Please wait a minute...
img img
高级检索
地球科学进展  1998, Vol. 13 Issue (6): 564-571    DOI: 10.11867/j.issn.1001-8166.1998.06.0564
干旱气候变化与可持续发展     
植被净初级生产力模型估算及其对气候变化的响应研究进展
郝永萍,陈育峰,张兴有
中国科学院地理研究所资源与环境信息系统国家重点实验室 北京 100101)
PROGRESS IN ESTIMATION OF NET PRIMARY PRODUCTIVITY AND ITS RESPONSES TO CLIMATE CHANGE
Hao Yongping,Chen Yufeng,Zhang Xingyou
State Key Laboratory of Resource and Environment Information System,Institute of Geography, Chinese Academy of Sciences, Beijing 100101
 全文: PDF(260 KB)  
摘要:

近年来随着遥感和地理信息系统技术的广泛应用,植被净初级生产力研究经历了从小范围的传统测量阶段到大范围的模型估算阶段的重要转变,并参与全球变化研究。其研究手段和研究内容大大拓宽,在植被净初级生产力模型估算以及对气候变化(如温度、降水、CO2浓度等)的响应等方面的研究取得了可喜的进展。

关键词: 净初级生产力模型估算气候变化    
Abstract:

    Recently, with the development of remote sensing and geographical information system (GIS), the traditional small-scale measurement of net primary productivity (NPP) of vegetation has been substituted gradually by the large- scale model-based estimation. By using both environmental values and satellite data, the models based on remote sensing and GIS have become one of the key approaches to the issues about global change. In this paper, progresses in approaches to estimate NPP were reviewed firstly: traditionally, NPP is measured by experiment; but with the application of remote sensing and GIS, NPP is usually estimated by models. Here statistical, parametric, and mechanic models had been compared and assessed comprehensively.
    Then the impacts of climate changes (temperature, water use efficiency, CO2) on NPP were discussed comprehensively. The responses of NPP to climate changes are very complex, which depend on the interactions between climate, vegetation, and soil both spatially and temporally. Generally, solar radiation, temperature, precipitation, air humidity,and atmospheric CO2 concentration are some of the most important external forces that drive ecosystem processes, and they affect NPP directly or indirectly through changeable soil conditions. As for forests, there is a positive relationship between NPP and temperature or actual transpiration, but the effects of CO2 individually on NPP are still confused. For grasslands, precipitation and its seasonal distribution impact NPP mostly. And for some crops, precipitation persistence during their developing period is an important factor which has an effect on NPP or yield.
    Therefore, we conclude that further resear ch should focus on as follows: ①Try to improve the precision of NPP, especially from remote sensing data;② Emphasize the ecosystem process, including different distribution of NPP or Biomass during different period;③Strengthen the feedback of vegetation to climate change, taking climate-vegetation-soil as a whole.

Key words: Net primary productivity    Model-based estimation    Climate change.
收稿日期: 1998-03-30 出版日期: 1998-12-01
:  P91  
基金资助:

中国科学院“九五”特别支持项目“中国资源环境信息系统及农情遥感速报”(KZ95T-03-02)资助。

通讯作者: 郝永萍   
作者简介: 郝永萍,女,1970年10月生,博士生,主要从事GIS、遥感及其应用研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郝永萍,陈育峰,张兴有 . 植被净初级生产力模型估算及其对气候变化的响应研究进展[J]. 地球科学进展, 1998, 13(6): 564-571.

Hao Yongping,Chen Yufeng,Zhang Xingyou. PROGRESS IN ESTIMATION OF NET PRIMARY PRODUCTIVITY AND ITS RESPONSES TO CLIMATE CHANGE. Advances in Earth Science, 1998, 13(6): 564-571.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.1998.06.0564        http://www.adearth.ac.cn/CN/Y1998/V13/I6/564

