地球科学进展 ›› 1998, Vol. 13 ›› Issue (6): 564 -571. doi: 10.11867/j.issn.1001-8166.1998.06.0564

干旱气候变化与可持续发展 上一篇    下一篇

植被净初级生产力模型估算及其对气候变化的响应研究进展
郝永萍,陈育峰,张兴有   
  1. 中国科学院地理研究所资源与环境信息系统国家重点实验室 北京 100101)
  • 收稿日期:1998-03-30 修回日期:1998-06-12 出版日期:1998-12-01
  • 通讯作者: 郝永萍
  • 基金资助:

    中国科学院“九五”特别支持项目“中国资源环境信息系统及农情遥感速报”(KZ95T-03-02)资助。

PROGRESS IN ESTIMATION OF NET PRIMARY PRODUCTIVITY AND ITS RESPONSES TO CLIMATE CHANGE

Hao Yongping,Chen Yufeng,Zhang Xingyou   

  1. State Key Laboratory of Resource and Environment Information System,Institute of Geography, Chinese Academy of Sciences, Beijing 100101
  • Received:1998-03-30 Revised:1998-06-12 Online:1998-12-01 Published:1998-12-01

近年来随着遥感和地理信息系统技术的广泛应用,植被净初级生产力研究经历了从小范围的传统测量阶段到大范围的模型估算阶段的重要转变,并参与全球变化研究。其研究手段和研究内容大大拓宽,在植被净初级生产力模型估算以及对气候变化(如温度、降水、CO2浓度等)的响应等方面的研究取得了可喜的进展。

    Recently, with the development of remote sensing and geographical information system (GIS), the traditional small-scale measurement of net primary productivity (NPP) of vegetation has been substituted gradually by the large- scale model-based estimation. By using both environmental values and satellite data, the models based on remote sensing and GIS have become one of the key approaches to the issues about global change. In this paper, progresses in approaches to estimate NPP were reviewed firstly: traditionally, NPP is measured by experiment; but with the application of remote sensing and GIS, NPP is usually estimated by models. Here statistical, parametric, and mechanic models had been compared and assessed comprehensively.
    Then the impacts of climate changes (temperature, water use efficiency, CO2) on NPP were discussed comprehensively. The responses of NPP to climate changes are very complex, which depend on the interactions between climate, vegetation, and soil both spatially and temporally. Generally, solar radiation, temperature, precipitation, air humidity,and atmospheric CO2 concentration are some of the most important external forces that drive ecosystem processes, and they affect NPP directly or indirectly through changeable soil conditions. As for forests, there is a positive relationship between NPP and temperature or actual transpiration, but the effects of CO2 individually on NPP are still confused. For grasslands, precipitation and its seasonal distribution impact NPP mostly. And for some crops, precipitation persistence during their developing period is an important factor which has an effect on NPP or yield.
    Therefore, we conclude that further resear ch should focus on as follows: ①Try to improve the precision of NPP, especially from remote sensing data;② Emphasize the ecosystem process, including different distribution of NPP or Biomass during different period;③Strengthen the feedback of vegetation to climate change, taking climate-vegetation-soil as a whole.

中图分类号: 

