地球科学进展 ›› 2014, Vol. 29 ›› Issue (10): 1158 -1166. doi: 10.11867/j.issn.1001-8166.2014.10.1158

上一篇    下一篇

环境同位素在黑河流域水循环研究中的应用
胡玥 1( ), 刘传琨 1, 卢粤晗 2, 刘杰 1, 郑春苗 1, 2, *( )   
  1. 1. 北京大学工学院水资源研究中心,北京 100871
    2. 美国阿拉巴马大学地质科学系,塔斯卡卢萨,阿拉巴马 35487
  • 出版日期:2014-10-20
  • 通讯作者: 郑春苗 E-mail:huyue0519@126.com;czheng@pku.edu.cn
  • 基金资助:
    国家自然科学基金黑河重大研究计划集成项目“黑河流域中下游生态水文过程的系统行为与调控研究”(编号:91225301);国家自然科学基金黑河重大研究计划重点项目“黑河流域地表水与地下水相互转化的观测与机制研究”(编号:91025019)资助

Application of Environmental Isotopes in Understanding Hydrological Processes of the Heihe River Basin

Yue Hu 1( ), Chuankun Liu 1, Yuehan Lu 2, Jie Liu 1, Chunmiao Zheng 1, 2( )   

  1. 1. Center for Water Research, College of Engineering, Peking University, Beijing 100871, China
    2. Department of Geological Science, the University of Alabama, Tuscaloosa, Alabama 35487,USA
  • Online:2014-10-20 Published:2014-10-20

为了解不同时空尺度上黑河流域水循环机制,总结了近年来黑河流域进行的氘氧稳定同位素以及氚、碳和氡放射性同位素研究(2H,18O,3H,14C,222Rn),得到各类水体(降水、河水、地下水)采样点的分布及分析结果。稳定同位素结果表明上游山区降水是全流域主要的水资源产生区,中游地表—地下水交互频繁,下游浅层地下水主要接受河水补给,深层地下水则相对封闭。放射性同位素也表明下游浅层地下水年龄小于深层,与稳定同位素结果相符。总体来说,环境同位素对黑河流域的水循环研究还处于定性研究阶段。今后研究方向应致力于丰富采样的时空尺度, 同时采用多种同位素并结合其他地球化学指标以定量研究结果,并将结果应用于水文数学模型的构建和校正。

Recent studies using environmental isotopes (2H, 3H, 14C, 18O, and 222Rn) were summarized to trace hydrological processes in the Heihe River Basin (HRB). Isotopic values from various types of waters (i.e., precipitation, surface water, and groundwater) at multiple spatiotemporal scales within the basin have been synthesized. The measurements of δD and δ18O values show that: precipitation in the upper-basin constitutes the primary source for surface water and shallow groundwater in the HRB; frequent surface water-shallow groundwater exchanges take place mainly in the middle HRB; and in the lower HRB, shallow groundwater is recharged primarily by river water while deep groundwater is largely isolated from modern recharge sources. This finding for the lower HRB is further confirmed by 14C and 3H measurements, which demonstrate that shallow, unconfined groundwater is younger than deep, confined groundwater. Future research should be focused more on increasing sampling resolution in time and space, utilizing multiple isotopes in tandem with other geochemical tracers for more quantitative research, as well as integrating results from isotope-based, geochemical investigations into construction and calibration of numerical models.

中图分类号: 

表1
Table 1 Research objectives of using environmental isotopes within the Heihe Basin.
图1 黑河流域环境同位素取样点分布
Fig.1 Spatial distribution of sampling sites of previous environmental isotope studies in the Heihe River Basin
表2 黑河中上游氘氧降水线关系
Table 1 Regional meteoric water lines in the upper and middle Heihe Basin
图2 黑河流域浅层地下水补给来源及盆地水力联系示意图 图中问号处古日乃与巴丹吉林沙漠边缘地下水的补给方向还存在争议
Fig.2 A conceptual diagram of the spatial distribution of shallow groundwater recharge sources and sub-basin hydraulic connections within the Heihe River Basin “?” denotes that the direction of groundwater recharge between Gurinai and Badain Jaran Desert remains debatable
图3 黑河流域地表-地下水交换方向示意图 向上箭头表示地下水补给河水为主;向下箭头表示河水补给地下水为主
Fig.3 A conceptual diagram describing the directions of surface-ground-water exchanges in the Heihe River Basin The up arrows indicate that groundwater discharges to river water while the down arrows indicate that groundwater is recharged by river water
[1] Lin Zuoding. Isotopic technology application in the field of hydrology and water resources[J]. Water Resources and Hydropower Engineering, 2003,34(7):6-8.
