地球科学进展 ›› 2019, Vol. 34 ›› Issue (5): 488 -498. doi: 10.11867/j.issn.1001-8166.2019.05.0488

综述与评述 上一篇    下一篇

岩溶关键带及其碳循环研究进展
吴泽燕 1, 3( ),章程 1( ),蒋忠诚 2,罗为群 2,曾发明 4   
  1. 1. 中国地质科学院岩溶地质研究所,自然资源部/广西岩溶动力学重点实验室,广西 桂林 541004
    2. 中国地质科学院岩溶地质研究所,自然资源部岩溶生态系统与石漠化治理重点实验室,广西 桂林 541004
    3. 中国地质大学(武汉),湖北 武汉 430074
    4. 佛山科学技术学院,广东 佛山 528000
  • 收稿日期:2019-01-25 修回日期:2019-03-29 出版日期:2019-05-10
  • 通讯作者: 章程 E-mail:studywzy@126.com;chzhang@karst.ac.cn
  • 基金资助:
    中国地质调查局中国地质科学院项目“典型岩溶关键带结构与监测技术研究”(编号:JYYWF20182002);联合国教科文组织/国际地质科学联合会项目“岩溶系统关键带过程、循环与可持续性全球对比研究”(编号:IGCP661)

Advance of Karst Critical Zone and Its Carbon Cycle

Zeyan Wu 1, 3( ),Cheng Zhang 1( ),Zhongcheng Jiang 2,Weiqun Luo 2,Faming Zeng 4   

  1. 1. Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi Zhuang Autonomous Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
    2. Key Laboratory of Karst Ecosystem and Rocky Desertification Control, Ministry of Natural Resources, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
    3. China University of Geosciences (Wuhan), Wuhan 430074, China
    4. FoShan University,Guangdong Foshan 528000, China
  • Received:2019-01-25 Revised:2019-03-29 Online:2019-05-10 Published:2019-07-04
  • Contact: Cheng Zhang E-mail:studywzy@126.com;chzhang@karst.ac.cn
  • About author:Wu Zeyan(1990-), female, Shantou City, Guangdong Province, Ph.D student. Research areas include karst carbon cycle and global change. E-mail: studywzy@126.com
  • Supported by:
    Project supported by the Chinese Academy of Geological Sciences, China Geological Survey “Research on structure and monitoring technology of typical karst critical zone”(No.JYWF20182002);The UNESCO/IUGS “Processes, cycle, and sustainability of the critical zone in karst systems”(No.IGCP661)

岩溶关键带的范畴包含了大气—(降水)—植被—土壤—裂隙—基岩—水组成的“碳—水—钙”循环强烈的表层岩溶带以及岩溶管道—洞穴—地下河—隔水层组成的巨大岩溶地下空间,岩溶关键带碳循环是岩溶地球系统科学研究的前沿方向。总结概括了岩溶地球系统科学发展至今的岩溶关键带范畴内碳循环及其对大气CO2源汇效应的研究成果,包括早期碳运移模型、当前主流的区域岩溶碳汇量的计算方法和结果以及“生物碳泵”的新发现等,讨论了当前岩溶碳循环研究框架过于单一或不一致以及碳周转时间尺度等问题,提出应对岩溶关键带碳输入、赋存以及碳输出的各个环节做出系统化监测,通过联网在线高分辨率监测站点的建设以及“3S”技术实现点位到区域的研究,使岩溶碳汇在全球碳循环模型中的重要性更具说服力。

The category of karst critical zone includes surface karst zones with strong carbon-water-calcium cycle composed of atmosphere-precipitation-vegetation-soil-fissure-bedrock-water and huge karst underground space composed of karst pipeline/fissure-cave-underground river-aquifer, which is the frontier direction of karst earth system science research. This paper summarized the research results of carbon cycle and its effect on atmospheric CO2 source and sink from the scientific development of karst earth system up to now, including the early carbon migration model,the calculation methods and results of current mainstream regional carbon sink and the new discovery of bio-carbon pump, etc. It discussed the problems that the current research frameworks of karst carbon cycle are too single or inconsistent and time scales of carbon turnover are not the same. It was proposed that systematic monitoring of carbon input, storage and output in karst critical zone should be carried out. The importance of karst carbon sinks in the global carbon cycle model should be more convincing through the construction of online high-resolution monitoring sites and the "3S" technology to achieve point-to-area research.

