地球科学进展 ›› 2015, Vol. 30 ›› Issue (6): 627 -635. doi: 10.11867/j.issn.1001-8166.2015.06.0627

所属专题: “沙尘天气追因、影响及治理”虚拟专刊

综述与评述    下一篇

风沙活动对陆地生态系统影响研究进展
王训明 1, 2, 周娜 1, 郎丽丽 1, 花婷 2, 焦琳琳 1, 马文勇 1   
  1. 1. 中国科学院地理科学与资源研究所陆地水循环及地表过程中国科学院重点实验室,北京 100101; 2. 中国科学院寒区旱区环境与工程研究所沙漠与沙漠化重点实验室,甘肃 兰州 730000
  • 出版日期:2015-06-25
  • 基金资助:

    国家杰出青年科学基金项目“风沙地貌与沙漠化”(编号:41225001) 资助

Aeolian Processes and Their Effects on Terrestrial Ecosystem: An Overview

Wang Xunming 1, 2, Zhou Na 1, Lang Lili 1, Hua Ting 2, Jiao Linlin 1, Ma Wenyong 1   

  1. 1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2. Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Online:2015-06-25 Published:2015-06-25

风沙活动及其物质输移运动是关键的陆地地表过程,对全球生态环境有显著的影响。归纳了风沙运动中养分的释放、搬运和沉降机制;总结了目前风沙运动中的物质及养分组成,养分流失与沉降对植物生长的影响、养分在植被群落中的分配和利用机理等方面的研究进展;揭示了大区域尺度上风沙运动与地表养分的释放和输移的关系及植被群落对风沙活动的响应;指出了风沙活动在陆地生态系统演化中扮演的角色。在已有研究的基础上,提出揭示风尘物质在远源陆地区域的沉降机制、风尘物质中有效养分的组成和含量、风尘物质养分的主要传输路径,建立风尘物质养分的源—汇模式,构建植被对风沙活动的响应过程,综合集成风沙活动与植被演化之间的动态关系等是未来主要研究方向的建议。

Aeolian processes and the related material transports are the key land surface process, which play a major role in the ecologicial environments. This paper generialized the mechanisms of nutrient emission, transport, and deposition of the blown wind materials in arid and semiarid regions. Based on the results of enormous previous studies, the componets of the nutrients and materials, the source-sink models of the aeolian transports, the influence of nutrient loss and depositions on vegetation growth, reallocations and utilizations of the nutrients within wind blown materials on phytocommunity development, the responses of phytocommunity development to the aeolian transports in arid and semiarid regions were discussed. Finally, based on the current results of studies our colleagues acquired, pointed out that the researches in the near future may reveral the deposition mechanisms of aeolian materials in different terrestrial ecologicial systems, appraise the composition and effect contents of the nutrients, highlight the dominant transporting routes of the aeolian nutrients, found the source-sink models of the nutrients, analyze the responses between the aeolian activity and vegetation formation, and by adopting the integrated qualitative and quantitative methodologies understand the dynamic relationships between the aeolian activity and vegetation evolution. The related studies may further improve the understanding of the roles of the aeolian transport on terrestrial ecosystem evolution, thereby providing new evidence for the theories of arid geomorphology and providing academic supports for local ecological remediation of arid and semiarid regions.

中图分类号: 

