地球科学进展 ›› 2014, Vol. 29 ›› Issue (10): 1149 -1157. doi: 10.11867/j.issn.1001-8166.2014.10.1149

上一篇    下一篇

淡水体系中透明胞外聚合颗粒物(TEP)的研究进展
刘丽贞 2( ), 秦伯强 1, *( ), 黄琪 1, 2   
  1. 1 中国科学院南京地理与湖泊研究所,湖泊与环境国家重点实验室,江苏 南京 210008
    2 中国科学院大学,北京 100049
  • 出版日期:2014-10-20
  • 通讯作者: 秦伯强 E-mail:woliulizhen2007@126.com;qinbq@niglas.ac.cn
  • 基金资助:
    国家自然科学基金杰出青年基金项目“浅水湖泊生态系统动力学”(编号:40825004);国家自然科学基金项目“水动力输移对大型浅水富营养化湖泊环境要素时空分异格局的影响机制”(编号:41230744)资助

Advances in Transparent Exopolymer Particles(TEP)in Freshwaters

Lizhen Liu 1, 2( ), Boqiang Qin 1( ), Qi Huang 1, 2   

  1. 1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Online:2014-10-20 Published:2014-10-20

透明胞外聚合颗粒物(Transparent Exopolymer Particles, TEP)是水体中一类特殊的自由形态胞外聚合物(Extracellular Polymeric Substances, EPS),同时具有固相胶体相两相特点以及低密度、高碳氮比、高黏性等特点,因而对水体生态系统中的地球化学循环产生重要的作用。通过对国内外文献的查阅及太湖的调查研究,概述了国内外对于TEP研究的现状与动态。对其来源及形成,包括丰度分布、数量及生态意义进行综述。需要指出的是,尽管目前已经有许多关于海洋中TEP特性的研究,但是,对于淡水湖泊中TEP的研究仍然非常稀少。说明TEP在营养元素的地球化学循环过程中的作用及其重要性并没有得到充分的认识。未来的研究方向应该侧重淡水生态体系中TEP的来源及其形成机制方面,特别是与EPS库的其他形态之间的相互转化关系及与微生物、浮游植物(包括与水华暴发蓝藻)新陈代谢之间的关联机制,和TEP的降解、归趋及循环,以及对水体生态系统的影响等方面。此外,饮用水或污水处理中TEP对处理工艺的影响需得到重视。

Transparent Exopolymer Particles (TEP) represent one specially free form of Extracellular Polymeric Substances (EPS). They have the characteristics of solid phase and gel phase, low density, high ratio of carbon to nitrogen, and high stickiness. So, they play an important role in the geochemical cycles of aquatic ecosystems. Based on the literature at home and abroad and the investigation of Lake Taihu, we summarized the research status and dynamics of TEP. The origin and form of TEP, the abundance and significance of TEP in freshwaters were summerized. It should be noted that the study of TEP in freshwater lakes was still relatively few, although there were many researches about the charateristics of TEP in oceans. This suggests that the significance and importance of TEP in geochemical cycle of nutrient elements have not been fully understood. The directions for future research should focus on the origin and form mechnisms of TEP in freshwater ecosystems, especially on the relatioship between TEP and the other forms in EPS pool, the correlative mechanism between TEP and the microorganism and phytoplankton (including bloomingcyanobacteria), the degradation, the fate and cycling of TEP, and the impact of TEP on aquatic ecosystems. Besides, the impact of TEP on the water treatments should be also given attention.

中图分类号: 