中图分类号: 

图1 岩溶关键带结构模型
Fig.1 Conceptual structure model of karst critical zone
图2 表层岩溶动力系统中碳转移模型[ 39 ]
Fig.2 Carbon transfer model in surface karst dynamic system [ 39 ]
1 National Reasearch Council . Basic Research Opportunities in Earth Science[M]. Washington DC: National Academy Press, 2001.
2 Lin H S . Earth's Critical Zone and hydropedology: Concepts, characteristics, and advances[J]. Hydrology and Earth System Sciences, 2010, 6(2): 3 417-3 481.
3 Guo L , Lin H . Critical zone research and observatories: Current status and future perspectives[J]. Vadose Zone Journal, 2016, 15(9). DOI: 10.2136/vzj2016.06.0050 .
doi: 10.2136/vzj2016.06.0050    
4 An Peijun , Zhang Zhiqiang , Wang Liwei . Review of Earth critical zone research[J]. Advances in Earth Science,2016, 31(12): 1 228-1 234.
安培浚,张志强,王立伟 . 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1 228-1 234.
5 Yuan Daoxian . Progress in the study on karst process and carbon cycle[J]. Advances in Earth Science,1999, 14(5): 425-432.
袁道先 . “岩溶作用与碳循环”研究进展[J]. 地球科学进展, 1999, 14(5): 425-432.
6 Yuan Daoxian . Some coginitions on Earth Syetem Science[J]. Geological Journal of China Universities,1999, 5(1): 1-6.
袁道先 . 对地球系统科学的几点认识[J]. 高校地质学报, 1999, 5(1): 1-6.
7 Yuan Daoxian . Carbon cycle in Earth system and its effect on environment and resources[J]. Quaternary Sciences,2001, 21(3): 223-232.
袁道先 . 地球系统的碳循环和资源环境效应[J]. 第四纪研究, 2001, 21(3): 223-232.
8 Yuan Daoxian . Karst Dynamic System in China[M]. Beijing: Geological Publishing House, 2002.
袁道先 . 中国岩溶动力系统[M]. 北京: 地质出版社, 2002.
9 Li Qiang . Research hotspots of karst in 2016 based on bibliometrics analysis[J]. Advances in Earth Science,2017, 32(5): 535-545.
李强 . 基于文献计量学分析2016年度岩溶学研究热点[J]. 地球科学进展, 2017, 32(5): 535-545.
10 Wang Shijie , Liu Zaihua , Ni Jian ,et al . A review of research progress and future prospective of carbon cycle in karst area of South China[J]. Earth and Environment,2017, 45(1): 2-9.
王世杰,刘再华,倪健,等 . 中国南方喀斯特地区碳循环研究进展[J]. 地球与环境, 2017, 45(1): 2-9.
11 Pu Junbing , Jiang Zhongcheng , Yuan Daoxian ,et al . Some opinions on rock-weathering-related carbon sinks from the IPCC fifth assessment report[J]. Advances in Earth Science,2015, 30(10): 1 081-1 090.
蒲俊兵,蒋忠诚,袁道先,等 . 岩石风化碳汇研究进展:基于IPCC第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1 081-1 090.
12 Yuan Daoxian . Scientific innovation in karst resources and environment research field of China[J]. Carsologica Sinica,2015, 34(2): 98-100.
袁道先 . 我国岩溶资源环境领域的创新问题[J]. 中国岩溶, 2015, 34(2): 98-100.
13 Song Xianwei , Gao Yang , Wen Xuefa ,et al . Rock-weathering-related carbon sinks and associated ecosystem service functions in the karst critical zone in China[J]. Acta Geographica Sinica,2016, 71(11): 1 926-1 938.
宋贤威,高扬,温学发,等 . 中国喀斯特关键带岩石风化碳汇评估及其生态服务功能[J]. 地理学报, 2016, 71(11): 1 926-1 938.
14 Covington M D . The importance of advection for CO2 dynamics in the karst critical zone: An approach from dimensional analysis[J]. European Journal of Clinical Microbiology, 2016, 26(6): 431-433.
