地球科学进展 ›› 2008, Vol. 23 ›› Issue (8): 874 -883. doi: 10.11867/j.issn.1001-8166.2008.08.0874

生态学研究 上一篇    下一篇

氮输入对陆地生态系统碳循环关键过程的影响
彭琴 1,2,董云社 1,齐玉春 1   
  1. 1.中国科学院地理科学与资源研究所,北京 100101;2.中国科学院研究生院,北京 100039
  • 收稿日期:2008-01-16 修回日期:2008-04-22 出版日期:2008-08-10
  • 通讯作者: 董云社(1961-),男,陕西武功人,研究员,博士生导师,主要从事陆地表层生命元素环境生物地球化学循环研究. E-mail:dongys@igsnrr.ac.cn
  • 基金资助:

    国家自然科学基金重点项目“温带草地植被—土壤系统碳氮耦合特征及其对氮素水平的响应”(编号:40730105);国家自然科学基金面上项目“温带荒漠草原碳排放与碳固存及其与草地退化恢复的耦合分析”(编号:40501072)和“温带草原土壤呼吸区域分异的生物环境机制及关键问题探索”(编号:40673067)资助.

Influence of External Nitrogen Input on Key Processes of Carbon Cycle in Terrestrial Ecosystem

Peng Qin 1,2,Dong Yunshe 1,Qi Yuchun 1   

  1. 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;2. Graduate University of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2008-01-16 Revised:2008-04-22 Online:2008-08-10 Published:2008-08-10

碳氮作为陆地生态系统最关键的两大生源要素,它们在自然界的循环过程中不仅各自对全球变暖做出重要贡献,而且两者的循环过程显著耦合,互相影响各自的作用和效果。从氮元素对植物光合作用、呼吸作用以及土壤呼吸作用影响的角度入手,综述了氮输入对陆地生态系统碳固定和碳排放这两个碳循环关键过程的影响特征和机理,分析了陆地生态系统碳源汇对氮素变化响应的不确定性,在此基础上对未来的相关重点研究方向进行了探讨和展望。

In terrestrial ecosystems, carbon fixation through photosynthesis and carbon release through respiration are the two key processes of carbon cycle, which are also the most important indexes to determine the features of carbon source and sink. For the terrestrial ecosystems with limited nitrogen nutrient, external nitrogen input can affect the two key processes mentioned above, and then indirectly affect the characteristics of carbon source and sink. Here we review the characteristics and mechanisms of the impacts of the external nitrogen input on the carbon fixation and release. Among them, the effects of nitrogen on the photosynthesis, plant respiration and soil respiration including root respiration and heterotrophic respiration are covered. Then, the paper also explores the uncertainties of the responses of carbon source and sink to the nitrogen input. At last, the researches in this field are suggested to strengthen the following aspects: (1) The effects of different nitrogen rates and forms on carbon fixation through photosynthesis and carbon release through soil respiration in different areas and different time to find out the most suitable nitrogen application rate and ratio for efficient carbon sink promotion; (2) The effects of nitrogen on soil microbial processes in rhizosphere, and to acquire some breakthroughs in the relative research techniques and methods; (3) The effects of nitrogen on the key processes of carbon cycle in some other terrestrial ecosystems besides the forest ecosystem, and the coupling of nitrogen and other environment factors, exploring the effects and mechanisms of all the factors on the key processes of carbon cycle in terrestrial ecosystems.

中图分类号: 

[1] Chen Panqin. Earth System Carbon Cycle [M]. Beijing: Science Press2004:185-188.[陈泮勤主编. 地球系统碳循环[M]. 北京: 科学出版社,2004: 185-188.]

[2] Yu Guirui. Global ChangeCarbon Cycle and Storage in Terrestrial Ecosystem [M]. Beijing: China Meteorological Press2003:43-132.[于贵瑞主编. 全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003:43-132.]

[3] Xu ZhenzhuZhou Guangsheng. Relationship between carbon and nitrogen and environmental regulation in plants under global change—From molecule to ecosystem [J]. Journal of Plant Ecology2007314: 738-747.[许振柱,周广胜. 全球变化下植物的碳氮关系及其环境调节研究进展——从分子到生态系统[J]. 植物生态学报,2007314:738-747.]

