地球科学进展 ›› 1998, Vol. 13 ›› Issue (6): 555 -563. doi: 10.11867/j.issn.1001-8166.1998.06.0555

干旱气候变化与可持续发展 上一篇    下一篇

土壤碳循环研究进展
陈庆强 1,沈承德 1,易惟熙 1,彭少麟 2,李志安 2   
  1. 1.中国科学院广州地球化学研究所 广州 510640;2.中国科学院华南植物研究所 广州 510650
  • 收稿日期:1998-05-18 修回日期:1998-06-29 出版日期:1998-12-01
  • 通讯作者: 陈庆强
  • 基金资助:

    国家自然科学基金重大项目"中国农业生态系统与全球变化相互作用的机理研究"(项目编号: 39728102) 与中国科学院鹤山丘陵综合试验站开放研究基金资助。

PROGRESSES IN SOIL CARBON CYCLE RESEARCHES

Chen Qingqiang 1,Shen Chengde 1,Yi Weixi 1,Peng Shaolin 2,Li Zhian 2   

  1. 1.Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640;2.South China Institute of botany, Chinese Academy of Sciences, Guangzhou 510650
  • Received:1998-05-18 Revised:1998-06-29 Online:1998-12-01 Published:1998-12-01

土壤碳是陆地碳库的主要组成部分,全球土壤有机碳总量达1270 Gt。气候变化影响植物生长、植物碎屑分解速率以及土壤—大气碳通量,这对大气CO2含量有重要影响。土壤有机质模型是研究生态系统尺度土壤碳循环的唯一可用工具,目前已开发出多种。大量研究表明,14C测试是研究土壤有机碳组成及驻留时间的重要手段,土壤有机碳由一系列具不同更新时间的组分构成。土壤粒级组成、矿物特征及土体结构等内在因素制约土壤有机碳存量及状态,对于长时间尺度碳的更新具有重要意义。研究不同气候带土壤有机碳储量及动态变化特征,可为预测未来农、林生态系统变化提供理论依据。

Soil carbon is the main part of terrestrial carbon pool, and the total amount of soil organic carbon is about 1 270 Gt C globally. Climate changes influence plant production and decomposition rate of plant debris in/on soils, which contributes to the alterations of carbon fluxes between soils and the atmosphere, and can make great impacts on concentration of atmospheric CO2. Soil organic matter model is the only practical tool for the carbon cycle researches at ecosystem level, many kinds of which have been developed up to now. A great number of studies suggest that 14C measurement is an important method for the research on constitution of soil organic carbon and residual times of different components, soil organic carbon is composed of a series of components with different residual times. Grain size, mineral composition and soil texture are the main characteristics of soils controlling the amount and occurring states of soil organic carbon, and exert great impacts on the turnover of soil carbon with long residual times. Studies on the amount and dynamics of soil organic carbon could provide valuable theoretical bases for the predictions about alterations of agricultural and forest ecosystems under the influences of global changes.

中图分类号: 