15 Liang Sha , Yang Yan , Zhang Na ,et al . Analysis of temporal and spatial variations in trace element migration in karst critical zone: An example of Jiguan Cave,Henan[J]. Environmental Science,2017, 38(10): 4 130-4 140.
梁沙,杨琰,张娜,等 . 岩溶关键带微量元素运移的时空变化:以豫西鸡冠洞为例[J]. 环境科学, 2017, 38(10): 4 130-4 140.
16 Zhu Xiaofeng , Chen Hongsong , Fu Zhiyong ,et al . Runoff and nitrogen loss characteristics in soil-epikarst system on a karst shrub hillslope[J]. Chinese Journal of Applied Ecology,2017, 28(7): 2 197-2 206.
朱晓锋,陈洪松,付智勇,等 . 喀斯特灌丛坡地土壤—表层岩溶带产流及氮素流失特征[J]. 应用生态学报, 2017, 28(7): 2 197-2 206.
17 Zhicai Z , Xi C , Chris S . Catchment‐scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone[J]. Hydrological Processes, 2017, 31(19):3 421-3 436.
18 Yuan Daoxian , Jiang Yongjun , Shen Licheng ,et al . Modern Karstification[M]. Beinjing: Science Press, 2016.
袁道先,蒋勇军,沈立成,等 . 现代岩溶学[M]. 北京: 科学出版社, 2016.
19 Jiang Zhongcheng . Features of epikarst zone in South China and formation mechanism[J]. Tropical Geography,1998, 18(4): 322-326.
蒋忠诚 . 中国南方表层岩溶带的特征及形成机理[J]. 热带地理, 1998, 18(4): 322-326.
20 Jiang Zhongcheng , Wang Ruijiang , Pei Jianguo ,et al . Epikarst zone in South China and its regulation fuction to karst water[J]. Carsologica Sinica, 2001, 20(2): 106-110.
蒋忠诚,王瑞江,裴建国,等 . 我国南方表层岩溶带及其对岩溶水的调蓄功能[J]. 中国岩溶, 2001, 20(2): 106-110.
21 Wang Linjiao , Li Rui , Sheng Maoyin . Distribution of soil organic carbon related to environmental factors in typical rocky desertification ecosystems[J]. Acta Ecologica Sinica,2017, 37(5): 1 367-1 378.
王霖娇,李瑞,盛茂银 . 典型喀斯特石漠化生态系统土壤有机碳时空分布格局及其与环境的相关性[J]. 生态学报, 2017, 37(5): 1 367-1 378.
22 Liang Bin , Li Zhaolin , Zhu Yuanfeng . Sustainable development models of karst ecosystem in Luota[J]. Carsologica Sinica,2002, 21(4): 290-298.
梁彬,李兆林,朱远峰 . 洛塔岩溶生态系统可持续发展模式[J]. 中国岩溶, 2002, 21(4): 290-298.
23 Li Yangbing , Xie Deti , Wei Chaofu . Correlation between rock desertification and variations of soil and surface vegetation in karst ecosystem[J]. Acta Pedologica Sinica,2004, 41(2): 196-202.
李阳兵,谢德体,魏朝富 .岩溶生态系统土壤及表生植被某些特性变异与石漠化的相关性[J]. 土壤学报, 2004, 41(2): 196-202.
24 Yang R , Liu Z , Zeng C , et al . Response of epikarst hydrochemical changes to soil CO2 and weather conditions at Chenqi, Puding, SW China[J]. Journal of Hydrology, 2012, 468/469(22): 151-158.
25 Liu Z , Li Q , Sun H , et al . Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects[J]. Journal of Hydrology, 2007, 337: 207-223.
26 Wang Xiaoxiao , Yin Jianjun , Xu Shangquan ,et al . The variations of soil CO2 and hydrochemistry of epikarst spring above Xueyu Cave[J]. Journal of Soil and Water Conservation,2013, 27(2): 85-89.
王晓晓,殷建军,徐尚全,等 . 雪玉洞上覆土壤CO2 变化及对表层岩溶泉水化学特征的影响[J]. 水土保持学报, 2013, 27(2): 85-89.
