力记录的特征、周期性与驱动机制。发现从末次冰期到全新世热带海洋古生产力在冰期时明显偏高,但冰期生产力高间冰期生产力低的规律并不一直适用,MIS 22前后西太平洋初级生产力在冰期—间冰期的变化发生反转。热带海洋古生产力的周期性也与高纬海区显著不同,岁差和斜率的信号更为显著。还存在约30 ka等不同轨道周期叠加之后形成的周期。颗石藻计算的海洋生产力可能存在约400 ka周期,这对全球碳同位素的影响有待深入研究。

The classification and influencing factors of modern marine productivity were reviewed at the beginning. We discussed the pros and cons of different paleoproductivity proxies. Based on these discussions, we collected paleoproductivity reconstructions in tropical marine from previous studies and focus on the glacial-interglacial features, periodicity and forcing mechanisms of tropical marine productivity. We found that the productivity in most tropical sites decreased from MIS 2 to MIS 1. The productivity was not always higher in glacial: The glacial-interglacial pattern of productivity turned at MIS 22 in western Pacific. There were remarkable differences between tropical productivity and high latitude productivity. The precession and obliquity bands were more significant in tropical productivity and ~30 ka cycles caused by the superimposing of different orbital cycles were common in tropical. The coccolith based productivity seemed to have a quasiperiod of 400 ka and more researches are needed to discover the relationship between productivity and global 13C in this band.

中图分类号: 

图1 从末次冰期到全新世海洋生产力变化以及现代海洋初级生产力的分布
(a)为输出生产力;(b)为初级生产力;红色点代表该站位海洋生产力在MIS 2>MIS 1;蓝色点代表MIS 2<MIS 1;灰色点表示2个时间内海洋生产力大致相当;白色表示不同指标的数据存在差异难以确定或是存在非生产力过程对结果造成了影响;现代海洋生产力数据使用VGPM算法计算 [ 40 ],单位为gC/ (m 2·a),来源于Ocean Productivity网站
Fig.1 The variation of marine productivity from the last glacial to Holocene and the distribution of modern primary productivity
(a)The pattern of export productivity;(b)The pattern of primary productivity;Red points mean the productivity in MIS 2 was larger than that in MIS 1 at the site; Blue points mean the productivity in MIS 1 was larger than that in MIS 2; Gray points mean the productivity in MIS 2 was similar to the productivity in MIS 1; White points mean the results of different proxies are contrary or there were other progress that may influence the results; The modern primary productivity data(gC/ (m 2 ·a)) are based the VGPM [ 40 ], which can be downloaded from the website ‘Ocean Productivity’
图2 暖池区输出生产力和初级生产力的频谱分析
ODP 807生产力数据来自于参考文献[12]
Fig.2 Frequency analysis of the export productivity and primary productivity in the West Pacific Warm Pool
The productivity data of ODP 807 is from reference[12]
图3 0.6 Ma以来颗石藻记录的海洋生产力
(a)岁差指数:反映了太阳辐射的季节性分布;(b)赤道东太平洋ODP-1204钙质超微化石的堆积速率 [ 43 ];(c)西太平洋暖池KX08-97321-2中 F. profunda百分含量;(d)南海南部ODP-1143中 F. profunda百分含量 [ 50 ]
Fig.3 The 0.6 Ma marine PP reconstructed by coccolith proxies
(a) Precession index: Indicating the distribution of solar insolation in different seasons; (b) The Nannofossil Accumulation Rate (NAR) of tropical western Pacific site ODP-1204 [ 43 ]; (c) The relative abundance of F. profunda in the WPWP site KX08-97321-2; (d) The relative abundance of F. profunda in the southern SCS site ODP-1143[ 50 ]
[1] Wang P, Li Q, Tian J, et al.Long-term cycles in the carbon reservoir of the Quaternary ocean: A perspective from the South China Sea[J].National Science Review,2014,1(11):119-143.
[2] Martin J H.Glacial-interglacial CO2 change[J]. Paleoceanography,1990, 5(1): 1-13.
[3] Peterson B J.Particulate organic matter flux and planktonic new production in the deep ocean[J].Nature,1979, 282: 677-680,doi:10.1038/282677ao.
[4] Berger W, Smetacek V, Wefer G.Ocean productivity and paleoproductivity-An overview[R]∥Productivity of the Oceans Present and Past: Report of the Dahlem Workshop on Productivity of the Ocean. Berlin: Life Sciences Research Reports 44, Wiley & Sons, Chichester, 1989:1-34.
[5] Stewart R H.Introduction to Physical Oceanography[D].Texas:Texas A & M University,2004.
[6] Chen Y L L, Chen H Y, Lin I I, et al. Effects of cold eddy on phytoplankton production and assemblages in Luzon Strait bordering the South China Sea[J].Journal of Oceanography,2007, 63(4): 671-683.