[4] Hessen D OGren G IAnerson T Ret al. Carbon sequestration in ecosystems: The role of stoichiometry [J]. Ecology2004855: 1 179-1 192.

[5] Luo Y QCurrie W SDukes J Set al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide [J]. Bioscience2004548: 731-739.

[6] Vitousek P MHttenschwiler SOlander Let al. Nitrogen and nature [J]. AMBIO200231:97-101.

[7] Daepp MSuter DAlmeida J P Fet al. Yield response of Lolium perenne swards to free air and CO2 enrichment increased over six years in high N input system on fertile soil [J]. Global Change Biology20006: 805-816.

[8] Holland E ADentene F J RBraswell B Het al. Contemporary and pre-industrial global reactive nitrogen budgets [J]. Biogeochemistry199946: 7-43.

[9] Li Kaoxue. Nitrogen Deposition Affects Carbon and Nitrogen Turnover on the Early Stage of Forest Litter Decomposition [D]. Haerbin: Northeast Forest University2006. [李考学. 氮沉降对凋落物分解早期碳氮周转的影响[D]. 哈尔滨:东北林业大学,2006. ]

[10] Galloway J NLevy II HKasibhatla P SYear 2020: Consequences of population growth and development on deposition of oxidized nitrogen [J]. AMBIO1994232: 120-123.

[11] Chen Qiufeng. Plant Nutrient and Litter Decomposition in Short-term Response to Simulated N Deposition in Subtropical Chinese Fir Artificial Forest [D]. Fuzhou: Fujian Agriculture and Forestry University2006. [陈秋凤. 杉木人工林林木养分和凋落物分解对模拟氮沉降的响应[D]. 福州:福建农林大学,2006.]

[12] Bauer G ABazzaz F AMinocha Ret al. Effects of chronic N additions on tissue chemistryphotosynthetic capacityand carbon sequestration potential of a red pinePinus resinosa Ait. stand in the NE United States [J]. Forest Ecology and Management2004196: 173-186.

[13] Houghton R A. Terrestrial carbon sinks—Uncertain explanations [J]. Biologist2002494: 155-160.

[14] Högberg PFan H BQuist Met al. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest [J]. Global Change Biology200612: 489-499.

[15] Magill A HAber J DBerntson G Met al. Long-term nitrogen additions and nitrogen saturation in two temperate forests [J]. Ecosystems20003: 238-253.

[16] Berg BMatzner E. Effects of N deposition on decomposition of plant litter and soil organic matter in forest systems [J]. Environmental Reviews19975: 1-25.

[17] Neff J CTownsend A RGleixner Get al. Variable effects of nitrogen additions on the stability and turnover of soil carbon [J]. Nature2002419: 915-917.

[18] Clark C MTilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands [J]. Nature2008451: 712. 

[19] Nadelhoffer K JEmmett B AGunderson Pet al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests [J]. Nature1999398: 145-148.

[20] Deng XiaowenZhang YanHan Shijieet al. Effects of nitrogen addition on the early stage decomposition of Korean pine litter in the Changbaishan Mountainsnortheastern China [J]. Journal of Beijing Forestry University2007296: 16-22.[邓小文,张岩,韩士杰. 外源氮输入对长白山红松凋落物早期分解的影响[J]. 北京林业大学学报,2007296: 16-22.]

[21] Li DejunMo JiangmingFang Yuntinget al. Effects of simulated nitrogen deposition on biomass production in schima superba and cryptocarya concinna seedlings in subtropical China [J]. Acta Phytoecologica Sinica 2005259: 2 165-2 172.[李德军,莫江明,方运霆,等. 模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响[J]. 植物生态学报,2005259: 2 165-2 172.]

[22] Liu DeyanSong ChangchunHuang Jingyu. Effects of exogenous nitrogen supply on photosynthetic characteristics and carbon sequestration potential of Calam agrostisangustifolia in freshwater marshes [J]. Acta Scientiae Circumstantiae2008282: 305-312.[刘德燕,宋长春,黄靖宇. 沼泽湿地植物光合特性及固潜势对外源氮输入的响应[J]. 环境科学学报,2008282: 305-312.]