27 Baldini J U L , Baldini L M , Mcdermott F , et al . Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: Evidence from Ballynamintra Cave, Ireland[J]. Journal of Cave & Karst Studies, 2006, 68(1): 4-11.
28 Pu J , Yuan D , Zhao H , et al . Hydrochemical and pCO2 variations of a cave stream in a subtropical karst area, Chongqing, SW China: Piston effects, dilution effects, soil CO2 and buffer effects[J]. Environmental Earth Sciences, 2014, 71(9): 4 039-4 049.
29 Ren Kun , Shen Licheng , Yuan Daoxian ,et al . Carbon cycle characteristics in karst cave system of Xueyu Cave from 2012 to 2013[J]. Earth Science,2016, 41(8): 1 424-1 434.
任坤,沈立成,袁道先,等 . 2012—2013年重庆雪玉洞洞穴系统碳循环特征[J]. 地球科学, 2016, 41(8): 1 424-1 434.
30 Trinh D A , Trinh Q H , Fernandez-Cortes A , et al . First assessment on the air CO2 dynamic in the show caves of tropical karst, Vietnam[J]. International Journal of Speleology, 2018, 47(1): 93-112.
31 Rushdi A I , Ersek V , Mix A C , et al . Controls on dripwater chemistry of Oregon Caves National Monument, Northwestern United States[J]. Journal of Hydrology, 2018, 557:30-40.
32 Knierim K , Pollock E , Hays P , et al . Using stable isotopes of carbon to investigate the seasonal variation of carbon transfer in a North-western Arkansas Cave[J]. Journal of Cave and Karst Studies, 2015, 77(1): 12-27.
33 Liu Zaihua , Chris G , Yuan Daoxian ,et al . Study on the hydrochemical variations caused by the water-rock-gas interaction—An example from the Guilin karst experimental site[J]. Hydrogeology and Engineering Geology,2003, 3(4): 13-18.
刘再华, Chris G ,袁道先,等 . 水—岩—气相互作用引起的水化学动态变化研究——以桂林岩溶试验场为例[J]. 水文地质工程地质, 2003, 3(4): 13-18.
34 Zhang Cheng , Yuan Daoxian , Cao Jianhua ,et al . An analysis of short-term scale variation of the typical epikarst spring[J]. Acta Geoscientica Sinica,2004, 25(4): 467-471.
章程,袁道先,曹建华,等 . 典型表层岩溶泉短时间尺度动态变化规律研究[J]. 地球学报, 2004, 25(4): 467-471.
35 Peng T , Wang S . Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China[J]. Catena, 2012, 90:53-62.
36 Atkinson T C . Carbon dioxide in the atmosphere of the unsaturated zone: An important control of groundwater hardness in limestones[J]. Journal of Hydrology, 1977, 35(1): 111-123.
37 Bergel S J , Carlson P E , Larson T E , et al . Constraining the subsoil carbon source to cave-air CO2 and speleothem calcite in central Texas[J]. Geochimica et Cosmochimica Acta, 2017, 217:112-127.
38 Zhou Yunchao . Soil carbon dynamics and its environmental effects[J]. Guizhou Science,2003,(Suppl.1): 135-141.
周运超 . 土壤碳转移动力学及其环境意义[J]. 贵州科学, 2003, (增刊 1): 135-141.
39 Pan Genxing , Teng Yongzhong , Tao Yuxiang ,et al . Effects of soil chemical field on surface karst in Guilin: Field monitoring and laboratory simulation[J]. Soil,2000, 2(4): 173-177.
潘根兴,腾永忠,陶于祥,等 . 土壤化学场对桂林地区表层岩溶的影响——野外监测与实验室模拟[J]. 土壤, 2000, 2(4): 173-177.
40 Pan Genxing , Cao Jianghua , He Shiyi ,et al . Soil carbon as dynamic mechanism for epikarstification in humid subtropical region: Evidence of carbon reservoirs and transfer in the system[J]. Journal of Nanjing Agricultural University,1999, 22(3): 49-52.
潘根兴,曹建华,何师意,等 . 土壤碳作为湿润亚热带表层岩溶作用的动力机制:系统碳库及碳转移特征[J]. 南京农业大学学报, 1999, 22(3): 49-52.