[7] Lin I, Liu W T, Wu C C, et al.New evidence for enhanced ocean primary production triggered by tropical cyclone[J]. Geophysical Research Letters,2003, 30(13),doi:10.1029/2003GL017141.
[8] Zhang J, Wang P, Li Q,et al.Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A[J]. Marine Micropaleontology,2007, 64(3): 121-140.
[9] Jian Z, Wang L, Kienast M, et al.Benthic foraminiferal paleoceanography of the South China Sea over the last 40,000 years[J]. Marine Geology,1999,156(1): 159-186.
[10] Lukas R, Lindstrom E.The mixed layer of the western equatorial Pacific Ocean[J].Journal Geophysical Research,1991, 96: 3 343-3 357.
[11] Francois R, Honjo S, Krishfield R, et al. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean[J].Global Biogeochemical Cycles,2002, 16(4): 34-1-34-20.
[12] Wakeham S G, Canuel E A.Degradation and preservation of organic matter in marine sediments[M]∥Marine Organic Matter: Biomarkers, Isotopes and DNA.Berlin:Springer, 2006:295-321.
[13] Armstrong R A, Lee C, Hedges J I, et al.A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 49(1): 219-236.
[14] Ziveri P, de Bernardi B, Baumann K H, et al. Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean[J].Deep Sea Research Part II: Topical Studies in Oceanography,2007, 54(5): 659-675.
[15] Betzer P R, Showers W J, Laws E A, et al.Primary productivity and particle fluxes on a transect of the equator at 153 W in the Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1984, 31(1): 1-11.
[16] Hartnett H E, Keil R G, Hedges J I, et al.Influence of oxygen exposure time on organic carbon preservation in continental margin sediments[J].Nature,1998, 391(6 667): 572-575.
[17] Kuehl S A, Fuglseth T J, Thunell R C.Sediment mixing and accumulation rates in the Sulu and South China Seas: Implications for organic carbon preservation in deep-sea environments[J].Marine Geology,1993, 111(1): 15-35.
[18] Prell W, Curry W.Faunal and isotopic indices of monsoonal upwelling-western arabian sea[J].Oceanologica Acta,1981, 4(1): 91-98.
[19] Beaufort L, Lancelot Y, Camberlin P, et al.Insolation cycles as a major control of equatorial Indian Ocean primary production[J].Science,1997,278(5 342):1 451-1 454.
[20] Jorissen F J, Fontanier C, Thomas E.Chapter seven paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics[J].Developments in Marine Geology,2007, 1: 263-325,doi:10.1016/S1572-5480(07)010123.
[21] Radi T, de Vernal A. Dinocyst distribution in surface sediments from the northeastern Pacific margin (40-60 N) in relation to hydrographic conditions, productivity and upwelling[J].Review of Palaeobotany and Palynology,2004, 128(1): 169-193.
[22] Cermeño P, Dutkiewicz S, Harris R P, et al.The role of nutricline depth in regulating the ocean carbon cycle[J].Proceedings of the National Academy of Sciences,2008, 105(51): 20 344-20 349.
[23] Delaney M.Miocene benthic foraminiferal Cd/Ca records: South Atlantic and western equatorial Pacific[J].Paleoceanography,1990, 5(5): 743-760.
[24] Rickaby R, Elderfield H.Planktonic foraminiferal Cd/Ca: Paleonutrients or paleotemperature?[J].Paleoceanography,1999, 14(3): 293-303.
[25] Stoll H M, Schrag D P.Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate[J]. Geochemistry, Geophysics, Geosystems,2000, 1(5),doi:10.1029/1999GC000015.
[26] Higginson M J, Maxwell J R, Altabet M A.Nitrogen isotope and chlorin paleoproductivity records from the Northern South China Sea: Remote vs. local forcing of millennial-and orbital-scale variability[J]. Marine Geology,2003, 201(1): 223-250.
[27] Ren H, Sigman D M, Thunell R C, et al.Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments[J].Limnology and Oceanography,2012, 57(4): 1 011-1 024.
[28] De La Rocha C L, Brzezinski M A, DeNiro M J, et al. Silicon-isotope composition of diatoms as an indicator of past oceanic change[J].Nature,1998, 395(6 703): 680-683.
[29] Huang Yongjian, Wang Chengshan, Wang Yunliang, Progress in the study of proxies of paleocean productivity[J].Earth Science Frontiers,2005,12(2):163-170.
[黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 2005, 12(2):163-170.]
[30] Lopes C, Kucera M, Mix A C.Climate change decouples oceanic primary and export productivity and organic carbon burial[J]. Proceedings of the National Academy of Sciences,2015, 112(2): 332-335.
[31] Francois R, Frank M, Rutgers van der Loeff M M, et al. 230Th normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary[J].Paleoceanography,2004, 19(1),doi:10.1029/2003PA000939.