表1
Table 1 淡水体系中TEP的浓度
[1] Alldredge A L, Passow U, Logan B E. The abundance and significance of a class of large, transparent organic particles in the ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(6): 1131-1140.
[2] Passow U. Formation of transparent exopolymer particles, TEP, from dissolved precursor material[J]. Marine Ecology-Progress Series, 2000, 192: 1-11.
[3] Zhou J, Mopper K, Passow U. The role of surface-active carbohydrates in the formation of transparent exopolymer particles by bubble adsorption of seawater[J]. Limnology and Oceanography, 1998, 43: 1860-1871.
[4] Passow U. Transparent Exopolymer Particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3): 287-333.
[5] Verdugo P, Alldredge A L, Azam F, et al. The oceanic gel phase: A bridge in the DOM-POM continuum[J]. Marine Chemistry, 2004, 92(1/4): 67-85.
[6] Leppard G G, Massalski A, Lean D R S. Electron-opaque microscopic fibrils in lakes-their demonstration, their biological derivation and their potential significance in redistribution of cations[J]. Protoplasma, 1977, 92(3/4): 289-309.
[7] Leppard G G. The characterization of algal and microbial mucilages and their aggregates in aquatic ecosystems[J]. Science of the Total Environment, 1995, 165(1): 103-131.
[8] Worm J, Søndergaard M. Alcian blue-stained particles in a eutrophic lake[J]. Journal of Plankton Research, 1998, 20(2): 179-186.
[9] Grossart H P, Simon M, Logan B E. Formation of macroscopic organic aggregates (lake snow) in a large lake: The significance of transparent exopolymer particles, phytoplankton, and zooplankton[J]. Limnology and Oceanography, 1997, 42(8): 1651-1659.
[10] Grossart H P, Berman T, Simon M, et al. Occurrence and microbial dynamics of macroscopic organic aggregates (lake snow) in Lake Kinneret, Israel, in fall[J]. Aquatic Microbial Ecology,1998, 14(1): 59-67.
[11] Berger B, Hoch B, Kavka G, et al. Bacterial colonization of suspended solids in the River Danube[J].Aquatic Microbial Ecology,1996, 10: 37-44.
[12] Wurl O, Holmes M. The gelatinous nature of the sea-surface microlayer[J]. Marine Chemistry, 2008, 110(1): 89-97.
[13] Wetz M S, Robbins M C, Paerl H W. Transparent Exopolymer Particles (TEP) in a River Dominated Estuary: Spatial-temporal distributions and an assessment of controls upon TEP formation[J]. Estuaries and Coasts, 2009, 32(3): 447-455.
[14] Sun Jun. Transparent Exopolymer Particles(TEP) and aggregation web in marine environments[J]. Acta Ecologica Sinica, 2005, 25(5): 1191-1198.
[孙军.海洋中的凝集网与透明胞外聚合颗粒物[J]. 生态学报,2005,25(5):1191-1198.]
[15] Guo Yanlin. Distributions and Controls of Transparents Exopolymer Particles in Marginal Seas of Taiwan[D]. Taibei: Institute of Marine Geology and Chemistry, Sun Yat-sen University, 2010.
[郭彦麟.台湾周遭海域透明胞外聚合物分布与控制因子[D]. 台北: 中山大学海洋地质及化学研究所,2010.]
[16] Ma Lili, Chen Min, Guo Laodong, et al. Distribution and source of transparent exopolymer particles in the Northern Bering Sea[J]. Acta Oceanologica Sinica, 2012, 34(5): 81-90.
[马丽丽, 陈敏, 郭劳动,等. 北白令海透明胞外聚合颗粒物的含量与来源[J]. 海洋学报, 2012, 34(5): 81-90.]
[17] Peng Anguo, Huang Yipu. Study on TEP and its relationships with Uranium, Thorium, Polonium isotopes in Jiulong Estuary[J]. Journal of Xiamen University (Natural Science), 2007, 46(1): 38-42.
[彭安国, 黄奕普. 九龙江河口区 TEP 及其与铀, 钍, 钋同位素相关性的研究[J]. 厦门大学学报:自然科学版, 2007, 46(1): 38-42.]
[18] Sun C C, Wang Y S, Li Q P, et al. Distribution characteristics of transparent exopolymer particles in the Pearl River estuary, China[J]. Journal of Geophysical Research: Biogeosciences (2005-2012), 2012, 117:G4.
[19] Stoderegger K E, Herndl G J. Production of exopolymer particles by marine bacterioplankton under contrasting turbulence conditions[J]. Marine Ecology Progress Series, 1999, 189: 9-16.