41 Pan Genxing , Sun Yuhua , Teng Yongzhong ,et al . Distribution and transferring of carbon in kast soil system of peak forest depression inhumid subtropical region[J]. Applied Ecology,2000, 11(1): 70-73.
潘根兴,孙玉华,滕永忠,等 . 湿润亚热带峰丛洼地岩溶土壤系统中碳分布及其转移[J]. 应用生态学报, 2000, 11(1): 70-73.
42 Pan Genxing , Cao Jianhua , He Shiyi ,et al . Carbon transfer and carbon drainage from karst soil in Yaji, Guilin[J]. Progress in Natural Science,2001, 11(7): 34-39.
潘根兴,曹建华,何师意,等 . 桂林丫吉村岩溶试验场岩溶土壤碳转移与水排碳作用[J]. 自然科学进展, 2001, 11(7): 34-39.
43 Pan Genxing , Cao Jianhua , He Shiyi ,et al . Sink effect of karst soil system on atmospheri CO2 :Evidence from field observation and simulation experiment[J]. Earth Science Frontiers,2000, 7(4): 580-587.
潘根兴,曹建华,何师意,等 . 岩溶土壤系统对空气CO2 的吸收及其对陆地系统碳汇的意义——以桂林丫吉村岩溶试验场的野外观测和模拟实验为例[J]. 地学前缘, 2000, 7(4): 580-587.
44 Cao Jianhua , Zhou Li , Yang Hui ,et al . Comparison of carbon transfer between forest soils in karst and clasolite areas and the karst carbon sink effect in Maocun Village of Guilin[J]. Quaternary Science,2011, 31(3): 431-437.
曹建华,周莉,杨慧,等 . 桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究[J]. 第四纪研究, 2011, 31(3): 431-437.
45 Haryono E , Danardono, Mulatsih S , et al . The nature of carbon flux in Gunungswu Karst,Java-Indonesia[J]. Acta Carsologica, 2016, 45(2): 173.
46 Jennings J N . Further results from limestone tablet experiments at Cooleman Plain[J]. Geographical Research, 2010, 19(2): 224-227.
47 Zhang Zhigan . Discussion on article “Calculation of atmospheric CO2 sink formed in karst processes of karst-divided regions in China”[J]. Carsologica Sinica,2012, 31(3): 339-344.
张之淦 . 对《中国岩溶作用产生的大气CO2 碳汇的分区计算》一文的商榷[J]. 中国岩溶, 2012, 31(3): 339-344.
48 Liu Zaihua . "Method of maximum potential dissolution" to calculate the intensity of karst process and the relevant carbon sink:With discussion on methods of solute load and carbonate-rock-tablet test[J]. Carsologica Sinica,2011, 30(4): 379-382.
刘再华 . 岩溶作用及其碳汇强度计算的“入渗—平衡化学法”——兼论水化学径流法和溶蚀试片法[J]. 中国岩溶, 2011, 30(4): 379-382.
49 Zeng Cheng , Zhao Min , Yang Rui ,et al . Comparison of karst processes-related carbon sink intensity calculated by carbonate rock tablet test and solute load method: A case study in the Chenqi karst spring system[J]. Hydrogeology and Engineering Geology ,2014, 41(1): 106-111.
曾成,赵敏,杨睿,等 . 岩溶作用碳汇强度计算的溶蚀试片法和水化学径流法比较——以陈旗岩溶泉域为例[J]. 水文地质工程地质, 2014, 41(1): 106-111.
50 Wang Wenjuan , Lan Funing , Jiang Zhongcheng ,et al . Corrosion rate of carbonate tablet under diverse land use and lithology in the Dalongdong Basin,Hunan[J]. Carsologica Sinica,2013, 32(1): 29-33.
王文娟,蓝芙宁,蒋忠诚,等 . 湖南大龙洞流域不同岩性不同土地利用类型条件下碳酸盐岩试片的溶蚀速率[J]. 中国岩溶, 2013, 32(1): 29-33.
51 Zhang Cheng , Worakul Mahippong , Wang Jinliang , et al . Dissolution rates in soil of different landuses of typical tropical karst peak depression valley in Thailand[J]. Quaternary Sciences,2016, 36(6): 1 393-1 402.