[32] Geibert W,Rutgers van der Loeff M M, Usbeck R,et al.Quantifying the opal belt in the Atlantic and southeast Pacific sector of the Southern Ocean by means of 230Th normalization[J].Global biogeochemical cycles,2005,19,doi:1029/2005GB002465.8.
[33] Marcantonio F, Lyle M, Ibrahim R.Particle sorting during sediment redistribution processes and the effect on 230Th-normalized mass accumulation rates[J].Geophysical Research Letters,2014, 41(15): 5 547-5 554.
[34] Rosell-Melé A, McClymont E L. Chapter eleven biomarkers as paleoceanographic proxies[J].Developments in Marine Geology,2007, 1: 441-490,doi:10.1016/(S1572-5480107)01016-6.
[35] Calvert S, Pedersen T.Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application[J].Developments in Marine Geology,2007, 1: 567-644,doi:10.1016/S15725480(07)01019-6.
[36] Matthews K A, Grottoli A G, McDonough W F,et al.Upwelling, species, and depth effects on coral skeletal cadmium-to-calcium ratios (Cd/Ca)[J].Geochimica et Cosmochimica Acta,2008, 72(18): 4 537-4 550.
[37] Ravelo A C, Hillaire-Marcel C.Chapter eighteen the use of oxygen and carbon isotopes of foraminifera in paleoceanography[J].Developments in Marine Geology,2007, 1: 735-764,doi:10.1016/S1572-5480(07)01023-8.
[38] Petit J R, Jouzel J, Raynaud D, et al.Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica[J].Nature,1999, 399(6 735): 429-436.
[39] Kohfeld K E, Le Quéré C, Harrison S P, et al.Role of marine biology in glacial-interglacial CO2 cycles[J]. Science,2005, 308(5 718): 74-78.
[40] Behrenfeld M J, Falkowski P G.Photosynthetic rates derived from satellite-based chlorophyll concentration[J].Limnology and Oceanography,1997, 42(1): 1-20.
[41] Huang C Y, Wu S F, Zhao M, et al.Surface ocean and monsoon climate variability in the South China Sea since the last glaciation[J].Marine Micropaleontology,1997, 32(1): 71-94.
[42] Kawahata H, Eguchi N.Biogenic sediments on the Eauripik Rise of the western equatorial Pacific during the late Pleistocene[J].Geochemical Journal,1996, 30(4): 201-215.
[43] Lyle M, Mix A, Pisias N. Patterns of CaCO3 deposition in the eastern tropical Pacific Ocean for the last 150 kyr: Evidence for a southeast Pacific depositional spike during marine isotope stage (MIS) 2[J].Paleoceanography,2002, 17(2): 3-1-3-13.
[44] López-Otlvaro G E, Flores J A, Sierro F J, et al. Variations in coccolithophorid production in the Eastern Equatorial Pacific at ODP Site 1240 over the last seven glacial-interglacial cycles[J].Marine Micropaleontology,2008, 69(1): 52-69.
[45] Schlünz B, Schneider R, Müller P, et al.Late Quaternary organic carbon accumulation south of Barbados:Influence of the Orinoco and Amazon rivers?[J].Deep-Sea Research Part I: Oceanographic Research Papers,2000, 47(6): 1 101-1 124.
[46] Flores J A, Brcena M, Sierro F.Ocean-surface and wind dynamics in the Atlantic Ocean off Northwest Africa during the last 140 000 years[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2000,161(3): 459-478.
[47] Schneider R, Price B, Müller P, et al.Monsoon related variations in Zaire (Congo) sediment load and influence of fluvial silicate supply on marine productivity in the east equatorial Atlantic during the last 200,000 years[J].Paleoceanography, 1997, 12(3): 463-481.
[48] Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the late Pleistocene[J].Science,2001, 293(5 539): 2 440-2 444.
[49] Takahashi T, Sutherland S C, Sweeney C, et al.Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects[J].Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9): 1 601-1 622.
[50] Liu C, Wang P, Tian J, et al.Coccolith evidence for Quaternary nutricline variations in the southern South China Sea[J].Marine Micropaleontology,2008, 69(1): 42-51.
[51] Wang Rujian, Li Jian.The high resulation record of opal and palaeoceangraphy siginifacane of ODP 1143 in the South China Sea[J].China Science Bulletin,2003, 48(1): 74-77.
[王汝建,李建. 南海ODP 1143 站第四纪高分辨率的蛋白石记录及其古生产力意义[J]. 科学通报, 2003, 48(1): 74-77.]
[52] Sun Hanjie, Li Tiegang, Su Xiang, et al.Upper water mass structure evolution in the Weatern Philippine Sea since Mid-Pleistocene: Evidence from the abundace of coccolith species Florisphaera profunda[J].Quaternary Science,2011, 31(2):216-226.