[1] 陈育峰, 李克让. 应用林窗模型研究全球气候变化对森林群落的可能影响——以四川西部紫果云杉群落为例. 地理学报, 1996, 51(增刊): 73-80.
[2] 郑元润, 周广胜, 张新时, 等. 中国陆地生态系统对全球变化的敏感性研究. 植物学报, 1997, 39 (9): 837- 840.
[3] 朱志辉. 我国自然植被生产力功能和地带性结构的气候耦合. 地理学报, 1996, 51(增刊): 66- 72.
[4] 郑志明, 严力蛟, 陈进红, 等. 未来CO2浓度增加和相应增温对水稻产量影响的模拟——以浙江省为例. 应用生态学报, 1998, 9 (1): 79- 83.
[5] Raich J W, Russell A E, Vitousek P M. Primary productivity and ecosystem development along an elevation gradient on Mauna Loa,Hawaii. Ecology, 1997, 78(3): 707- 721.
[6] Prince S D, Justice C O, Moore B III. Global primary product ion data initiative project description. In: IGBP-DIS/GAIM working paper, 1. IGBP-DIS Office. Paris, France, 1995. 38.
[7] 周广胜, 张新时. 自然植被第一性生产力模型初探. 植物生态学报, 1995, 19 (3): 193-200.
[8] 张宪洲. 我国自然植被净第一性生产力的估算和分布. 自然资源, 1993, (1):15-21.
[9] 王品清. 我国卫星图像数据用于生物量研究. 遥感信息, 1987, (4): 18-38.
[10] 邹尚辉. 植物生物量和作物产量遥感估算的若干理论问题. 遥感信息, 1987, (4): 19-20.
[11] 金亚秋, 刘长龙. 人工神经网络模型反演植被生物量参数. 遥感学报, 1997, 1(2) : 84- 87.
[12] 赵士洞, 罗天祥. 区域尺度陆地生态系统生产力研究方法. 资源科学, 1998,20 (1) : 23-34.
[13] Loehle C, LeBlanc D. Model-based assessments of climate change effects on forests: a critical review. Ecological Modeling,1996, 90:1- 31.
[14] Sellers P J. Canopy reflectance, photosynthesis, and transpiration. International Journal of Remote Sensing, 1985, 6: 1 335-1 372.
[15] Sellers P J. Canopy reflectance, photosynthesis, and transpiration II The role of biophysics in the linearity of their interdependence.Remote Sensing of Environment, 1987, 21: 143- 183.
[16] Prince S D. Satellite remote sensing of primary production: comparison of results for Sahelian grasslands 1981-1988. International Journal of Remote Sensing, 1991, 12: 1 301- 1 311.
[17] Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: a process model bases on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7(4): 811- 841.
[18] Ruimy A, Dedieu C, Saugier B. Methodology for the estimation of net primary productivity from remotely sensed data. Journal of Geophysical Research, 1994, 99(D3): 5 263- 5 283.
[19] Field C B, Randerson J T, Malmstrom C M. Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment, 1995, 51: 74-88.
[20] Paruelo J M, Epst ein H E, Lauenroth W K, et al. ANPP estimates from NDVI for the Central grassland region of the United States. Ecology, 1997, 78(3): 953- 958.
[21] Raich J W, Rastetter E B, M elillo J M, et al. Potential net primary production in South America: application of a global model. Ecological Applications, 1991, 1(4): 399- 429.
[22] Melillo J M, Kicklighter D W, McGuire A D, et al. Global climate change and terrestrial net primary production. Nature, 1993,363: 234-240.
[23] Janacek A, Benderoth G, Ludeke M K B, et al. Model of the seasonal and perennial carbon dynamics in deciduous-type forests controlled by climatic variables. Ecological Modeling, 1989, 49: 101- 124.
[24] Schimel D S, Braswell B H, Holland E A, et al. Climatic, edephic, and biotic controls over carbon and turnover of carbon in soils. Global Biogeochemical Cycles, 1994, 8: 279- 293.
[25] Schimel D S, Vemap Participants, Braswell B H, et al. Continental scale variability in ecosystem processes: models, data, and the role of disturbance. Ecological Monographs, 1997, 67(2): 251- 271.
[26] Liu J, Chen J M, Cihlar J, et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment, 1997, 62: 158- 175.
[27] Tucker C J, Vanpraet C L, Sharman M J, et al. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980- 1984. Remote Sensing of Environment, 1985, 17: 233- 249.
[28] Harrell P A. Evaluation of approaches to est imating aboveground biomass in Southern pine forests using SIR-C data. Remote Sensing of Environment, 1997, 59: 223- 233.
[29] Wylie B K, Harrington J A, Prince S D, et al. Satellite and ground-based pasture production in Niger: 1986-1988. International Journal of Remote Sensing, 1991, 12: 1 281-1 300.