[林祚顶.同位素技术在水文水资源领域的应用[J]. 水利水电技术, 2003, 34(7): 6-8.]
[2] Wu Jinkui, Ding Yongjian, Wang Genxu, et al. Advance on application of isotopic techniques in water sciences in cold and arid regions[J].Journal of Glaciology and Geocryology, 2004, 26(4): 509-516.
[吴锦奎, 丁永建, 王根绪, 等. 同位素技术在寒旱区水科学中的应用进展[J]. 冰川冻土, 2004, 26(4): 509-516.]
[3] Xi Haiyang, Feng Qi, Cheng Yufei, et al. Review of study on groundwater in Heihe River Basin[J]. Journal of China Hydrology, 2008, 28(5): 61-64.
[席海洋, 冯起, 程玉菲, 等. 黑河流域地下水研究进展综述[J]. 水文, 2008, 28(5): 61-64.]
[4] China Geological Survey. Hydrogeological Handbook (2nd)[M]. Beijing: Geology Publishing House,2012.
[中国地质调查局. 水文地质手册(第二版)[M]. 北京:地质出版社, 2012.]
[5] Qian Yunping, Wang Ling. Isotope Hydrology Technology Application in Water Cycle Researches of Heihe River Basin[M].Zhengzhou: The Yellow River Conservancy Press, 2008.
[钱云平, 王玲. 同位素水文技术在黑河流域水循环研究中的应用[M]. 郑州: 黄河水利出版社, 2008.]
[6] Wang Zhengjiang, Xu Xiaosong, Du Qiuding, et al. Discussion on the bottom of Nanhua System: Evidences from sedimentology and isotopic geochronology[J]. Advances in Earth Science, 2013, 28(4) : 477-489.
[汪正江, 许效松, 杜秋定,等. 南华冰期的底界讨论:来自沉积学与同位素年代学证据[J]. 地球科学进展, 2013, 28(4): 477-489.]
[7] Wu Y, Wen X, Zhang Y. Analysis of the exchange of groundwater and river water by using Radon-222 in the middle Heihe Basin of northwestern China[J]. Environmental Geology, 2004, 45(5): 647-653.
[8] Zhang Yinghua, Wu Yanqing. Oxygen and hydrogen isotopes in precipitation in Heihe River Basin, China[J]. Journal of Glaciologyand Geocryology, 1994, 30(1): 16-21.
[张应华, 仵彦卿. 黑河流域中上游地区降水中氢氧同位素研究[J]. 冰川冻土, 1994, 30(1): 16-21.]
[9] Zhang Yinghua, Wu Yanqing. Precipitation from different water vapor sources in the Heihe River Basin[J]. Arid Land Geography, 2008, 31(3): 403-408.
[张应华, 仵彦卿. 黑河流域大气降水水汽来源分析[J]. 干旱区地理, 2008, 31(3): 403-408.]
[10] Wu J, Ding Y, Ye B, et al. Spatio-temporal variation of stable isotopes in precipitation in the Heihe River Basin, Northwestern China[J]. Environmental Earth Sciences, 2010, 61(6): 1123-1134.
[11] Zhao Liangju, Yin Li, Xiao Honglang, et al. Isotopic evidence for the moisture origin and composition of surface runoff in the headwaters of the Heihe River Basin[J]. Chinese Science Bulletin, 2011, 56(1): 58-70.
[赵良菊, 尹力, 肖洪浪, 等. 黑河源区水汽来源及地表径流组成的稳定同位素证据[J]. 科学通报, 2011, 56(1): 58-70.]
[12] Wu Junnian, Wang Hong. Characteristics of the δ18O in precipitation and water vapor source in Zhangye[J]. Journal of Anhui Agricultural Sciences, 2011, 39(3): 1601-1604.