[1] Hought on J T, Jenkins G J, Ephraums J J. Climate Change. The IPCC Scientific A ssessment. New York: Cambridge University Press, 1990.
[2] Vitousek P M, Mooney H A, Lubchenco J, et al. Human Domination of Earth's Ecosystems. Science, 1997, 277: 494-499.
[3] Houghton J T, Callander B A, Varney S K. Climate Change 1992, The Supplementary Report to the IPCC Scientific Assessment. New York: Cambridge University Press, 1992. 24.
[4] Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric budget. Science, 1990, 247: 1 431-1 438.
[5] Siegenthaler U, Sarmiento J L. Atmospheric carbon dioxide and the Ocean. Nature, 1993, 365: 119-125.
[6] Harrison K , Broecker W. A Strategy for estimating the impact of CO2 fertilization on soil carbon storage. Global Biogeochemical Cycles, 1993, 7(1): 69-80.
[7] Sombroek W G,Nachtergaele F O,Hebel A. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. AMBIO,1993,22:417-425.
[8] Schlesinger W H. Carbon storage in the caliche of arid soils: a case study from Arizona. Soil Science, 1982, 133: 247- 255.
[9] Jenkinson D S, Rayner J H. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci, 1977,125: 298-305.
[10] Scharpenseel H W, Becker-Heidmann P, Neue H U, et al. Bomb-Carbon,14C-dating and 13C-measurement as tracers of organic matter dynamics as well as of morphogenetic and turbation processes. Sci Tot Environ, 1989, 81/82:99-110.
[11] Hard J W, Sundquist E T, Stallard R F, et al. Dynamics of soil carbon during deglaciation of the Laurent ide Ice Sheet. Science,1992,258:1 921-1 924.
[12] Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming. Nature, 1991,351: 304-306.
[13] Lenvit S W, Kimball B A, Paul E A, et al. Isotopic estimation of inputs of carbon to cotton soils under FACE-CO2 enrichment. DOE Research Summary, CDIAC. Oak Ridge, USA, 1992.
[14] Kern J S, Johnson M G. Impact of conservation tillage use on soil and atmospheric carbon in the contiguous United States. EPA/600/3-91/056. Env Res Lab Orvallis, OR, 1991.
[15] Haynes R J, Swift R S, Stephen R C. Influence of mixed cropping rotations (Pasture-arable) on organic matter content, water stable aggregation and clod porosity in a group of soils. Soil & Tillage Research, 1991, 19: 77-87.
[16] Powlson D S. Why evaluate soil organic matter models? In: Powlson D S, Smith P, Smith J U, eds. Evaluation of Soil Organic Matter Models. Berlin, Heidelberg: Springer-Verlag, 1996. 3-11.
[17] Stefen W L, Waiker B H, Ungram J S, et al. Global changes and terrestrial ecosystems, The Operational Plan. IGBP Report 21, International Geosphere-Biosphere Programme. Stockholm, 1992.
[18] McGill W B. Review and classification of ten soil organic matter(SOM) models. In: Powlson D S, Smith P, Smith J U, eds. Evaluation of Soil Organic Matter Models. Berlin, Heidelberg: Springer-Verlag, 1996. 111-132.
[19] Jenny H. Factors of Soil Formation. New York: McGraw-Hill, 1941.
[20] Franko U, Oelschlagel B, Schenk S. Simulation of temperature-, water-, and nitrogen-dynamics using the model CANDY. Ecological modelling, 1995, 81: 213-222.
[21] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J, 1987, 51: 1 173-1 179.
[22] Harsen S, Jensen H E, Nielsen N E, et al. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DA ISY. Fer Res, 1991, 27: 245-259.
[23] Li C, Folkring S, Folkring T A. A model of nitrous oxide evolution from soil driven by rainfall events—1: Model structure and sensitivity. J of Geophysical Res, 1992, 97: 9 759- 9 776.
[24] Thornley J H M, Verberne E L J. A model of nitrogen flows in grassland. Plant Cell and Environment, 1989, 12: 863- 886.
[25] Molina J A E, Clapp C E, Shaffer M J, et al. NCSOIL, a model of nitrogen and carbon transformations in soil: Description, calibration, and behavior. Soil Sci Soc Am J, 1983, 47: 85- 91.
[26] Bosatta E, Agren G L. Theoretical analysis of decomposition of heterogeneous substrates. Soil Boil & Biochem, 1985, 16: 63-67.
[27] Jenkinson D S, Hart P B S, Rayner J H, et al. Modelling the turnover of organic matter in long-term experiments. INTECOL Bulletin, 1987, 15: 1-8.
[28] Verberne E. Simulation of nitrogen and water balance in a system of grassland and soil. DLO-Institut voor Bodemvruchtbaarheid, Osterweg 92, Postbus 30003, 9750 R A Haren, Netherlands, 1992. 156, Appendices.
[29] Chertov O G. SPECOM- A single tree model of pine stand/raw humus soil ecosystem. Ecological modelling, 1990, 50: 107- 132.
[30] Parton W J. The century model. In: Powlson D S, Smith P, Smith J U , eds. Evaluation of soil organic matter models. Berlin, Heidelberg: Springer-Verlag, 1996. 283-291.
[31] Parton W J, Scurlock J M O, Ojima D S, et al. Observations and modelling of biomass and soil organic matter dynamics for the grasslands biome world- wide. Global Biogeochemical Cycles, 1993, 7: 785-809.
[32] Prentice K C, Fung I Y. The sensitivity of terrestrial carbon storage to climate change. Nature, 1990, 346: 48- 51.