[1] Schlesinger W H, Reynolds J F, Cunningham G L, et al. Biological feedbacks in global desertification[J]. Science, 1990, 247: 1 043-1 048.
[2] Shao Y, Wyrwoll K H, Chappell A, et al. Dust cycle: An emerging core theme in Earth system science[J]. Aeolian Research, 2011, 2: 181-204.
[3] Alfaro S C. Influence of soil texture on the binding energies of fine mineral dust particles potentially released by wind erosion[J]. Geomorphology, 2008, 93(3/4): 157-167.
[4] Larney F J, Bullock M S, Janzen H H, et al. Wind erosion effects on nutrient redistribution and soil productivity[J]. Journal of Soil and Water Conservation, 1998, 53: 133-140.
[5] Field J P, Belnap J, Breshears D D, et al. The ecology of dust[J]. Frontiers in Ecology and the Environment, 2010, 8: 423-430.
[6] Okin G S, Herrick J E, Gillette D A. Multiscale controls on and consequences of aeolian processes in landscape change in arid and semiarid environments[J]. Journal of Arid Environments, 2006, 65: 253-275.
[7] Peters D P C, Havstad K M. Nonlinear dynamics in arid and semiarid systems: Interactions among drivers and processes across scales[J]. Journal of Arid Environments, 2006, 65: 196-206.
[8] Okin G S. Linked Aeolian-Vegetation Systems[C]//Shroder J, et al, eds. Treatise on Geomorphology. San Diego: Academic Press, Aeolian Geomorphology, 2013.
[9] Zobeck T M, Fryrear D W. Chemical and physical characteristics of windblown sediment II. Chemical characteristics and total soil and nutrient discharge[J]. Transactions of the American Society of Agricultural Engineers, 1986, 29: 1 037-1 041.
[10] Okin G S, Murray B, Schlesinger W H. Degradation of sandy arid shrubland environments: Observations, process modeling, and management implications[J]. Journal of Arid Environments, 2001, 47: 123-144.
[11] Duce R A, Unni C K, Ray B J, et al. Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific-Temporal variability[J]. Science, 1980, 209(4 464): 1 522-1 524.
[12] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005, 308: 67-71.
[13] Gao Huiwang, Yao Xiaohong, Guo Zhigang, et al. Atmospheric deposition connected with marine primary production and nitrogen cycle: A review[J]. Advances in Earth Science, 2014, 29(12): 1 325-1 332.[高会旺, 姚小红, 郭志刚, 等. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1 325-1 332.]
[14] Jin Jie, Liu Sumei. Advances in studies of phosphorus utilization by marine phytoplankton[J]. Advances in Earth Science, 2013, 28 (2): 253-261.[金杰, 刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2): 253-261.]
[15] Swap R, Garstang M, Greco S, et al. Saharan dust in the Amazon Basin[ J]. Tellus B, 1992, 44(2): 133-149.
[16] Von Suchodoletz H, Glaser B, Thrippleton T, et al. The influence of Saharan dust deposits on La Palma soil properties (Canary Islands, Spain)[J]. Catena, 2013, 103: 44-52.
[17] Ley R E, Williams M W, Schmidt S K. Microbial population dynamics in an extreme environment: Controlling factors in talus soils at 3750 m in the Colorado Rocky Mountains[J]. Biogeochemistry, 2004, 68(3): 313-335.
[18] Wallace C S A, Watts J M, Yool S R. Characterizing the spatial structure of vegetation communities in the Mojave Desert using geostatistical techniques[J]. Computers and Geosciences, 2000, 26: 397-410.
[19] Zhang Linlin, Zhao Xiaoying, Yuan Hui. Advances in the effects of wind on plants[J]. Advances in Earth Science, 2013, 28 (12): 1 349-1 353.[张琳琳, 赵晓英, 原慧. 风对植物的作用及植物适应对策研究进展[J]. 地球科学进展, 2013, 28(12): 1 349-1 353.]
[20] Liu W G, Yang H, Cao Y N, et al. Did an extensive forest ever develop on the Chinese Loess Plateau during the past 130ka?: A test using soil carbon isotopic signatures[J]. Applied Geochemistry, 2005, 20: 519-527.
[21] [JP2]Okin G S, Murray B, Schlesinger W H. Desertification in an arid shrubland in the southwestern United States: Process modeling and validation[C]//Conacher A, ed. Land Degradation: Papers Selected from Contributions to the Sixth Meeting of the International Geographical Union’s Commission on Land Degradation and Desertification. Dordrecht: Kluwer Academic Publishers, 2001.[JP]
[22] Ravi S, D’Odorico P, Okin G S. Hydrologic and aeolian controls on vegetation patterns in arid landscapes[J]. Geophysical Research Letters, 2007, 34: L24S23, doi:10.1029/2007GL031023.
[23] Peters D P C, Bestelmeyer B T, Herrick J E, et al. Disentangling complex landscapes: New insights to forecasting arid and semiarid system dynamics[J]. BioScience, 2006, 56: 491-501.