[吴军年, 王红. 张掖大气降水的δ18O 特征及水汽来源[J]. 安徽农业科学, 2011, 39(3): 1601-1604.]
[13] Zhang Yinghua, Wu Yanqing. Relation between oxygen and hydrogen isotopes in precipitation and temperature in Heihe River Basin[J]. Arid Land Geography, 2007, 30(1):16-21.
[张应华, 仵彦卿. 黑河流域中上游地区降水中氢氧同位素与温度关系研究[J]. 干旱区地理, 2007, 30(1): 16-21.]
[14] Zhang Yinghua, Wu Yanqing. Characteristics of theδ18O in precipitation in the upper and middle reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2007,29(3):440-445.
[张应华, 仵彦卿. 黑河流域中上游地区降水δ18O 变化特征[J]. 冰川冻土, 2007, 29(3): 440-445.]
[15] Wang Ninglian, Zhang Shibiao, Pu Jianchen, et al. Seasonal variation ofδ18O in river water in the upper reaches of Heihe River Basin and its influence factors[J]. Journal of Glaciologyand Geocryology, 2008, 30(6): 914-920.
[王宁练, 张世彪, 蒲健辰, 等. 黑河上游河水中δ18O 季节变化特征及其影响因素研究[J]. 冰川冻土, 2008, 30(6): 914-920.]
[16] Wang Ninglian, Zhang Shibiao, He Jianqiao, et al. Tracing the major source area of the mountainous runoff generation of the Heihe River in northwest China using stable isotope technique[J]. Chinese Science Bulletin, 2009, 54(15): 2751-2757.
[王宁练, 张世彪, 贺建桥, 等. 祁连山中段黑河上游山区地表径流水资源主要形成区域的同位素示踪研究[J]. 科学通报, 2009,54(15): 2148-2152.]
[17] Zhang Y H, Song X F, Wu Y Q. Use of oxygen-18 isotope to quantify flows in the upriver and middle reaches of the Heihe River, Northwestern China[J]. Environmental Geology, 2009, 58(3): 645-653.
[18] Chen Z, Nie Z, Zhang G, et al. Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China[J]. Hydrogeology Journal, 2006, 14(8): 1635-1651.
[19] Nie Zhenlong, Chen Zongyu, Zhang Guanghui, et al. Groundwater recharge and renewal in the Minle Piedmont Plain of the Heihe River Basin[J]. Hydrogeology & Engineering Geology, 2010, 37(2):6-9.
[聂振龙, 陈宗宇, 张光辉, 等. 黑河流域民乐山前隐伏构造带地下水补给与更新[J]. 水文地质工程地质, 2010, 37(2): 6-9.]
[20] Yang Q, Xiao H, Zhao L, et al. Hydrological and isotopic characterization of river water, groundwater, and groundwater recharge in the Heihe River Basin, northwestern China[J]. Hydrological Processes, 2011, 25(8): 1271-1283.
[21] Ma Ni’na, Yang Xiaoping. Environmental isotopes and water chemistry in the Badain Jaran Desert and in its southeastern adjacent areas, Inner Mongolia and their hydrological implications[J]. Quaternary Sciences, 2008, 28(4):702-711.
[马妮娜, 杨小平. 巴丹吉林沙漠及其东南边缘地区水化学和环境同位素特征及其水文学意义[J]. 第四纪研究, 2008, 28(4): 702-711.]
[22] Chen Zongyu, Wan Li, Nie Zhenlong, et al. Identification of groundwater recharge in the Heihe Basin using environmental isotopes[J]. Hydrogeology & Engineering Geology, 2006, 6:9-14.
[陈宗宇, 万力, 聂振龙, 等. 利用稳定同位素识别黑河流域地下水的补给来源[J]. 水文地质工程地质, 2006, 6: 9-14.]
[23] Zhang Yinghua, Wu Yanqing, Su Jianping, et al. Mechanism of groundwater replenishment in Ejin Basin[J]. Journal of Desert Research, 2006, 26(1):96-102.
[张应华, 仵彦卿, 苏建平, 等. 额济纳盆地地下水补给机理研究[J]. 中国沙漠, 2006, 26(1): 96-102.]