[20] Passow U. Production of Transparent Exopolymer Particles (TEP) by phyto-and bacterioplankton[J]. Marine Ecology-Progress Series, 2002, 236: 1-12.
[21] Sugimoto K, Fukuda H, Baki M A, et al. Bacterial contributions to formation of Transparent Exopolymer Particles (TEP) and seasonal trends in coastal waters of Sagami Bay, Japan[J]. Aquatic Microbial Ecology, 2007, 46(1): 31-41.
[22] Berman T, Viner-Mozzini Y. Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret[J]. Aquatic Microbial Ecology, 2001, 24(3): 255-264.
[23] Berman-Frank I, Rosenberg G, Levitan O, et al. Coupling between autocatalytic cell death and transparent exopolymeric particle production in the marine cyanobacterium Trichodesmium[J]. Environmental Microbiology, 2007, 9(6): 1415-1422.
[24] Ramaiah N, Yoshikawa T, Furuya K. Temporal variations in Transparent Exopolymer Particles (TEP) associated with a diatom spring bloom in a Subarctic Ria in Japan[J]. Marine Ecology Progress Series, 2001, 212: 79-88.
[25] Mckee M P, Ward J E, Macdonald B A, et al. Production of Transparent Exopolymer Particles (TEP) by the eastern oyster Crassostrea Virginica[J]. Marine Ecology Progress Series, 2005, 288: 141-149.
[26] Thornton D C. Formation of Transparent Exopolymeric Particles(TEP) from macroalgal detritus[J]. Marine Ecology Progress Series, 2004, 282: 1-12.
[27] Heinonen K, Ward J, Holohan B. Production of Transparent Exopolymer Particles (TEP) by benthic suspension feeders in coastal systems[J]. Journal of Experimental Marine Biology and Ecology, 2007, 341(2): 184-195.
[28] Liu Lizhen. Study on the Distribution and Abundance of Extracellular Polymeric Substances (EPS) in Lake Taihu and the Characteristics of Cyanobacterial EPS[D]. Nanjing: Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, 2014.
[刘丽贞.太湖胞外聚合物EPS的分布特征及蓝藻分泌EPS的特性研究[D]. 南京:中国科学院南京地理与湖泊研究所,2014.]
[29] Mari X, Burd A. Seasonal size spectra of Transparent Exopolymeric Particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory[J]. Marine Ecology-Progress Series, 1998, 163: 63-76.
[30] Carrias J F, Serre J P, Sime-Ngando T, et al. Distribution, size, and bacterial colonization of pico-and nano-Detrital Organic Particles (DOP) in two lakes of different trophic status[J]. Limnology and Oceanography, 2002, 47(4): 1202-1209.
[31] Brachvogel T, Schweitzer B, Simon M. Dynamics and bacterial colonization of microaggregates in a large mesotrophic lake[J]. Aquatic Microbial Ecology, 2001, 26(1): 23-35.
[32] De Vicente I, Ortega-Retuerta E, Romera O, et al. Contribution of transparent exopolymer particles to carbon sinking flux in an oligotrophic reservoir[J]. Biogeochemistry, 2009, 96(1/3): 13-23.
[33] Passow U, Alldredge A. Distribution, size and bacterial colonization of Transparent Exopolymer Particles(TEP) in the ocean[J]. Marine Ecology Progress Series. Oldendorf, 1994, 113(1): 185-198.
[34] Allgaier M, Riebesell U, Vogt M, et al. Coupling of heterotrophic bacteria to phytoplankton bloom development at different Pco< Sub> 2</Sub> Levels: A mesocosm study[J]. Biogeosciences Discussions, 2008, 5(1): 317-359.
[35] Corzo A, Morillo J A, Rodríguez S. Production of Transparent Exopolymer Particles (TEP) in cultures of chaetoceros calcitrans under nitrogen limitation[J]. Aquatic Microbial Ecology, 2000, 23(1): 63-72.
[36] Hong Y, Smith W O, White A M. Studies on Transparent Exopolymer Particles (TEP) produced in the Ross Sea (Antarctica) and by Phaeocystis Antarctica (Prymnesiophyceae)[J]. Journal of Phycology, 1997, 33(3): 368-376.
[37] Danger M, Allard B, Arnous M B, et al. Effects of food-web structure on the quantity and the elemental quality of sedimenting material in shallow lakes[J]. Hydrobiologia, 2012, 679(1): 251-266.
[38] Beauvais S, Pedrotti M, Egge J, et al. Effects of turbulence on TEP dynamics under contrasting nutrient conditions: Implications for aggregation and sedimentation processes[J]. Marine Ecology Progress Series, 2006, 323: 47-57.