[23] Yang LanfangCai Zucong. Soil respiration during maize growth period affected by N application rates [J]. Acta Pedologica Sinica2005421: 9-15. [杨兰芳,蔡祖聪. 玉米生长中的土壤呼吸及其受氮肥施用的影响[J]. 土壤学报,2005421: 9-15.]

[24] Yu ZhanyuanZeng DehuiJiang Fengqiet al. Responses of key carbon cycling processes to the addition of water and fertilizers to sandy grassland in semi-arid region [J]. Journal of Beijing Forestry University2006284: 45-50.[于占源,曾德慧,江凤岐,等. 半干旱区沙质草地生态系统碳循环关键过程对水肥添加的响应[J]. 北京林业大学学报,2006284):45-50.]

[25] Schindler D WBayley S E. The biosphere as an increasing sink for atmospheric carbon: Estimates from increased nitrogen deposition [J]. Global Biogeochemical Cycles19937: 717-733.

[26] Houghton R A. Terrestrial sources and sinks of carbon inferred from terrestrial data [J]. Tellus B199648: 420-432.

[27] Magill A HAber J DHendrlcks J Jet al. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition [J]. Ecological Applications19977: 402-415.

[28] Evans J R. Photosynthesis and nitrogen relationships in leaves of C3 plants [J]. Oecologia198978: 9-19.

[29] Evans J R. Developmental constraints on photosynthesis: Effects of light and nutrition[C]Baker N Red. Photosynthesis and the Environment. Drodrecht: Kluwer Academic Publishers1996:281-304.

[30] Bekele ATiarks A E. Response of densely stocked loblolly pinePinus taeda L to applied nitrogen and phosphorus [J]. Southern Journal of Applied Forestry2003273: 181-190.

[31] Evans J R. Nitrogen and photosynthesis in the flag leaf of wheatTriticum aestivum L.[J]. Plant Physiology198372: 297-302.

[32] De Jong T M. Partitioning of leaf nitrogen with respect to within canopy light exposure and nitrogen availability in peach [J]. Trees19893: 89-95.

[33] Brown K RThompson W ACamm E Let al. Effects of N addition rates on the productivity of Picea sitchensisThuja plicataand Tsuga heterophylla seedlings 2. Photosynthesis13C discrimination and N partitioning in foliageJ. Trees199610: 198-205.

[34] Terashima IEvans J R. Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in Spinach [J]. Plant Cell Physiology1988291: 143-155.

[35] Stitt M. Metabolic regulation of photosynthesis [C]Baker N Red. Photosynthesis and the Environment. Drodrecht: Kluwer Academic Publishers1996:151-190.

[36] Nakaji TFukami MDokiya Yet al. Effects of high nitrogen load on growthphotosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings [J]. Trees-Structure and Function2001158: 453-461.

[37] Cao CuilingLi Shengxiu. Effect of form on crop physiological characteristics and growth [J]. Journal of Huazhong Agricultural2004235: 581-586. [曹翠玲,李生秀. 氮素形态对作物生理特性及生长的影响[J]. 华中农业大学学报,2004235):581-586.]

[38] Xiao KaiZhang ShuhuaiZou Dinghuiet al. The effects of different nitrogen nutrition forms on photosynthetic characteristics in wheat leaves [J]. Acta Agronomica Sinica2000261: 53-58.[肖凯,张树华,邹定辉,等.不同形态氮素营养对小麦光合特性的影响[J]. 作物学报,2000261:53-58.]

[39] Guo PeiguoChen JianjunZheng Yanling. Study on the effects of nitrogen forms on photosynthetic characteristics in flue cured tobacco [J]. Chinese Bulletin of Botany1999163:262-267.[郭培国,陈建军,郑燕玲. 氮素形态对烤烟光合特性影响的研究[J].植物学通报,1999163):262-267.]