[24] He Jianhua, Fu Sujing, Ma Jinzhu, et al. Groundwater recharge and geochemical evolution in quaternary aquifer of Beidahe River Watershed[J].Journal of Desert Research, 2011, 31(6):1630-1638.
[何建华, 付素静, 马金珠, 等. 北大河流域地下水化学演化与补给特征[J]. 中国沙漠, 2011, 31(6): 1630-1638.]
[25] Gates J B, Edmunds W M, Darling W G, et al. Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers[J]. Applied Geochemistry, 2008, 23(12): 3519-3534.
[26] Ma J Z, Ding Z, Gates J B, et al. Chloride and the environmental isotopes as the indicators of the groundwater recharge in the Gobi Desert, northwest China[J]. Environmental Geology, 2008, 55(7): 1407-1419.
[27] Chen Jiansheng, Wang Jiyang. Study on the groundwater recharge in Badain Jaran Desert and Guninai grassland by using isotopes[J]. China Geophysics,2003, 34(4): 642-643.
[陈建生, 汪集旸. 同位素方法研究巴丹吉林沙漠与古日乃草原地下水补给[J]. 中国地球物理,2003, 34(4): 642-643.]
[28] Qin D, Qian Y, Han L, et al. Assessing impact of irrigation water on groundwater recharge and quality in arid environment using CFCs, tritium and stable isotopes, in the Zhangye Basin, Northwest China[J]. Journal of Hydrology, 2011, 405(1): 194-208.
[29] Guo Yonghai, Liu Shufen, Lü Chuanhe. Isotope characteristics of groundwater in the potential site of a high-level waste repository in China[J]. Acta Geoscientica Sinica, 2004,24(6): 525-528.
[郭永海, 刘淑芬, 吕川河. 高放废物处置系统地下水同位素特征[J]. 地球学报, 2004, 24(6): 525-528.]
[30] Akiyama T, Sakai A, Yamazaki Y, et al. Surfacewater-groundwater interaction in the Heihe River Basin, Northwestern China[J]. Japanese Society of Snow and Ice, 2007, 24(1): 87-94.
[31] Wu Yanqing, Zhang Yinghua, Wen Xiaohu, et al. A new discovery about the conversion between surface water and groundwater in lower reaches of Heihe River Basin[J]. Progress in Natural Science, 2004,14(12):1428-1433.
[仵彦卿, 张应华, 温小虎, 等. 西北黑河下游盆地河水与地下水转化的新发现[J]. 自然科学进展, 2004, 14(12): 1428-1433.]
[32] Zhang Yinghua, Wu Yanqing. Variation ofδ18O in water in Heihe River Basin[J]. Advances in Water Science, 2007, 18(6):864-870.
[张应华, 仵彦卿. 黑河流域不同水体中δ18O的变化[J]. 水科学进展, 2007, 18(6): 864-870.]
[33] Zhang Guanghui, Nie Zhenlong, Wang Jinzhe, et al. Isotopic characteristic and recharge effect of groundwater in the watercirculation of Heihe River Basin[J]. Advances in Earth Science, 2005, 20(5):511-519.
[张光辉, 聂振龙, 王金哲, 等. 黑河流域水循环过程中地下水同位素特征及补给效应[J]. 地球科学进展, 2005, 20(5): 511-519.]
[34] Gan Yiqun, Li Xiaoqian, Zhou Aiguo, et al. Characteristics of deuterium excess parameter of groundwater in Heihe River Basin[J]. Geological Science and Technology Information, 2008, 27(2): 85-90.
[甘义群, 李小倩, 周爱国, 等. 黑河流域地下水氘过量参数特征[J].地质科技情报, 2008, 27(2): 85-90.]
[35] Zhang Guanghui, Chen Zongyu, Nie Zhenlong, et al. Isotopic characteristics of groundwater and its response to paleo climatic variation in Heihe River Basin[J]. Acta Geoscientica Sinica, 2006, 27(4):341-348.
[张光辉, 陈宗宇, 聂振龙, 等. 黑河流域地下水同位素特征及其对古气候变化的响应[J]. 地球学报, 2006, 27(4): 341-348.]
[36] Nie Zhenlong, Chen Zongyu, Shen Jianmei, et al. Environmental isotopes as tracers of hydrological cycle in the recharge area of the Heihe River[J]. Geography and Geo-information Science, 2005, 21(1): 104-108.