[24] Goudie A S, Middleton N J. Desert Dust in the Global System[M]. Heidelberg: Springer-Verlag, 2006.
[25] Muhs D R, Bush C A, Stewart K C, et al. Geochemical evidence of Saharan dust parent material for soils developed on quaternary limestones of Caribbean and Western Atlantic Islands[J]. Quaternary Research, 1990, 33: 157-177.
[26] Syers J K, Jackson M L, Berkheiser V E, et al. Eolian sediment influence on pedogenesis during the Quaterary[J]. Soil Science, 1969, 107: 421-427.
[27] Birkeland P W. Soils and Geomorphology[M]. New York: Oxford University Press, 1999: 45-90.
[28] Reynolds R, Belnap J, Reheis M, et al. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source[J]. Proceedings of National Academy of Sciences USA, 2001, 98: 7 123-7 127.
[29] Pett-Ridge J C, Derry L A, Barrows J K. Ca/Sr and Sr-87/Sr-86 ratios as tracers of ca and Sr cycling in the Rio Icacos Watershed, Luquillo Mountains, Puerto Rico[J]. Chemical Geology, 2009, 267: 32-45.
[30] Meixner T, Gutmann C, Bales R, et al. Multidecadal hydrochemical response of a Sierra Nevada watershed: Sensitivity to weathering rate and changes in deposition[J]. Journal of Hydrology, 2004, 285: 272-285.
[31] Quick D J, Chadwick O A. Accumulation of salt-rich dust from Owens Lake playa in nearby alluvial soils[J]. Aeolian Research, 2011, 3(1): 23-29.
[32] Reynolds R, Neff J, Reheis M, et al. Atmospheric dust in modem soil on aeolian sandstone, Colorado Plateau (USA): Variation with landscape position and contribution to potential plant nutrients[J]. Geoderma, 2006, 130(1/2): 108-123.
[33] Pett-Ridge J C. Contributions of dust to phosphorus cycling in tropical forests of the Luquillo Mountains, Puerto Rico[J]. Biogeochemistry, 2009, 94: 63-80.
[34] Lawrence C R, Neff J C. The contemporary physical and chemical flux of aeolian dust: A synthesis of direct measurements of dust deposition[J]. Chemical Geology, 2009, 267: 46-63.
[35] Lequy E, Conil S, Turpault M P. Impacts of aeolian dust deposition on European forest sustainability: A review[J]. Forest Ecology and Management, 2012, 267(1): 240-252.
[36] Filippelli G M. The global phosphorus cycle: Past, present, and future[J]. Elements, 2008, 4: 89-95.
[37] Bristow C S, Hudson E K A, Chappell A. Fertilizing the Amazon and equatorial Atlantic with West African dust[J]. Geophysical Research Letters, 2010, 37: L14807, doi:10.1029/ 2010GL043486.
[38] Liu Dongsheng. Loess and Environment[M]. Beijing: Science Press, 1985.[刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985.]
[39] Littmann T, Schultz A. Atmospheric input of nutrient elements and dust into the sand dune field of the North-Western Negev[J]. Arid Dune Ecosystems, 2008, 200: 271-284.
[40] Guerzoni S, Molinaroli E. Input of various chemicals transported by Saharan Dust and depositing at the sea surface in the Mediterranean Sea[J]. The Handbook of Environmental Chemistry, 2005, 5: 237-268.
[41] Betzer P R, Carder K L, Duce R A, et al. Long-range transport of giant mineral aerosol-particles[J]. Nature, 1988, 336(6 199): 568-571.
[42] [JP2]Hartmann J, Kunimatsu T, Levy J K. The impact of Eurasian dust storms and anthropogenic emissions on atmospheric nutrient deposition rates in forested Japanese catchments and adjacent regional seas[J]. Global and Planetary Change, 2008, 61: 117-134.
[43] Neff J C, Ballantyne A P, Farmer G L, et al. Increasing aeolian dust deposition in the western United States linked to human activity[J]. Nature Geoscience, 2008, 1: 189-195.
[44] Zhang Z H, Zhao M X, Eglinton G, et al. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170kyrs[ J]. Quaternary Science Reviews, 2006, 25: 575-594.
[45] Zhang Xiaoye. Source distributions, emission, transport, deposition of asin duat and loess accumulation[J]. Quaternary Sciences, 2001, 21(1): 29-39.[张小曳. 亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J]. 第四纪研究, 2001, 21(1): 29-39.]
[46] Wang Y F, Chen Z Z, Huang D H. Temporal variation in dust deposition in the Xilin River Basin[J]. Acta Phytoecologica Sinica, 2000, 24: 459-462.
[47] Yan Y C, Xu X L, Xin X P, et al. Effect of vegetation coverage on aeolian dust accumulation in a semiarid steppe of northern China[J]. Catena, 2011, 87: 351-356.
[48] Wang X B, Oenema O, Hoogmoed W B, et al. Dust storm erosion and its impact on soil carbon and nitrogen losses in northern China[J]. Catena, 2006, 66: 221-227.