[39] Jackson G A. Particle trajectories in a rotating cylinder: Implications for aggregation incubations[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(3): 429-437.
[40] Engel A, Passow U. Carbon and nitrogen content of Transparent Exopolymer Particles (TEP) in relation to their alcian blue adsorption[J]. Marine Ecology Progress Series, 2001, 219: 1-10.
[41] Chin W C, Orellana M V, Verdugo P. Spontaneous assembly of marine dissolved organic matter into polymer gels[J]. Nature, 1998, 391(6667): 568-572.
[42] De O A W, Moriarty D J. Bacterial exopolymer utilization by a Harpacticoid Copepod: A methodology and results[J]. Limnology and Oceanography, 1990, 35(5): 1039-1040.
[43] Thornton D C, Thake B. Effect of Temperature on the aggregation of Skeletonema Costatum (Bacillariophyceae) and the implication for carbon flux in coastal waters[J]. Marine Ecology-Progress Series, 1998, 174: 223-231.
[44] Kerner M, Hohenberg H, Ertl S, et al. Self-organization of dissolved organic matter to micelle-like microparticles in River Water[J]. Nature, 2003, 422(6 928): 150-154.
[45] Mari X, Robert M. Metal induced variations of TEP sticking properties in the southwestern lagoon of New Caledonia[J]. Marine Chemistry, 2008, 110(1): 98-108.
[46] De Vicente I, Ortega-Retuerta E, Mazuecos I P, et al. Variation in transparent exopolymer particles in relation to biological and chemical factors in two contrasting lake districts[J]. Aquatic sciences, 2010, 72(4): 443-453.
[47] Passow U, Alldredge A L. A dye-binding assay for the spectrophotometric measurement of Transparent Exopolymer Particles (TEP)[J]. Limnology and Oceanography, 1995, 40(7): 1326-1335.
[48] Azetsu-Scott K, Passow U. Ascending marine particles: Significance of Transparent Exopolymer Particles (TEP) in the upper ocean[J]. Limnology and Oceanography, 2004, 49(3): 741-748.
[49] Logan B E, Passow U, Alldredge A L, et al. Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of Transparent Exopolymer Particles (TEP)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1995, 42(1): 203-214.
[50] Mari X, Dam H G. Production, concentration, and isolation of transparent exopolymeric particles using paramagnetic functionalized microspheres[J]. Limnology and Oceanography-Methods, 2004, 2: 13-24.
[51] Kiørboe T, Hansen J L. Phytoplankton aggregate formation: Observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material[J]. Journal of Plankton Research, 1993, 15(9): 993-1018.
[52] Passow U, Shipe R, Murray A, et al. The origin of Transparent Exopolymer Particles (TEP) and their role in the sedimentation of particulate matter[J]. Continental Shelf Research, 2001, 21(4): 327-346.
[53] Alldredge A L, Passow U, Haddock H. The characteristics and Transparent Exopolymer Particle (TEP) content of marine snow formed from thecate Dinoflagellates[J]. Journal of Plankton Research, 1998, 20(3): 393-406.
[54] LemarchC, Jardillier L, Carrias J F, et al. Community composition and activity of prokaryotes associated to detrital particles in two contrasting lake ecosystems[J]. FEMS Microbiology Ecology, 2006, 57(3): 442-451.
[55] De La Rocha C L, Nowald N, Passow U. Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic matter: Further implications for the ballast hypothesis[J]. Global Biogeochemical Cycles, 2008, 22(4),doi:10.1029/2007GB003156.
[56] Fletcher M. The physiological activity of bacteria attached to solid surfaces[J]. Advances in Microbial Physiology, 1991, 32: 53-85.
[57] Kepkay P E. Particle aggregation and the biological reactivity of colloids[J]. Marine Ecology-Progress Series, 1994, 109: 293-293.