[聂振龙, 陈宗宇, 申建梅, 等. 应用环境同位素方法研究黑河源区水文循环特征[J]. 地理与地理信息科学, 2005, 21(1): 104-108.]
[37] Wen X H, Wu Y Q, Wu J. Hydrochemical characteristics of groundwater in the Zhangye Basin, Northwestern China[J]. Environmental Geology, 2008, 55(8): 1713-1724.
[38] Lian Yingli, Zhang Guanghui, Nie Zhenlong, et al. Isotope characteristics of groundwater and its recharge water in Zhangye Basin[J]. Site Investigation Science and Technology, 2011, 2:11-16.
[连英立, 张光辉, 聂振龙, 等. 张掖盆地地下水及其补给水源的同位素特征[J]. 勘察科学技术, 2011, 2: 11-16.]
[39] Zhang Yinghua, Wu Yanqing. Analysis of groundwater replenishment in the middle reaches of Heihe River[J]. Journal of Desert Research, 2009, 29(2): 370-375.
[张应华, 仵彦卿. 黑河流域中游盆地地下水补给机理分析[J]. 中国沙漠, 2009, 29(2): 370-375.]
[40] Qian Yunping, Qin Dajun, Pang Zhonghe, et al. A discussion of recharge sources of deep groundwater in the Ejin Basin in the lower reaches of Heihe River[J]. Hydrogeology & Engineering Geology, 2006, 3:25-29.
[钱云平, 秦大军, 庞忠和, 等. 黑河下游额济纳盆地深层地下水来源的探讨[J]. 水文地质工程地质, 2006, 3: 25-29.]
[41] Zhang Y, Wu Y, Su J, et al. Groundwater replenishment analysis by using natural isotopes in Ejina Basin, Northwestern China[J]. Environmental Geology, 2005, 48(1): 6-14.
[42] Qian Yunping, Lin Xueyu, Qin Dajun, et al. Study on groundwater of the Ejin Basin at the lower reaches of the Heihe River using isotopes[J]. Arid Land Geography, 2005, 28(5): 574-580.
[钱云平, 林学钰, 秦大军, 等. 应用同位素研究黑河下游额济纳盆地地下水[J]. 干旱区地理, 2005, 28(5): 574-580.]
[43] Chen J S, Li L, Wang J Y, et al. Water resources: Groundwater maintains dune landscape[J]. Nature, 2004, 432(7016): 459-460.
[44] Ma J, Ding Z, Edmunds W M, et al. Limits to recharge of groundwater from Tibetan plateau to the Gobi Desert, implications for water management in the mountain front[J]. Journal of hydrology, 2009, 364(1): 128-141.
[45] He J, Ma J, Zhang P, et al. Groundwater recharge environments and hydrogeochemical evolution in the Jiuquan Basin, Northwest China[J]. Applied Geochemistry, 2012, 27(4): 866-878.
[46] Su Yonghong, Zhu Gaofeng, Feng Qi, et al. Chemical evolution of shallow groundwater and the residence time in the Ejina Basin[J]. Arid Land Geography, 2009, 32(4):544-551.
[苏永红, 朱高峰, 冯起, 等. 额济纳盆地浅层地下水演化特征与滞留时间研究[J]. 干旱区地理, 2009, 32(4): 544-551.]
[47] Zhang Guanghui, Nie Zhenlong, Xie Yuebo, et al. Isotopic characteristics of groundwater and its renewal in the plain area of western Gansu[J]. Geological Bulletin of China, 2005, 24(2):149-155.
[张光辉, 聂振龙, 谢悦波, 等. 甘肃西部平原区地下水同位素特征及更新性[J]. 地质通报, 2005, 24(2): 149-155.]
[48] Jia Yankun, Liu Fuliang, Zhang Lin, et al. Recognition of groundwater recharge and flow system in the Jiuquan-Zhangye Basin by means of environmental isotopic tracers[J]. Acta Geoscientica Sinica, 2008,29(6):740-744.
[贾艳琨, 刘福亮, 张琳, 等. 利用环境同位素识别酒泉—张掖盆地地下水补给和水流系统[J]. 地球学报, 2008, 29(6): 740-744.]