[49] Li F R, Zhao L Y, Zhang H, et al. Wind erosion and airborne dust deposition in farmland during spring in the Horqin Sandy Land of eastern Inner Mongolia[J]. Soil & Tillage Research, 2004, 75(2): 121-130.
[50] Zhou R L, Li Y Q, Zhao H L, et al. Desertification effects on C and N content of sandy soils under grassland in Horqin, northern China[J]. Geoderma, 2008, 145: 370-375.
[51] Li J R, Okin G S, Epstein H E. Effects of enhanced wind erosion on surface soil texture and characteristics of windblown sediments[J]. Journal of Geophysical Research—Biogeosciences, 2009, 114: G02003, doi:10.1029/2008JG000903.
[52] Liu D W, Abuduwaili J, Lei J Q, et al. Wind erosion of saline playa sediments and its ecological effects in Ebinur Lake, Xinjiang, China[J]. Environmental Earth Sciences, 2011, 63(2): 241-250.
[53] Wang X M, Dong Z B, Zhang C X, et al. Characterization of the composition of dust fallout and identification of dust sources in arid and semiarid North China[J]. Geomorphology, 2009, 112: 144-157.
[54] Mori I, Nishikawa M, Tanimura T, et al. Change in size distribution and chemicalcomposition of kosa (Asian dust) aerosolduring long-range transport[J].Atmospheric Environment, 2003, 37: 4 253-4 263.
[55] Wang X M, Hasi E, Zhou Z J, et al. Significance of variations in the wind energy environment over the past 50 years with respect to dune activity and desertification in arid and semiarid northern China[J]. Geomorphology, 2007, 86: 252-266.
[56] Cheng T T, Lu D R, Wang G C, et al. Chemical characteristics of Asian dust aerosol from Hunshan Dake Sandland in Northern China[J]. Atmospheric Environment, 2005, 39(16): 2 903-2 911.
[57] Chen B, Kitagawa H, Hu K, et al. Element and mineral characterization of dust emission from the saline land at Songnen Plain, Northeastern China[J]. Journal of Environmental Sciences, 2009, 21: 1 363-1 370.
[58] Wang X M, Dong Z B, Zhang J W, et al. Modern dust storms in China: An overview[J]. Journal of Arid Environments, 2004, 58: 559-574.
[59] Goudie A S. Dust storms and their geomorphological implications[J]. Journal of Arid Environments, 1978, 1: 291-310.
[60] Su Jieqiong, Li Xinrong, Yang Haotian, et al. Effects of fertilization on population density and biomass of herbaceous plants in desert steppe[J]. Journal of Desert Research, 2013, 33(3): 696-702.[苏洁琼, 李新荣, 杨昊天, 等.施肥对荒漠化草原草本植物种群密度和生物量的影响[J]. 中国沙漠, 2013, 33(3): 696-702.]
[61] Fu Hua, Zhou Zhiyu. A study on the characteristics of chemical elements of forage species in three range types in Alsa Desert[J]. Journal of Desert Research, 1994, 14(2): 37-41.[付华, 周志宇. 阿拉善荒漠三个草地类牧草中化学元素特点的研究[J]. 中国沙漠, 1994, 14(2): 37-41.]
[62] Chen Baorui, Li Haishan, Zhu Yuxia, et al. The spatial pattern and environmental interpretation of plant community of Hulunber grassland[J]. Acta Ecologica Sinica, 2010, 30(5): 1 265-1 271.[陈宝瑞, 李海山, 朱玉霞, 等. 呼伦贝尔草原植物群落空间格局及其环境解释[J]. 生态学报, 2010, 30(5): 1 265-1 271.]
[63] Liu Haijiang. Ecological Adaptation of Vegetation and Characteristics of Plant Resources in Otindag Sand Land[D]. Beijing: Institute of Botany, Chinese Academy of Sciences, 2004: 47-49.[刘海江. 浑善达克沙地植被的生态适应及植物资源特征[D]. 北京: 中国科学院植物研究所, 2004: 47-49.]
[64] [JP3]Li Rui. Study on Vegetation Dynamics in NFPE, Based on Yanchi County in Ningxia Province[D]. Beijing: Beijing Forestry University, 2007: 91-92.[李瑞.北方农牧交错带草地植被动态研究——以宁夏盐池为例[D]. 北京: 北京林业大学, 2007: 91-92.][JP]
[65] Fu Hua, Zhou Zhiyu, Zhuang Guanghui. Study on characteristic of trace element content in Desert Grasslandof Alxa[J]. Journal of Desert Research, 2000, 20(4): 426-429.[付华, 周志宇, 庄光辉. 阿拉善荒漠草地类微量元素含量特征的研究[J]. 中国沙漠, 2000, 20(4): 426-429.]
[66] Shao Y, Dong C H. A review on East Asian dust storm climate, modelling and monitoring[J]. Global and Planetary Change,2006, 52: 1-22.
[67] Qiu Xinfa, Zeng Yan, Miu Qilong.Temporal-spatial distribution as well as tracks and source areas of sand-dust storms in China[J]. Acta Geographica Sinica, 2001, 56(3): 316-322.[邱新法, 曾燕, 缪启龙. 我国沙尘暴的时空分布规律及其源地和移动路径[J]. 地理学报, 2001, 56(3): 316-322.]
[68] Kurosaki Y, Mikami M. Recent frequent dust events and their relation to surface wind in East Asia[J]. Geophysical Research Letters, 2003, 30(14): 1 736, doi:10.1029/2003GL017261.
[69] Kurosaki Y, Mikami M. Regional difference in the characteristics of dust event in East Asia: Relationship among dust outbreak, surface wind, and land surface condition[J]. Journal of the Meteorological Society of Japan, 2005, 83A: 1-8.