章程, Worakul Mahippong ,汪进良,等 . 泰国热带典型岩溶峰丛谷地区不同土地利用土下的溶蚀速率[J]. 第四纪研究, 2016, 36(6): 1 393-1 402.
52 Qiu Dongsheng , Zhuang Dafang , Hu Yunfeng ,et al . Estimation of carbon sink capacity caused by rock weathering in China[J]. Earth Science,2004, 29(2): 177-182.
邱冬生,庄大方,胡云锋,等 . 中国岩石风化作用所致的碳汇能力估算[J]. 地球科学, 2004, 29(2): 177-182.
53 Zeng C , Liu Z , Zhao M , et al . Hydrologically-driven variations in the karst-related carbon sink fluxes: Insights from high-resolution monitoring of three karst catchments in Southwest China[J]. Journal of Hydrology, 2016, 533:74-90.
54 Li H , Wang S , Bai X , et al . Spatiotemporal distribution and national measurement of the global carbonate carbon sink[J]. Science of The Total Environment, 2018, 643:157-170.
55 Jiang Zhongcheng , Qin Xiaoqun , Cao Jianhua ,et al . Calculation of atmospheric CO2 sink formed in karst progresses of the karst divided regions in China[J]. Carsologica Sinica,2011, 30(4): 363-367.
蒋忠诚,覃小群,曹建华,等 . 中国岩溶作用产生的大气CO2碳汇的分区计算[J]. 中国岩溶, 2011, 30(4): 363-367.
56 Li H , Wang S , Bai X , et al . Spatiotemporal evolution of carbon sequestration of limestone weathering in China[J]. Science in China (Series D), 2019,62(6):974-991.
57 Cao Jianhua , Yang Hui , Kang Zhiqiang . Preliminary regional estimation of carbon sink flux by carbonate rock corrosion: A case study of the Pearl River Basin[J]. Chinese Science Bulletin,2011, 56(26): 2 181-2 187.
曹建华,杨慧,康志强 . 区域碳酸盐岩溶蚀作用碳汇通量估算初探:以珠江流域为例[J]. 科学通报, 2011, 56(26): 2 181-2 187.
58 Qin Xiaoqun , Jiang Zhongcheng , Zhang Liankai ,et al . The difference of the weathering rate between carbonate rocks and silicate rocks and its effects on the atmospheric CO2 consumption in the Pearl River Basin[J]. Geological Bulletin of China,2015, 34(9): 1 749-1 757.
覃小群,蒋忠诚,张连凯,等 . 珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2 汇的效应[J]. 地质通报, 2015, 34(9): 1 749-1 757.
59 An Yanling , Jiemei Lü , Luo Jin ,et al . Chemical weathering and CO2 consumption of Chishuihe River Basin, Guizhou Province[J]. Advances in Earth Science, 2018, 33(2): 179-188.
安艳玲,吕婕梅,罗进,等 . 赤水河流域岩石化学风化及其对大气CO2的消耗[J]. 地球科学进展, 2018, 33(2): 179-188.
60 Pei Jianguo , Zhang Cheng , Zhang Qiang ,et al . Flux estimation of carbon sink in typical karst water systems[J]. Rock and Mineral Analysis,2012, 31(5): 884-888.
裴建国,章程,张强,等 . 典型岩溶水系统碳汇通量估算[J]. 岩矿测试, 2012, 31(5): 884-888.
61 Liu Z . Role of carbonic anhydrase as an activator in carbonate rock dissolution and its implication for atmospheric CO2 Sink[J]. Acta Geological Sinica, 2001, 75(3): 347-353.
62 Yu Longjiang , Wu Yun , Li Wei ,et al . Study on the driving effects on limestone corrosion by microbial carbonic anhydrase[J]. Carsologica Sinica,2004, 23(3): 59-62.
余龙江,吴云,李为,等 . 微生物碳酸酐酶对石灰岩的溶蚀驱动作用研究[J]. 中国岩溶, 2004, 23(3): 59-62.
63 Li Wei , Yu Longjiang , Yuan Daoxian ,et al . Researches on activity of carbonic anhydrase from soil and its bacteria in different karst ecosystems and its ecological significance[J]. Acta Ecologica Sinica,2004, 24(3): 438-443.