[40] Li CundongDong HairongLi Jincai. Influence of various ratios of nitrogen nutrition on photosynthetic and sugar metabolism of cotton [J]. Acta Gossyppi Sinica2003152: 87-90.[李存东,董海荣,李金才. 不同形态氮比例对棉花苗期光合作用及碳水化合物代谢的影响[J]. 棉花学报,2003152):87-90.]

[41] Rosati AEsparza GDeJong T Met al. Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees [J]. Tree Physiology1999193: 173-180.

[42] Vincent G. Leaf photosynthetic capacity and nitrogen content adjustment to canopy openness in tropical forest tree seedlings [J]. Journal of Tropical Ecology200117: 495-509.

[43] Hikosaka K. Interspecific difference in the photosynthesis-nitrogen relationship: Patternsphysiological causesand ecological importance [J]. Journal of Plant Research20041176: 481-494. 

[44] Field CMooney H A. The photosynthesis-nitrogen relationship in wild plants [C]Givnish T Jed. On the Economy of Plant Form and Function. Cambridge: Cambridge University Press1986:25-55.

[45] Rijkers TVries P JPons T Let al. Photosynthetic induction in saplings of three shade-tolerant tree species: Comparing under-storey and gap habitats in a French Guiana rain forest [J]. Occologia2000125: 331-340.

[46] Poorter HEvans J R. Photosynthetic nitrogen use efficiency of species that differ inherently in specific leaf area [J]. Oecologia1998116: 26-37.

[47] Knops J M HReinhart K. Specific leaf area along a nitrogen fertilization gradient [J]. American Midland Naturalist20001442: 265-272.

[48] Kuers KSteinbeck K. Leaf area dynamics in Liquidambar styraciflua saplings: Responses to nitrogen fertilization [J]. Canadian Journal of Forest Research19982811: 1 660-1 670.

[49] Ceschia EDamesin CLebaube Set al. Spatial and seasonal variations in stem respiration of beech trees Fagus sylvatica[J]. Annals of Forest Science200259: 801-812.

[50] Amthor J S. Respiration and Crop Productivity [M]. New York: Springer-Verlag1989.

[51] Bouma T JDevisser RJanssen J H J Aet al. Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect [J]. Physiology Plant199492: 585-594.

[52] Ryan M G. Foliar maintenance respiration of sub-alpine and boreal trees and shrubs in relation to nitrogen content [J]. PlantCell and Environment1995187: 765-772.

[53] Lamberss HSzaniawski R KDe Visser R. Respiration for growthmaintenance and ion uptake: An evaluation of conceptsmethodsvaluesand their significance [J]. Physiology Plantarum198358: 557-563.

[54] Reich P BWalters M BEllsworth D S. Relationships of leaf dark respiration to leaf nitrogen specific leaf area and leaf life-span: A test across biomes and functional groups [J]. Oecologia1998114: 471-482.

[55] Ryan M G. Effects of climate change on plant respiration [J]. Ecological Applications199112: 157-167.

[56] Lusk C HReich P B. Relationships of leaf dark respiration with light environment and tissue nitrogen content in juveniles of 11 cold-temperate tree species [J]. Oecologia20001233: 318-329.

[57] Maier C AZarnoch S JDougherty P M. Effects of temperature and tissue nitrogen on dormant season stems and branch maintenance respiration in a young loblolly pinePinus taeda plantation [J]. Tree Physiology1998181: 11-20.

[58] Maier C AKress L W. Soil CO2 evolution and root respiration in 11 year-old loblolly pinePinus taeda plantations as affected by moisture and nutrient availability [J]. Canadian Journal of Forest Research2000303: 347-359.

[59] Burton A JPregitzer K SRuess R Wet al. Root respiration in North American forests: Effects of nitrogen concentration and temperature across biomes [J]. Oecologia20021314: 559-568.

[60] Ryan M GHubbard R MPongracic Set al. Foliagefine-rootwoody-tissue and stand respiration in Pinus radiate in relation to nitrogen status[J]. Tree Physiology1996163: 333-343.