[49] Wu Xuanmin, Shi Shengsheng, Li Zhiheng, et al. The study on the groundwater flow system of Ejina Basin in lower reaches of the Heihe River in Northwest China (Part 1)[J]. Hydrogeology & Engineering Geology, 2002, 1: 16-20.
[武选民, 史生胜, 黎志恒, 等. 西北黑河下游额济纳盆地地下水系统研究 (上)[J]. 水文地质工程地质, 2002, 1: 16-20.]
[50] Wu Xuanmin, Shi Shengsheng, Li Zhiheng, et al. The study on the groundwater flow system of Ejina Basin in lower reaches of the Heihe River in Northwest China (Part 2)[J]. Hydrogeology & Engineering Geology, 2002,29(2):30-33.
[武选民, 史生胜, 黎志恒, 等. 西北黑河下游额济纳盆地地下水系统研究 (下)[J]. 水文地质工程地质, 2002, 29(2): 30-33.]
[51] Zhao Chunhu, Li Guomin, Guo Yonghai, et al. Groundwater flow pattern in Beishan area, Gansu, China[C]//Performance Assessment for Nuclear Waste Management and Disposal. Beijing, 2006: 36-40.
[赵春虎, 李国敏, 郭永海, 等. 甘肃北山区域地下水流动特征[C]//中国岩石力学与工程学会废物地下处置专业委员会成立大会暨首届学术交流大会论文集.北京, 2006: 36-40.]
[52] Qian Yunping, Zhang Chunlan, Wang Ling. Study on the conversion between surface water and groundwater in Heihe River Basin[J]. Yellow River, 2005, 27(12): 58-59.
[钱云平, 张春岚, 王玲. 应用222Rn研究黑河流域地表水与地下水转换关系[J]. 人民黄河, 2005, 27(12): 58-59. ]
[53] Zhang Jie, Li Dongliang. Analysis on distribution character of rainfall over Qilian Mountain and Heihe Valley[J]. Plateau Meteorology, 2004, 23(1): 81-88.
[张杰, 李栋梁. 祁连山及黑河流域降雨量的分布特征分析[J].高原气象,2004,23(1): 81-88.]
[54] Qian Yunping, Wang Ling. The Application of Isotopic Hydrological Technology in Water Cycle Research of Heihe River Basin[M]. Nanjing:Yellow River Water Conservancy Press, 2008.
[钱云平,王玲.同位素水文技术在黑河流域水循环研究中的应用[M]. 南京:黄河水利出版社, 2008.]
[55] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3 465): 1702-1703.
[56] Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
[57] Qian Yunping, Lin Zuoding, Wang Ling, et al. Analysis of characteristics of environmental isotopes in Heihe River Basin[C]//The 19th Annual Meeting of China Geophysical Society.Nanjing: Normal University PressNanjing Normal University Press, 2003.
[钱云平,林祚顶,王玲,等.黑河流域环境同位素特征分析[C]//中国地球物理协会第十九届年会论文集.南京:南京师范大学出版社, 2003.]
[58] Zhang Wei, An Yonghui, Han Shuangbao, et al. Research on the hydrogeology and stable isotope characteristics in Zhangye Plain[J]. Ground Water, 2009, 31(6):123-125.
[张徽, 安永会, 韩双宝, 等. 张掖盆地水文地质特征与稳定同位素研究[J]. 地下水, 2009, 31(6): 123-125.]
[59] Wu Yanqing, Zhang Yinghua, Wen Xiaohu, et al. Simulation of Hydrological Cycle and Water Resources in Heihe River Basin, Northwest China[M]. Beijing: Science Press, 2010.
[仵彦卿, 张应华, 温小虎,等. 中国西北黑河流域水文循环与水资源模拟[M]. 北京: 科学出版社, 2010.]
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 储著银, 许继峰. 铼—锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021, 36(3): 245-264.
[3] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[4] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[5] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[6] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[7] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[8] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[9] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[10] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[11] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[12] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[13] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[14] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[15] 王雪梅,尉永平,马明国,张志强. 基于文献计量学的黑河流域研究进展分析[J]. 地球科学进展, 2019, 34(3): 316-323.
阅读次数
全文


摘要