李为,余龙江,袁道先,等 . 不同岩溶生态系统土壤及其细菌碳酸酐酶的活性分析及生态意义[J]. 生态学报, 2004, 24(3): 438-443.
64 Li Qiang , He Yuanyuan , Cao Jianhua ,et al . The plant carbonic anhydrase at karst area and its ecological effects[J]. Ecology and Environmental Sciences,2011, 20(12): 1 867-1 871.
李强,何媛媛,曹建华,等 . 植物碳酸酐酶对岩溶作用的影响及其生态效应[J]. 生态环境学报, 2011, 20(12): 1 867-1 871.
65 Zhang Kaiyan , Li Tongjian , Zhang Xianqiang ,et al . Corrosion driving effects of three epilithic mosses in the Pudding karst area,Guizhou Province[J]. Carsologica Sinica,2017, 36(4): 441-446.
张楷燕,李同建,张显强,等 . 3种石生苔藓植物碳酸酐酶对石灰岩的溶蚀作用[J]. 中国岩溶, 2017, 36(4): 441-446.
66 Wu Yanyou , Xing Deke , Liu Ying . The characteristics of bicarbonate used by plants[J]. Earth and Environment,2011, 39(2): 273-277.
吴沿友,邢德科,刘莹 . 植物利用碳酸氢根离子的特征分析[J]. 地球与环境, 2011, 39(2): 273-277.
67 Wang C , Li W , Shen T , et al . Influence of soil bacteria and carbonic anhydrase on karstification intensity and regulatory factors in a typical karst area[J]. Geoderma, 2018, 313:17-24.
68 Shen T , Li W , Pan W , et al . Role of bacterial carbonic anhydrase during CO2 capture in the CO2-H2O-carbonate system[J]. Biochemical Engineering Journal, 2017, 123:66-74.
69 Yang R , Chen B , Liu H , et al . Carbon sequestration and decreased CO2 emission caused by terrestrial aquatic photosynthesis: Insights from diel hydrochemical variations in an epikarst spring and two spring-fed ponds in different seasons[J]. Applied Geochemistry, 2015, 63(3): 248-260.
70 Liu Z , Dreybrodt W . Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J]. Science Bulletin, 2015, 60(2): 182-191.
71 Zhang Qiang . The stability of carbon sink effect related to carbonate rock dissolution:A case study of the Caohai Lake geological carbon sink[J]. Acta Geoscientia Sinica,2012, 33(6): 947-952.
张强 . 岩溶地质碳汇的稳定性——以贵州草海地质碳汇为例[J]. 地球学报, 2012, 33(6): 947-952.
72 Mo Xue , Pu Junbing , Yuan Daoxian , et al . Diel variation and influence factors of dissolved inorganic carbon in a surface creek fed by a karst subterranean stream in subtropical area,SW China[J]. Quaternary Sciences,2014, 34(4): 873-880.
莫雪,蒲俊兵,袁道先,等 . 亚热带典型岩溶区地表溪流溶解无机碳昼夜变化特征及其影响因素[J]. 第四纪研究, 2014, 34(4): 873-880.
73 Zhang Cheng . Diel aqueous chemistry and biogeochemical processes in streams of karst areas[J]. Carsologica Sinica,2015, 34(1): 1-8.
章程 . 岩溶区河流水化学昼夜变化与生物地球化学过程[J]. 中国岩溶, 2015, 34(1): 1-8.
74 Zhang Cheng , Xie Yunqiu , Ning Liangdan ,et al . Characteristics of δ13C in typical aquatic plants and carbon sequestration in the Huixian karst wetland,Guilin[J]. Carsologica Sinica,2013, 32(3): 247-252.
章程,谢运球,宁良丹,等 . 桂林会仙岩溶湿地典型水生植物δ13C特征与固碳量估算[J]. 中国岩溶, 2013, 32(3): 247-252.
75 Li Rui , Yu Shi , Sun Ping'an ,et al . Characteristics of δ13C in typical aquatic plants and carbon sequestration by plant photosynthesis in the Banzhai catchment,Maolan of Guizhou Province[J]. Carsologica Sinica,2015, 34(1): 9-16.