[61] Vose J MRyan M G. Seasonal respiration of foliagefine rootsand woody tissues in relation to growth tissue Nand photosynthesis [J]. Global Change Biology200282: 182-193.

[62] Guan YixinLin BaoLing Biying. The interactive effects of growth light condition and nitrogen supply on maizeZea mays L. seedling photosynthetic traits and metabolisms of carbon and nitrogen [J]. Acta Agronomica Sinica200066: 806-812.[关义新,林葆,凌碧莹. 光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响[J].作物学报,200066):806-812.]

[63] Zhang XuchengShangguan Zhouping. Effects if nitrogen fertilization on leaf photosynthesis and respiration of different drought-resistance winter wheat varieties [J]. Chinese Journal of Applied Ecology20061711: 2 064-2 069.[张绪成,上官周平. 施氮对不同抗旱性冬小麦叶片光合与呼吸的调控[J].应用生态学报,20061711):2 064-2 069.]

[64] Stockfors JLinder S. The effect of nutrition on the seasonal course of needle respiration in Norway spruce stands [J]. Trees-Structure and Function1998123: 130-138. 

[65] Cheng L. Fuchigami L H. Rubisco activation state decreases with increasing nitrogen content in apple leaves [J]. Journal of Experimental Botany200051: 1 687-1 694.

[66] Warren C RAdams M A. Phosphorus affects growth and partitioning of nitrogen to Rubisco in Pinus pinaster [J]. Tree Physiology200222: 11-19.

[67] Gallardo ASchlesinger W H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest [J]. Soil Biology and Biochemistry199426: 1 409-1 415.

[68] Bowden R DDavidson ESavage Ket al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest [J]. Forest Ecology and Management2004196:43-56.

[69] Haynes B EGower S T. Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin [J]. Tree Physiology199515: 317-325.

[70] Lee K HJose S B. Soil respirationfine root productionand microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient [J]. Forest Ecology and Management2003185: 263-273.

[71] Pautian KAndrén OClarhom Met al. Carbon and nitrogen budgets of four agro-ecosystems with annual and perennial cropswith and without N fertilization [J]. Applied Ecology199027: 60-84.

[72] Jones S KRees R MKosmas Det al. Carbon sequestration in temperate grassland: Management and climatic controls [J]. Soil Use and Management2006222: 132-142.

[73] Zhou TaoShi Peijun. Indirect impacts of land use change on soil organic carbon change in China [J]. Advances in Earth Science2006212: 138-143.[周涛,史培军. 土地利用变化对中国土壤有机碳储量变化的间接影响[J].地球科学进展,2006212: 138-143.]

[74] Jia ShuxiaWang ZhengquanMei Liet al. Effect of nitrogen fertilization on soil respiration in Larix Gmelinii and Fraxinus Mandshurica plantations in China [J]. Journal of Plant Ecology2007313: 372-379.[贾淑霞,王政权,梅莉,等. 施肥对落叶松和水曲柳人工林土壤呼吸的影响[J].植物生态学报,2007313):372-379.]

[75] Hanson P JEdwards N TGarten C Tet al. Separating root and soil microbial contributions to soil respiration: A review of methods and observations [J]. Biogeochemistry200048: 115-146.

[76] Desrochers ALandh usser S MLieffers V J. Coarse and fine root respiration in aspenPopulus tremuloides [J]. Tree Physiology200222: 725-732.

[77] Pregitzer K SZak D RMaziasz Jet al. Interactive effects of atmospheric CO2 and soil-N availability on fine roots of Populus tremuloides [J]. Ecological Applications200010: 18-33.

[78] Bloom A JChapin F S IIIMooney H A. Resource limitation in plants-an economic analogy [J]. Annual Review of Ecology and Systematic198516: 363-392.

[79] Jones D LHodge AKuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition [J]. New Phytologist2004163: 459-480.

[80] Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods [J]. Soil Biology and Biochemistry200638: 425-448.

[81] Yang LanfangCai ZucongQi Shihua. Effects of nitrogen rate on assimilate transportation to underground at different maize growing stages [J]. Acta Agronomica Sinica20063212: 1 802-1 808.[杨兰芳,蔡祖聪,祁士华.氮肥用量对玉米不同生育期光合产物运往地下的影响[J].作物学报,20063212):1 802-1 808.] 

