[1] Hought on J T, Jenkins G J, Ephraums J J. Climate Change. The IPCC Scientific A ssessment. New York: Cambridge University Press, 1990. [2] Vitousek P M, Mooney H A, Lubchenco J, et al. Human Domination of Earth's Ecosystems. Science, 1997, 277: 494-499. [3] Houghton J T, Callander B A, Varney S K. Climate Change 1992, The Supplementary Report to the IPCC Scientific Assessment. New York: Cambridge University Press, 1992. 24. [4] Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric budget. Science, 1990, 247: 1 431-1 438. [5] Siegenthaler U, Sarmiento J L. Atmospheric carbon dioxide and the Ocean. Nature, 1993, 365: 119-125. [6] Harrison K , Broecker W. A Strategy for estimating the impact of CO2 fertilization on soil carbon storage. Global Biogeochemical Cycles, 1993, 7(1): 69-80. [7] Sombroek W G,Nachtergaele F O,Hebel A. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. AMBIO,1993,22:417-425. [8] Schlesinger W H. Carbon storage in the caliche of arid soils: a case study from Arizona. Soil Science, 1982, 133: 247- 255. [9] Jenkinson D S, Rayner J H. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci, 1977,125: 298-305. [10] Scharpenseel H W, Becker-Heidmann P, Neue H U, et al. Bomb-Carbon,14C-dating and 13C-measurement as tracers of organic matter dynamics as well as of morphogenetic and turbation processes. Sci Tot Environ, 1989, 81/82:99-110. [11] Hard J W, Sundquist E T, Stallard R F, et al. Dynamics of soil carbon during deglaciation of the Laurent ide Ice Sheet. Science,1992,258:1 921-1 924. [12] Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming. Nature, 1991,351: 304-306. [13] Lenvit S W, Kimball B A, Paul E A, et al. Isotopic estimation of inputs of carbon to cotton soils under FACE-CO2 enrichment. DOE Research Summary, CDIAC. Oak Ridge, USA, 1992. [14] Kern J S, Johnson M G. Impact of conservation tillage use on soil and atmospheric carbon in the contiguous United States. EPA/600/3-91/056. Env Res Lab Orvallis, OR, 1991. [15] Haynes R J, Swift R S, Stephen R C. Influence of mixed cropping rotations (Pasture-arable) on organic matter content, water stable aggregation and clod porosity in a group of soils. Soil & Tillage Research, 1991, 19: 77-87. [16] Powlson D S. Why evaluate soil organic matter models? In: Powlson D S, Smith P, Smith J U, eds. Evaluation of Soil Organic Matter Models. Berlin, Heidelberg: Springer-Verlag, 1996. 3-11. [17] Stefen W L, Waiker B H, Ungram J S, et al. Global changes and terrestrial ecosystems, The Operational Plan. IGBP Report 21, International Geosphere-Biosphere Programme. Stockholm, 1992. [18] McGill W B. Review and classification of ten soil organic matter(SOM) models. In: Powlson D S, Smith P, Smith J U, eds. Evaluation of Soil Organic Matter Models. Berlin, Heidelberg: Springer-Verlag, 1996. 111-132. [19] Jenny H. Factors of Soil Formation. New York: McGraw-Hill, 1941. [20] Franko U, Oelschlagel B, Schenk S. Simulation of temperature-, water-, and nitrogen-dynamics using the model CANDY. Ecological modelling, 1995, 81: 213-222. [21] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J, 1987, 51: 1 173-1 179. [22] Harsen S, Jensen H E, Nielsen N E, et al. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DA ISY. Fer Res, 1991, 27: 245-259. [23] Li C, Folkring S, Folkring T A. A model of nitrous oxide evolution from soil driven by rainfall events—1: Model structure and sensitivity. J of Geophysical Res, 1992, 97: 9 759- 9 776. [24] Thornley J H M, Verberne E L J. A model of nitrogen flows in grassland. Plant Cell and Environment, 1989, 12: 863- 886. [25] Molina J A E, Clapp C E, Shaffer M J, et al. NCSOIL, a model of nitrogen and carbon transformations in soil: Description, calibration, and behavior. Soil Sci Soc Am J, 1983, 47: 85- 91. [26] Bosatta E, Agren G L. Theoretical analysis of decomposition of heterogeneous substrates. Soil Boil & Biochem, 1985, 16: 63-67. [27] Jenkinson D S, Hart P B S, Rayner J H, et al. Modelling the turnover of organic matter in long-term experiments. INTECOL Bulletin, 1987, 15: 1-8. [28] Verberne E. Simulation of nitrogen and water balance in a system of grassland and soil. DLO-Institut voor Bodemvruchtbaarheid, Osterweg 92, Postbus 30003, 9750 R A Haren, Netherlands, 1992. 