[30] Chong D L S, Mougin E, Gastellu-Etchegorry J P. Relating the Global Vegetation Index to net primary productivity and actuale-vapotranspiration over Africa. International Journal of Remote Sensing, 1993, 14: 1 517- 1 546.
[31] Hobbs T J. The use of NOAA-AVHRR NDVI data to assess herbage production in the arid rangelands of Central Australia. International Journal of Remote Sensing, 1995, 16: 1 289-1 302.
[32] Whitlock C, Bartlein P J. Vegetation and climate change in northwest America during the past 125kyr. Nature, 1997, 388: 57-60.
[33] Willis K J, Braun M, Sumegi P, et al. Does soil change cause vegetation change or vice versa ? A temporal perspective from Hungary. Ecology, 1997, 78(3) : 740- 750.
[34] 郝永萍, 方小敏, 奚晓霞, 等. 柴达木盆地东缘晚更新世气候变化的(古)土壤发生记录. 地理科学, 1998, 18 (3).
[35] 郝永萍, 奚晓霞, 方小敏, 等. 青藏高原东北部及其临近地区土壤发育与气候定量模型的初步探讨. 兰州大学学报(自然科学版), 1995, 31(2): 168- 170.
36 Epst ein H E, Lauenroth W K, Burke I C, et al. Product ivity patt erns of C3 and C4 functional types in the US Great Plains. Ecology, 1997,78(3):722-731.
[37] Chen DeXing, Hunt H W, Morgan J A. Responses of a C3 and C4 perennial grass to CO2 enrichment and climate change: Comparison between model predictions and experimental data. Ecological Modeling, 1996, 87: 11-27.
[38] Le Houerou H N, Pobov G F, See L, et al. Agro-Bioclimatic Classification of Africa.In: Agrometeorology Series Working Paper, 6. FAO, Research and Technology Development Division, Agrometeorology Group. Rome,Italy,1993. 227.
[39] Katz R W, Brown B G. Extreme events in a change climate: variability is more important than averages. Climatic Change, 1992,21: 289- 302.
[40] Sala O E, Biondini M E, Lauenoroth W K. Primary production of the central grasslands region of the United States. Ecology, 1988,69: 40- 45.
[41] Stephenson N L. Climatic control of vegetation distribution: the role of the water balance. America Naturalist, 1990, 135(5): 649- 670.
[42] Whetton P H, Fowler A M, Haylock M R, et al. Implications of climate change due to enhanced greenhouse effect on floods and droughts in Australia and New Zealand. Climatic Change, 1993, 25: 289-317.
[43] Kirschbaum M U F. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic carbon storage. Soil Biology & Biochemistry, 1995, 27: 753- 760.
[44] Durka W, Schulze E D, G ebauer G, et al. Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurement. Nature, 1994, 372: 765- 767.
[45] Van Clever K, Dyrness C T, Viereck L A, et al. Characteristics of taiga ecosystems in interior Alaska. Bioscience, 1983, 33: 39-44.
[46] Gifford R M. The global carbon cycle: a viewpoint about the missing carbon. Australian Journal Plant Physiology, 1994, 21: 1-15.
[47] Rogers H H, Dahlman R C. Crop response to CO2 enrichment. Vegetation, 1993, 104/105: 117- 131.
[48] Bette L, Btto- Bllesner, Garland R, et al. Vegetation-induced warming of high-latitude regions during the Cretaceous period.Nature,1997,385: 804- 807.

[1] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[2] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[3] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[4] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[5] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[6] 王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.
[7] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[8] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[9] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[10] 董文杰, 袁文平, 滕飞, 郝志新, 郑景云, 韦志刚, 丑洁明, 刘昌新, 齐天宇, 杨世莉, 阎东东, 张婧. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1215-1219.
[11] 裴巧敏, 马玉贞, 胡彩莉, 李丹丹, 郭超, 刘杰瑞. 全球典型地区MIS 5e阶段气候特征研究进展[J]. 地球科学进展, 2016, 31(11): 1182-1196.
[12] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
[13] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
[14] 李育, 朱耿睿. 三大自然区过渡地带近50年来气候类型变化及其对气候变化的响应[J]. 地球科学进展, 2015, 30(7): 791-801.
[15] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.