李瑞,于奭,孙平安,等 . 贵州茂兰板寨水域水生植物δ13C特征及光合作用固定HCO 3 - 碳量估算[J]. 中国岩溶, 2015, 34(1): 9-16.
76 Chen Bo , Yang Rui , Liu Zaihua ,et al . Effects of aquatic phototrophs on diurnal hydrochemical and δ13CDIC variations in an epikarst spring and two spring-fed ponds of Laqiao, Maolan, SW China[J]. Geochimica,2014, 43(4): 375-385.
陈波,杨睿,刘再华,等 . 水生光合生物对茂兰拉桥泉及其下游水化学和δ13CDIC昼夜变化的影响[J]. 地球化学, 2014, 43(4): 375-385.
77 Jiang Y . The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and δ13CDIC in Nandong, Southwest China[J]. Journal of Contaminant Hydrology, 2013, 152:1-11.
78 Huang Qibo , Qin Xiaoqun , Liu Pengyu ,et al . The influence of allogenic water and sulfuric acid to karst carbon sink in karst subterranean river in southern Hu’nan[J]. Advances in Earth Science,2017, 32(3): 307-318.
黄奇波,覃小群,刘朋雨,等 . 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
79 Sun Ping'an , Li Xiucun , Yu Shi ,et al . Study on source-sink effect in the process of carbonate rock dissolved by acid rain:An example of typical karst regions in Guangxi[J]. Carsologica Sinica,2017, 36(1): 101-108.
孙平安,李秀存,于奭,等 . 酸雨溶蚀碳酸盐岩的源汇效应分析——以广西典型岩溶区为例[J]. 中国岩溶, 2017, 36(1): 101-108.
80 Zhang Cheng . Time-scale of karst processes and the carbon sink stability[J]. Carsologica Sinica,2011, (4): 368-371.
章程 . 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶, 2011, (4): 368-371.
81 Yan Yiping , Cao Jianhua , Yang Hui ,et al . The impact of different soil type on soil organic carbon pool and turnover in karst area[J]. Journal of Soil and Water Conservation,2012, 26(2): 144-149.
严毅萍,曹建华,杨慧,等 . 岩溶区不同土地利用方式对土壤有机碳碳库及周转时间的影响[J]. 水土保持学报, 2012, 26(2): 144-149.
82 Lin Chao , Li Chengliang , Wang Long ,et al . Preflight spectral calibration of hyperspectral carbon dioxide spectrometer of TanSat[J]. Optics and Precision Engineering,2017, 25(8): 2 064-2 075.
蔺超,李诚良,王龙,等 . 碳卫星高光谱CO2探测仪发射前光谱定标[J]. 光学精密工程, 2017, 25(8): 2 064-2 075.
83 Cao Haiyi , Gao Hongtao , Zhao Chenguang . Development of China land quantitative remote sensing satellite technology[J]. Spacecraft Engineering,2018, 27(4): 1-9.
曹海翊,高洪涛,赵晨光 . 我国陆地定量遥感卫星技术发展[J]. 航天器工程, 2018, 27(4): 1-9.
84 Hong Changqiao , Jin Xiaobin , Chen Changchun ,et al . Overview on estimation models of land net primary productivity integrating remote sensing data[J]. Progress in Geography,2017, 36(8): 924-939.
洪长桥,金晓斌,陈昌春,等 . 集成遥感数据的陆地净初级生产力估算模型研究综述[J]. 地理科学进展, 2017, 36(8): 924-939.
[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[4] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[5] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[6] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[7] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[8] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[9] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[10] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[11] 程国栋, 肖洪浪, 傅伯杰, 肖笃宁, 郑春苗, 康绍忠, 延晓冬, 王毅, 安黎哲, 李秀彬, 陈宜瑜, 冷疏影, 王彦辉, 杨大文, 李小雁, 张甘霖, 郑元润, 柳钦火, 邹松兵. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.
[12] 王卷乐, 林海, 冉盈盈, 周玉洁, 宋佳, 杜佳. 面向数据共享的地球系统科学数据分类探讨[J]. 地球科学进展, 2014, 29(2): 265-274.
[13] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[14] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
[15] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
阅读次数
全文


摘要