[1] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[2] 周浙昆, 周忠和, 王怿. 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.
[3] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[4] 何洪林,张黎, 黎建辉, 周园春,任小丽,于贵瑞. 中国陆地生态系统碳收支集成研究的e-Science 系统构建[J]. 地球科学进展, 2012, 27(2): 246-254.
[5] 鱼腾飞,冯起,司建华,席海洋,陈丽娟. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展, 2011, 26(12): 1260-1268.
[6] 彭琴,董云社,齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874-883.
[7] 牛栋,李正泉,于贵瑞. 陆地生态系统与全球变化的联网观测研究进展[J]. 地球科学进展, 2006, 21(11): 1199-1206.
[8] 傅伯杰;牛栋;赵士洞. 全球变化与陆地生态系统研究:回顾与展望[J]. 地球科学进展, 2005, 20(5): 556-560.
[9] 何勇;董文杰;季劲均;丹利. 基于AVIM的中国陆地生态系统净初级生产力模拟[J]. 地球科学进展, 2005, 20(3): 345-349.
[10] 于贵瑞;王秋凤;于振良. 陆地生态系统水—碳耦合循环与过程管理研究[J]. 地球科学进展, 2004, 19(5): 831-839.
[11] 李晓兵,陈云浩,张云霞,范一大,周涛,谢锋. 气候变化对中国北方荒漠草原植被的影响[J]. 地球科学进展, 2002, 17(2): 254-261.
[12] 杨昕,王明星. 陆面碳循环研究中若干问题的评述[J]. 地球科学进展, 2001, 16(3): 427-435.
[13] 曹明奎,李克让. 陆地生态系统与气候相互作用的研究进展[J]. 地球科学进展, 2000, 15(4): 446-452.
[14] 陈庆强,沈承德,易惟熙,彭少麟,李志安. 土壤碳循环研究进展[J]. 地球科学进展, 1998, 13(6): 555-563.
阅读次数
全文


摘要