[1] 陈育峰, 李克让. 应用林窗模型研究全球气候变化对森林群落的可能影响——以四川西部紫果云杉群落为例. 地理学报, 1996, 51(增刊): 73-80.
[2] 郑元润, 周广胜, 张新时, 等. 中国陆地生态系统对全球变化的敏感性研究. 植物学报, 1997, 39 (9): 837- 840.
[3] 朱志辉. 我国自然植被生产力功能和地带性结构的气候耦合. 地理学报, 1996, 51(增刊): 66- 72.
[4] 郑志明, 严力蛟, 陈进红, 等. 未来CO2浓度增加和相应增温对水稻产量影响的模拟——以浙江省为例. 应用生态学报, 1998, 9 (1): 79- 83.
[5] Raich J W, Russell A E, Vitousek P M. Primary productivity and ecosystem development along an elevation gradient on Mauna Loa,Hawaii. Ecology, 1997, 78(3): 707- 721.
[6] Prince S D, Justice C O, Moore B III. Global primary product ion data initiative project description. In: IGBP-DIS/GAIM working paper, 1. IGBP-DIS Office. Paris, France, 1995. 38.
[7] 周广胜, 张新时. 自然植被第一性生产力模型初探. 植物生态学报, 1995, 19 (3): 193-200.
[8] 张宪洲. 我国自然植被净第一性生产力的估算和分布. 自然资源, 1993, (1):15-21.
[9] 王品清. 我国卫星图像数据用于生物量研究. 遥感信息, 1987, (4): 18-38.
[10] 邹尚辉. 植物生物量和作物产量遥感估算的若干理论问题. 遥感信息, 1987, (4): 19-20.
[11] 金亚秋, 刘长龙. 人工神经网络模型反演植被生物量参数. 遥感学报, 1997, 1(2) : 84- 87.
[12] 赵士洞, 罗天祥. 区域尺度陆地生态系统生产力研究方法. 资源科学, 1998,20 (1) : 23-34.
[13] Loehle C, LeBlanc D. Model-based assessments of climate change effects on forests: a critical review. Ecological Modeling,1996, 90:1- 31.
[14] Sellers P J. Canopy reflectance, photosynthesis, and transpiration. International Journal of Remote Sensing, 1985, 6: 1 335-1 372.
[15] Sellers P J. Canopy reflectance, photosynthesis, and transpiration II The role of biophysics in the linearity of their interdependence.Remote Sensing of Environment, 1987, 21: 143- 183.
[16] Prince S D. Satellite remote sensing of primary production: comparison of results for Sahelian grasslands 1981-1988. International Journal of Remote Sensing, 1991, 12: 1 301- 1 311.
[17] Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: a process model bases on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7(4): 811- 841.
[18] Ruimy A, Dedieu C, Saugier B. Methodology for the estimation of net primary productivity from remotely sensed data. Journal of Geophysical Research, 1994, 99(D3): 5 263- 5 283.
[19] Field C B, Randerson J T, Malmstrom C M. Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment, 1995, 51: 74-88.
[20] Paruelo J M, Epst ein H E, Lauenroth W K, et al. ANPP estimates from NDVI for the Central grassland region of the United States. Ecology, 1997, 78(3): 953- 958.
[21] Raich J W, Rastetter E B, M elillo J M, et al. Potential net primary production in South America: application of a global model. Ecological Applications, 1991, 1(4): 399- 429.
[22] Melillo J M, Kicklighter D W, McGuire A D, et al. Global climate change and terrestrial net primary production. Nature, 1993,363: 234-240.
[23] Janacek A, Benderoth G, Ludeke M K B, et al. Model of the seasonal and perennial carbon dynamics in deciduous-type forests controlled by climatic variables. Ecological Modeling, 1989, 49: 101- 124.
[24] Schimel D S, Braswell B H, Holland E A, et al. Climatic, edephic, and biotic controls over carbon and turnover of carbon in soils. Global Biogeochemical Cycles, 1994, 8: 279- 293.
[25] Schimel D S, Vemap Participants, Braswell B H, et al. Continental scale variability in ecosystem processes: models, data, and the role of disturbance. Ecological Monographs, 1997, 67(2): 251- 271.
[26] Liu J, Chen J M, Cihlar J, et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment, 1997, 62: 158- 175.
[27] Tucker C J, Vanpraet C L, Sharman M J, et al. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980- 1984. Remote Sensing of Environment, 1985, 17: 233- 249.
[28] Harrell P A. Evaluation of approaches to est imating aboveground biomass in Southern pine forests using SIR-C data. Remote Sensing of Environment, 1997, 59: 223- 233.
[29] Wylie B K, Harrington J A, Prince S D, et al. Satellite and ground-based pasture production in Niger: 1986-1988. International Journal of Remote Sensing, 1991, 12: 1 281-1 300.
[30] Chong D L S, Mougin E, Gastellu-Etchegorry J P. Relating the Global Vegetation Index to net primary productivity and actuale-vapotranspiration over Africa. International Journal of Remote Sensing, 1993, 14: 1 517- 1 546.
[31] Hobbs T J. The use of NOAA-AVHRR NDVI data to assess herbage production in the arid rangelands of Central Australia. International Journal of Remote Sensing, 1995, 16: 1 289-1 302.
[32] Whitlock C, Bartlein P J. Vegetation and climate change in northwest America during the past 125kyr. Nature, 1997, 388: 57-60.
[33] Willis K J, Braun M, Sumegi P, et al. Does soil change cause vegetation change or vice versa ? A temporal perspective from Hungary. Ecology, 1997, 78(3) : 740- 750.
[34] 郝永萍, 方小敏, 奚晓霞, 等. 柴达木盆地东缘晚更新世气候变化的(古)土壤发生记录. 地理科学, 1998, 18 (3).
[35] 郝永萍, 奚晓霞, 方小敏, 等. 青藏高原东北部及其临近地区土壤发育与气候定量模型的初步探讨. 兰州大学学报(自然科学版), 1995, 31(2): 168- 170.
36 Epst ein H E, Lauenroth W K, Burke I C, et al. Product ivity patt erns of C3 and C4 functional types in the US Great Plains. Ecology, 1997,78(3):722-731.
[37] Chen DeXing, Hunt H W, Morgan J A. Responses of a C3 and C4 perennial grass to CO2 enrichment and climate change: Comparison between model predictions and experimental data. Ecological Modeling, 1996, 87: 11-27.
[38] Le Houerou H N, Pobov G F, See L, et al. Agro-Bioclimatic Classification of Africa.In: Agrometeorology Series Working Paper, 6. FAO, Research and Technology Development Division, Agrometeorology Group. Rome,Italy,1993. 227.
[39] Katz R W, Brown B G. Extreme events in a change climate: variability is more important than averages. Climatic Change, 1992,21: 289- 302.
[40] Sala O E, Biondini M E, Lauenoroth W K. Primary production of the central grasslands region of the United States. Ecology, 1988,69: 40- 45.
[41] Stephenson N L. Climatic control of vegetation distribution: the role of the water balance. America Naturalist, 1990, 135(5): 649- 670.
[42] Whetton P H, Fowler A M, Haylock M R, et al. Implications of climate change due to enhanced greenhouse effect on floods and droughts in Australia and New Zealand. Climatic Change, 1993, 25: 289-317.
[43] Kirschbaum M U F. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic carbon storage. Soil Biology & Biochemistry, 1995, 27: 753- 760.
[44] Durka W, Schulze E D, G ebauer G, et al. Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurement. Nature, 1994, 372: 765- 767.
[45] Van Clever K, Dyrness C T, Viereck L A, et al. Characteristics of taiga ecosystems in interior Alaska. Bioscience, 1983, 33: 39-44.
[46] Gifford R M. The global carbon cycle: a viewpoint about the missing carbon. Australian Journal Plant Physiology, 1994, 21: 1-15.
[47] Rogers H H, Dahlman R C. Crop response to CO2 enrichment. Vegetation, 1993, 104/105: 117- 131.
[48] Bette L, Btto- Bllesner, Garland R, et al. Vegetation-induced warming of high-latitude regions during the Cretaceous period.Nature,1997,385: 804- 807.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要