156, Appendices. [29] Chertov O G. SPECOM- A single tree model of pine stand/raw humus soil ecosystem. Ecological modelling, 1990, 50: 107- 132. [30] Parton W J. The century model. In: Powlson D S, Smith P, Smith J U , eds. Evaluation of soil organic matter models. Berlin, Heidelberg: Springer-Verlag, 1996. 283-291. [31] Parton W J, Scurlock J M O, Ojima D S, et al. Observations and modelling of biomass and soil organic matter dynamics for the grasslands biome world- wide. Global Biogeochemical Cycles, 1993, 7: 785-809. [32] Prentice K C, Fung I Y. The sensitivity of terrestrial carbon storage to climate change. Nature, 1990, 346: 48- 51. [33] Torn M S, Trumbore S E, Chadwick O A, et al. Mineral control of soil organic carbon storage and turnover. Nature, 1997, 389:170-173. [34] Trumbore S E. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles, 1993, 7(2): 275-290. [35] Stout J D, Goh K M, Rafter T A. Chemistry and turnover of naturally occurring resistant orgaic components in soil. In: Paul E A, Ladd J N eds. Soil Biochem. 1981, 5: 1-73. [36] Balesolent J. The turnover of soil organic fractions estimated by radiocarbon dating. Sci Total Environ, 1987, 62: 405-408. [37] Trumbore S E, Vogel J S, Southon J R. AMS 14C measurements of fractionated soil organic matter: an approach to deciphering the soil carbon cycle. Radiocarbon, 1989, 31: 644- 654. [38] Paul E A, Campbell C A, Rennie D A, et al. Invest igations of the dynamics of soil humus utilizing carbon dating techniques. In: Transactions of the 8th Internat ional Soil Science Society (Bucharest, Romania). Vienna: International Soil Science Society, 1964. 3: 201- 208. [39] Scharpenseel H W, Schiffmann H, Hintze B. Hamburg University radiocarbon dates III. Radiocarbon, 1984, 26: 196- 205. [40] Anderson D W, Paul E A. Organomineral complexes and their study by radiocarbon dating. Soil Sci Soc Am J, 1984, 48: 298-301. [41] Harkness D D, Harrison A F, Bacon P J. The temporal distribution of “bomb” 14C in a forest soil. Radiocarbon, 1986, 28: 328-337. [42] Anderson D W, saggar S, Bettany J R, et al. Particle-size fractions and their use in studies of soil organic matter—I: The nature and distribution of forms of carbon, nitrogen and sulfur. Soil Sci Soc Am J, 1981, 45: 767- 772. [43] Balesdent J, Wagner G H, Mariotti A. Soil organic matter turnover in longer term field experiments as revealed by the carbon-13 natural abundance. Soil Sci Soc Am J, 1988, 52: 118- 124. [44] Kuikman K, Van Elsass J D, Jansen A G, et al. Population dynamics and activity of bacteria in relation to their spatial distribution. Soil Biol Biochem, 1990, 22: 1063-1073. [45] Arrouays D, Vion I, Kicin J L. Spatial analysis and modelling of topsoil carbon storage in temperate forest humic loamy soils of France. Soil Science, 1995, 159(3): 191- 198. [46] Schnitzer M, Ripmeester J A, Kodama H. Characterization of the organic matter associated with a soil clay. Soil Sci, 1988, 145:448-454. [47] Richter D D, Babbar L I, Huston M A, et al. Effect of annual tillage on organic carbon in a fine testure Udalf: the importance of roots dynamics to soil carbon storage. Soil Sci, 1990, 149: 78-83. [48] Ladd J H, Oades J M, Amato M. Microbial biomass formed from 14C,15N-labelled plant material decomposition in soils in the field. Soil Biol Biochem, 1981, 13: 119-126. [49] Schimel D S. Carbon and nitrogen turnover in adjacent grassland and cropland ecosystems. Biogeochemistry, 1986, 2: 345-357. [50] Jackman R H. Accumulation of organic matter in some New Zealand soils under permanent pasture. II: Rates of mineralizat ion of organic matter and the supply of available nutrients. NZJ, Agric Res, 1964, 7: 472- 479. [51] D ixon J B, Weed S B, eds. Minerals in Soil Environments. Madison: Soil Sci Soc Am, Madison, 1986. 283- 304. [52] Oades J M. The retention of organic matter in soils. Biogeochemistry, 1994, 5: 35- 70. [53] Huang P M, Schnitzer M, eds. Interact ions of Soil Minertals with Natural Organics and Microbes.: Soil Sci Soc Am, Madison,1986. 283-304. [54] Dixon J B, Weed S B, eds. Minerals in Soil Environments. Madison: Soil Sci Soc Am, 1989. 379- 438. [55] Saggar S, Tate K R, Feltham C W, et al. A carbon turnover in a range of allophanic soils amended with 14C-labelled glucose. Soil Biol Biochem, 1994, 26: 1 263-1 271. [56] Hudson B D. The soil survey as paradigm-based science. Soil Sci Soc Am J, 1992, 56: 836- 841. |