[33] Torn M S, Trumbore S E, Chadwick O A, et al. Mineral control of soil organic carbon storage and turnover. Nature, 1997, 389:170-173.
[34] Trumbore S E. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles, 1993, 7(2): 275-290.
[35] Stout J D, Goh K M, Rafter T A. Chemistry and turnover of naturally occurring resistant orgaic components in soil. In: Paul E A, Ladd J N eds. Soil Biochem. 1981, 5: 1-73.
[36] Balesolent J. The turnover of soil organic fractions estimated by radiocarbon dating. Sci Total Environ, 1987, 62: 405-408.
[37] Trumbore S E, Vogel J S, Southon J R. AMS 14C measurements of fractionated soil organic matter: an approach to deciphering the soil carbon cycle. Radiocarbon, 1989, 31: 644- 654.
[38] Paul E A, Campbell C A, Rennie D A, et al. Invest igations of the dynamics of soil humus utilizing carbon dating techniques. In: Transactions of the 8th Internat ional Soil Science Society (Bucharest, Romania). Vienna: International Soil Science Society, 1964. 3: 201- 208.
[39] Scharpenseel H W, Schiffmann H, Hintze B. Hamburg University radiocarbon dates III. Radiocarbon, 1984, 26: 196- 205.
[40] Anderson D W, Paul E A. Organomineral complexes and their study by radiocarbon dating. Soil Sci Soc Am J, 1984, 48: 298-301.
[41] Harkness D D, Harrison A F, Bacon P J. The temporal distribution of “bomb” 14C in a forest soil. Radiocarbon, 1986, 28: 328-337.
[42] Anderson D W, saggar S, Bettany J R, et al. Particle-size fractions and their use in studies of soil organic matter—I: The nature and distribution of forms of carbon, nitrogen and sulfur. Soil Sci Soc Am J, 1981, 45: 767- 772.
[43] Balesdent J, Wagner G H, Mariotti A. Soil organic matter turnover in longer term field experiments as revealed by the carbon-13 natural abundance. Soil Sci Soc Am J, 1988, 52: 118- 124.
[44] Kuikman K, Van Elsass J D, Jansen A G, et al. Population dynamics and activity of bacteria in relation to their spatial distribution. Soil Biol Biochem, 1990, 22: 1063-1073.
[45] Arrouays D, Vion I, Kicin J L. Spatial analysis and modelling of topsoil carbon storage in temperate forest humic loamy soils of France. Soil Science, 1995, 159(3): 191- 198.
[46] Schnitzer M, Ripmeester J A, Kodama H. Characterization of the organic matter associated with a soil clay. Soil Sci, 1988, 145:448-454.
[47] Richter D D, Babbar L I, Huston M A, et al. Effect of annual tillage on organic carbon in a fine testure Udalf: the importance of roots dynamics to soil carbon storage. Soil Sci, 1990, 149: 78-83.
[48] Ladd J H, Oades J M, Amato M. Microbial biomass formed from 14C,15N-labelled plant material decomposition in soils in the field. Soil Biol Biochem, 1981, 13: 119-126.
[49] Schimel D S. Carbon and nitrogen turnover in adjacent grassland and cropland ecosystems. Biogeochemistry, 1986, 2: 345-357.
[50] Jackman R H. Accumulation of organic matter in some New Zealand soils under permanent pasture. II: Rates of mineralizat ion of organic matter and the supply of available nutrients. NZJ, Agric Res, 1964, 7: 472- 479.
[51] D ixon J B, Weed S B, eds. Minerals in Soil Environments. Madison: Soil Sci Soc Am, Madison, 1986. 283- 304.
[52] Oades J M. The retention of organic matter in soils. Biogeochemistry, 1994, 5: 35- 70.
[53] Huang P M, Schnitzer M, eds. Interact ions of Soil Minertals with Natural Organics and Microbes.: Soil Sci Soc Am, Madison,1986. 283-304.
[54] Dixon J B, Weed S B, eds. Minerals in Soil Environments. Madison: Soil Sci Soc Am, 1989. 379- 438.
[55] Saggar S, Tate K R, Feltham C W, et al. A carbon turnover in a range of allophanic soils amended with 14C-labelled glucose. Soil Biol Biochem, 1994, 26: 1 263-1 271.
[56] Hudson B D. The soil survey as paradigm-based science. Soil Sci Soc Am J, 1992, 56: 836- 841.

[1] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[2] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[3] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[4] 周浙昆, 周忠和, 王怿. 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.
[5] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[6] 王训明, 周娜, 郎丽丽, 花婷, 焦琳琳, 马文勇. 风沙活动对陆地生态系统影响研究进展[J]. 地球科学进展, 2015, 30(6): 627-635.
[7] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[8] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[9] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[10] 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J]. 地球科学进展, 2014, 29(9): 1003-1010.
[11] 魏学琼, 叶瑜, 崔玉娟, 李蓓蓓, 袁存, 方修琦. 中国历史土地覆被变化重建研究进展[J]. 地球科学进展, 2014, 29(9): 1037-1045.
[12] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[13] 史培军, 孔锋, 叶谦, 汪明, 刘凯. 灾害风险科学发展与科技减灾[J]. 地球科学进展, 2014, 29(11): 1205-1211.
[14] 汪品先. 对地球系统科学的理解与误解——献给第三届地球系统科学大会[J]. 地球科学进展, 2014, 29(11): 1277-1279.
[15] WuGuoxiong,LinHai,ZouXiaolei,LiuBoqi,HeBian. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.
阅读次数
全文


摘要