[孙晗杰, 李铁刚, 苏翔,等. 中更新世以来西菲律宾海上层水体结构演化特征[J].第四纪研究, 2011,31(2):216-226.]
[53] Wagner T.Control of organic carbon accumulation in the late Quaternary equatorial Atlantic (Ocean Drilling Program sites 664 and 663): Productivity versus terrigenous supply[J].Paleoceanography,2000, 15(2): 181-199.
[54] He J, Zhao M, Wang P, et al.Changes in phytoplankton productivity and community structure in the northern South China Sea during the past 260ka[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2013, 392: 312-323,doi:10.1016/j.palaeo.2013.09.010.
[55] Su X, Liu C, Beaufort L, et al.Late Quaternary coccolith records in the South China Sea and East Asian monsoon dynamics[J].Global and Planetary Change,2013, 111: 88-96,doi:10.1016/j.gloplacha.2013.08.016.
[56] Garidel-Thoron T, Beaufort L, Linsley B K, et al.Millennial-scale dynamics of the East Asian winter monsoon during the last 200,000 years[J].Paleoceanography,2001, 16(5): 491-502.
[57] Beaufort L, van der Kaars S, Bassinot F C, et al. Past dynamics of the Australian monsoon: Precession, phase and links to the global monsoon concept[J].Climate of the Past,2010, 6(5): 695-706.
[58] Reichart G J, Lourens L, Zachariasse W.Temporal variability in the northern Arabian Sea Oxygen Minimum Zone (OMZ) during the last 225,000 years[J].Paleoceanography,1998, 13(6): 607-621.
[59] Wu J, Liu Z, Zhou C.Late Quaternary glacial cycle and precessional period of clay mineral assemblages in the Western Pacific Warm Pool[J].Chinese Science Bulletin,2012, 57(28/29): 3 748-3 760.
[60] Beaufort L, de Garidel-Thoron T, Linsley B, et al. Biomass burning and oceanic primary production estimates in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics[J].Marine Geology,2003, 201(1): 53-65.
[61] Rickaby R, Bard E, Sonzogni C, et al.Coccolith chemistry reveals secular variations in the global ocean carbon cycle?[J].Earth and Planetary Science Letters,2007, 253(1): 83-95.
[62] Cortese G, Gersonde R, Hillenbrand C D, et al.Opal sedimentation shifts in the World Ocean over the last 15 Myr[J].Earth and Planetary Science Letters,2004, 224(3): 509-527.
[1] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[2] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[3] 刘纪远,邵全琴, 延晓冬, 樊江文, 邓祥征, 战金艳, 高学杰, 黄麟, 徐新良, 胡云峰, 王军邦, 匡文慧. 土地利用变化对全球气候影响的研究进展与方法初探[J]. 地球科学进展, 2011, 26(10): 1015-1022.
[4] 刘诚刚,宁修仁,郝锵,乐凤凤. 海洋浮游植物溶解有机碳释放研究进展[J]. 地球科学进展, 2010, 25(2): 123-132.
[5] 邵景安,李阳兵,魏朝富,谢德体. 区域土地利用变化驱动力研究前景展望[J]. 地球科学进展, 2007, 22(8): 798-809.
[6] 于革. 早新生代温室气候及冰期气候转型的模拟研究[J]. 地球科学进展, 2007, 22(4): 369-375.
[7] 孙军;宁修仁. 海洋浮游植物群落的比生长率[J]. 地球科学进展, 2005, 20(9): 939-945.
[8] 宋治清;王仰麟. 城市景观格局动态及其规划的生态学探讨[J]. 地球科学进展, 2005, 20(8): 840-848.
[9] 檀赛春;石广玉. 海洋初级生产力的卫星遥感[J]. 地球科学进展, 2005, 20(8): 863-870.
[10] 何勇;董文杰;季劲均;丹利. 基于AVIM的中国陆地生态系统净初级生产力模拟[J]. 地球科学进展, 2005, 20(3): 345-349.
[11] 万世明;李安春. 海洋风尘沉积的古气候学研究进展[J]. 地球科学进展, 2004, 19(6): 955-962.
[12] 龙爱华;张志强;苏志勇. 生态足迹评介及国际研究前沿[J]. 地球科学进展, 2004, 19(6): 971-981.
[13] 高洪林,穆治国,马配学. 古气候变化的周期性与驱动机制研究的回顾[J]. 地球科学进展, 2000, 15(2): 222-227.
[14] 郝永萍,陈育峰,张兴有. 植被净初级生产力模型估算及其对气候变化的响应研究进展[J]. 地球科学进展, 1998, 13(6): 564-571.
[15] 方文东,方国洪. 南海南部海洋环流研究的新进展[J]. 地球科学进展, 1998, 13(2): 166-172.
阅读次数
全文


摘要