[82] Liljeroth EVan Veen J AMiliier H J. Assimilate translocation to the rhizosphere of two wheat lines and subsequent utilization by rhizosphere microorganisms at two soil nitrogen concentrations [J]. Soil Biology Biochemistry199022: 1 015-1 021.

[83] Phillips R PFahey T J. Fertilization effects on fine root biomassrhizosphere microbes and respiratory fluxes in hardwood forest soils [J]. New Phytologist20071763: 655-664.

[84] Jia BingruiZhou GuangshengWang Fengyuet al. Affecting factors of soil microorganism and root respiration [J]. Chinese Journal of Applied Ecology2005168: 1 547-1 552.[贾丙瑞,周广胜,王风玉,等. 土壤微生物与根系呼吸作用影响因子分析[J]. 应用生态学报,2005168):1 547-1 552.]

[85] Micks PAber J DBoone R Det al. Short term soil respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen-enriched temperate forests [J]. Forest Ecology and Management2004196:57-70.

[86] Franklin OHögberg PEkblad Aet al. Pine forest floor carbon accumulation in response to N and PK additions: Bomb 14C modeling and respiration studies [J]. Ecosystems20036: 644-658.

[87] Olsson PLinder SGiesler Ret al. Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration [J]. Global Change Biology20051110: 1 745-1 763.

[88] Warembourg F REsterlich H D. Plant phenology and soil fertility effects on below-ground carbon allocation for an annualBromus erectus grass species [J]. Soil Biology and Biochemistry200133: 1 291-1 303.

[89] Liljeroth EKuikman PVan Veen J A. Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels [J]. Plant Soil1994161: 233-240.

[90] Van der Krift T A JKuikman P JMoller Fet al. Plant species and nutritional-mediated control over rhizodeposition and root decomposition [J]. Plant Soil2001228: 191-200.

[91] Zak D RPregitzer K SCurtis P Set al. Atmospheric CO2 and the composition and function of soil microbial communities [J]. Ecological Applications2000101: 47-59.

[92] Printice I CFarquhar GFasham Met al. The carbon cycle and atmospheric carbon dioxide [C]Houghton Jeds. IPCC third Assessment Report. Cambridge: Cambridge University Press2001: 184-237.

[93] Houghton R A. Magnitudedistribution and causes of terrestrial carbon sinks and some implications for policy [J]. Climate Policy20022: 71-88.

[94] Aber J DMacdowell WNadelhoffer Ket al. Nitrogen saturation in temperate forest ecosystems [J]. Bioscience199848: 921-934.

[95] Högberg PNordgren ABuchmann Net al. Large-scale forest girdling shows that current photosynthesis drives soil respiration [J]. Nature2001411: 789-792.

[96] Peng ShaolinLi YuelinRen Haiet al. Progress in research on soil respiration under the global change [J]. Advances in Earth Science2002175: 705-713.[彭少麟,李跃林,任海,等. 全球变化条件下的土壤呼吸效应[J]. 地球科学进展,2002175):705-713.]

[97] Walker BSteffen W. A synthesis of GCTE and related research [C]IGBP Science No.1. Stockholm: IGBP Secretariat1997:23.

[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[3] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[4] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[5] 李家科,刘周立,张蓓. DRAINMOD模型研究与应用进展[J]. 地球科学进展, 2019, 34(7): 679-687.
[6] 韩瑞玲,路紫,姚海芳. 航空碳排放环境损害评估方法的动态化转换、应用与比较研究[J]. 地球科学进展, 2019, 34(7): 688-696.
[7] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[8] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[9] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[10] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[11] 张金波,程谊,蔡祖聪. 土壤调配氮素迁移转化的机理[J]. 地球科学进展, 2019, 34(1): 11-19.
[12] 赵燕慧, 路紫. 航线网络碳排放模型及外部性要素分析[J]. 地球科学进展, 2018, 33(1): 103-111.
[13] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[14] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[15] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
阅读次数
全文


摘要