[58] Arnous M-B, Courcol N, Carrias J-F. The significance of transparent exopolymeric particles in the vertical distribution of bacteria and heterotrophic nanoflagellates in Lake Pavin[J]. Aquatic sciences, 2010, 72(2): 245-253.
[59] Berman T, Parparova R. Visualization of Transparent Exopolymer Particles (TEP) in various source waters[J]. Desalination and Water Treatment, 2010, 21(1/3): 382-389.
[60] Alldredge A L, Gotschalk C, Passow U, et al. Mass aggregation of diatom blooms: Insights from a mesocosm study[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1995, 42(1): 9-27.
[61] Mari X, Rassoulzadegan F, Brussaard C P. Role of TEP in the microbial food web structure. II. Influence on the ciliate community structure[J]. Marine Ecology Progress Series, 2004, 279: 23-32.
[62] Niven S, Kepkay P, Bugden J. The role of TEP in 234Th scavenging during a coastal diatom bloom[J]. Radioprotection, 1997, 32: C2-213.
[63] Santschi P H, Hung C C, Schultz G, et al. Control of acid polysaccharide production and 234Th and POC export fluxes by marine organisms[J]. Geophysical Research Letters, 2003, 30(2): 1044.
[64] Qu Jiansheng, Sun Chengquan, Zhang Zhiqiang, et al. Trends and advances of the global change studies on carbon cycle[J]. Advances in Earth Science, 2003, 18(6): 980-987.
[曲建升,孙成权,张志强,等. 全球变化科学中的碳循环研究进展与趋向[J]. 地球科学进展,2003,18(6):980-987.]
[65] Berman T. Don’t fall foul of biofilm through high TEP levels[J]. Filtration & Separation, 2005, 42(4): 30-32.
[66] Berman T, Passow U. Transparent Exopolymer Particles (TEP): an overlooked factor in the process of biofilm formation in aquatic environments[J]. Nature Precedings,2007,doi:10.1038/npre.2007.1182.1.
[67] Bar-Zeev E, Berman-Frank I, Liberman B, et al. Transparent exopolymer particles: Potential agents for organic fouling and biofilm formation in desalination and water treatment plants[J]. Desalination and Water Treatment, 2009, 3(1/3): 136-142.
[68] Bar-Zeev E, Berman-Frank I, Girshevitz O, et al. Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(23): 9 119-9 124.
[69] Kennedy M D, Tobar F P M, Amy G, et al. Transparent Exopolymer Particle (TEP) fouling of ultrafiltration membrane systems[J]. Desalination and Water Treatment, 2009, 6(1/3): 169-176.
[70] Villacorte L O, Kennedy M D, Amy G L, et al. Measuring Transparent Exopolymer Particles (TEP) as indicator of the (bio)fouling potential of Ro Feed water[J]. Desalination and Water Treatment, 2009, 5(1/3): 207-212.
[71] Eshel G, Elifantz H, Nuriel S, et al. Microfiber filtration of lake water: Impacts on TEP removal and biofouling development[J]. Desalination and Water Treatment, 2013, 51(4/6): 1043-1049.
[72] Qin Boqiang, Wang Xiaodong, Tang Xiangming, et al. Drinking water crisis caused by eutrophication and cyanobacterial bloom in Lake Taihu: Cause and measurement[J]. Advances in Earth Science, 2007, 22(9): 896-906.
[秦伯强,王小冬,汤祥明,等. 太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J]. 地球科学进展,2007,22(9):896-906.]
[1] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[2] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[3] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[4] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[5] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[6] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[7] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[8] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[9] 张虎才. 滇池构造漏水隐患及水安全[J]. 地球科学进展, 2016, 31(8): 849-857.
[10] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[11] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[12] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[13] 兰晨, 陈敬安, 曾艳, 郭建阳, 张润宇, 王敬富, 杨海全, 计永雪. 深水湖泊增氧理论与技术研究进展[J]. 地球科学进展, 2015, 30(10): 1172-1181.
[14] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[15] 任晓倩,孙菽芬,陈 文,刘辉志. 湖泊数值模拟研究现状综述[J]. 地球科学进展, 2013, 28(3): 347-356.
阅读次数
全文


摘要