地球科学进展 ›› 2014, Vol. 29 ›› Issue (10): 1167 -1174. doi: 10.11867/j.issn.1001-8166.2014.10.1167

上一篇    下一篇

海底地热通量对海洋深层温度和环流的长期影响
刘泽栋 1( ), 万修全 1, 2( ), 刘福凯 1   
  1. 1.中国海洋大学海洋环境学院海洋系,中国海洋大学,山东 青岛 266100
    2.中国海洋大学物理海洋教育部重点实验室,中国海洋大学,山东 青岛 266100
  • 出版日期:2014-10-20
  • 基金资助:
    国家自然科学基金面上项目“天气噪声对大西洋经向翻转环流变异的作用”(编号:41276013);国家自然科学基金创新群体项目“海洋动力过程的演变机理及其在气候变化中的作用(二期)”(编号:41221063)资助

Long-term Impact of Geothermal Heat Flux on the Deep Ocean Temperature and Circulation

Zedong Liu 1( ), Xiuquan Wan 1, 2( ), Fukai Liu 1   

  1. 1. Department of Oceanography, College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266100, China
    2.Physical Oceanography Laboratory of the Ministry of Education, Ocean University of China, Qingdao 266100, China
  • Online:2014-10-20 Published:2014-10-20

虽然地球海底地热通量在全球热能收支平衡中所占的比例非常低,在目前的海洋气候模式开发中也并没有将其包含在内,但是由于海底地热通量可以持续改变海洋的浮力而影响海水层结,进而影响海洋温度分布以及环流等海洋水文要素,并且可以进一步影响海水的化学性质、碳氮的分布循环以及生物分布等,因此其对海洋环流和气候变化长期影响的潜在可能性仍不能完全排除。在通用地球系统耦合模式(CESM)的基础上,通过在全球大洋中脊区域持续加入1 W/m2的地热通量的方式运行了长达5000年的数值模拟实验,模式结果显示:海底地热通量对深层海洋的物理性质和全球海洋环流的长期影响是不可忽略的;受地热通量的局地加热效应影响,大洋深层3000~3500 m 总体升温约0.4 ℃;在南大洋和北大西洋的深层水形成区域,海洋深层的增温信号可以影响到表层海洋。北大西洋深层水和南极底层水形成增强,并且模拟的北大西洋深层水的深度加深,更符合观测结果。

Although Geothermal Heat Flux (GHF) through the seafloor has a trivial contribution to the oceanic heat budget balance, and is excluded in the development of most climate models, its potential effect on long-term ocean circulation and climate change may not be ignored. The GHF could be as a continuously buoyancy forcing and changes ocean stratification, affects the ocean temperature distribution as well as the ocean circulation and other hydrological elements, and further affects the chemical properties of seawater, carbon and nitrogen cycle and biological distribution, etc. Here we presented a 5000-year sensitivity experiment with the Community Earth System Model (CESM) by adding geothermal heat flux of 1 W/m2 at the seafloor near the Mid-ocean ridge. The numerical results suggested that the long-term impact of GHF on deep ocean circulation and physical characters was not to be neglected. Comparing to the control experiment, the local geothermal heating contributed to an overall warming of deep waters (between 3 000~3 500 m) by 0.4 ℃, with the maximum warming of 0.85 ℃ at the southeast Pacific Ocean. It then further decreased the stability of the water column, enhanced the formation rates of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW), and strengthend the corresponding Meridional Overturning Circulations (MOC) by 1.7 Sv and 3.7 Sv, respectively. In the sensitivity experiment, the penetration depth of NADW also increased to the depth of 3 000~3 500 m, which was closer to observations. At the deep water formation region of North Atlantic and Southern Ocean, the GHF-induced warming signals could even reach to sea surface.

中图分类号: 

图 1 地热通量的分布区域以及在各大洋中的深度分布图 (a) 全球海洋水深(颜色)分布以及加入地热通量区域(网格化区域,量值为1 W/m2);(b) 地热实验中各大洋的地热通量的深度分布图,包括全球(黑线)、大西洋(蓝线)、印度—太平洋(红线)以及南大洋(绿线)
Fig.1 Horizontal distribution of geothermal heat fluxes and vertical distribution at different oceans (a) Depth of global ocean (color) and distribution of geothermal heat fluxes (gridded area with 1W/m2 added) at GHF run; (b) Vertical distribution of geothermal heat fluxes at different oceans. Shown are profiles for the global summation (black), Atlantic basin (blue) and Indo-Pacific basins (red) and the Southern Ocean (ACC)(green), respectively
图 2 地热实验与控制实验的全球海洋的体积平均温度差值的时间曲线
Fig.2 Time series of mean temperature difference of global ocean between GHF and CTRL runs
图 3 地热实验与控制实验不同海域平均温度差随深度的变化 包括全球(黑线)、印度—太平洋(红线)、南大洋(绿线)以及大西洋(蓝线)
Fig.3 The vertical distribution of mean temperature difference between GHF and CTRL runs at different oceans Shown are profiles for the global oceans (black), Atlantic basin (blue) and Indo-Pacific basins (red) and the Southern Ocean (ACC) (green)
图 4 3 500 m深度上地热实验与控制实验平均海水温度差 等值线间隔0.1℃,最大值0.82℃位于南太平洋(117°W, 23°S)和南大西洋(20°W, 33°S)
Fig.4 The temperature difference at 3500 m between GHF and CTRL runs Contour interval is 0.1℃. Peak value is 0.82℃ in South Pacific (117°W, 23°S) and South Atlantic (20°W, 33°S)
图 5 控制实验中经向翻转环流和纬向平均温度的垂向分布(a,b)及其与地热实验的差值的垂向分布(c,d) (a)控制实验中全球经向翻转环流和纬向平均温度的垂向分布,图中线条表示经向翻转环流,单位是Sv,间隔为3Sv,颜色表示纬向平均温度,单位是℃,间隔为2℃;(b)与(a)类似,但是在大西洋海域,线条(经向翻转环流)间隔为2Sv;(c)地热实验与控制实验的全球经向翻转环流和纬向平均温度的差值垂向分布,图中线条表示经向翻转环流差,单位是Sv,间隔为1Sv,颜色表示纬向平均温度差,单位是℃,间隔为0.1℃;(d)与(c)类似,但是在大西洋海域,线条(经向翻转环流差)间隔为0.5 Sv
Fig.5 The vertical distributions of meridional overturning circulation and zonally averaged temperature in CTRL run(a,b),and their differences between GHF and CTRL runs(c,d), respectively. (a) The vertical distributions of global meridional overturning circulation (contour, unit is Sv) and zonally averaged temperature(color, unit is ℃) in CTRL run. Contour interval is 3 Sv and color interval is 2℃. (b) the same as (a) except in the Atlantic Ocean and contour interval is 2Sv, (c) the differences of global meridional overturning circulation (contour, unit is Sv) and zonally averaged temperature(color, unit is ℃) between GHF and CTRL runs. Contour interval is 1 Sv and color interval is 0.1℃. (d) the same as c) except in the Atlantic ocean and contour interval is 0.5 Sv
[1] Scott J R, Marotzke J, Adcroft A. Geothermal heating and its influence on the meridional overturning circulation[J]. Journal of Geophysical Research: Oceans(1978-2012), 2001, 106(C12): 31141-31154.
[2] Adcroft A, Scott J R, Marotzke J. Impact of geothermal heating on the global ocean circulation[J]. Geophysical Research Letters, 2001, 28(9): 1735-1738.
[3] Emile-Geay J, Madec G. Geothermal heating, diapycnal mixing and the abyssal circulation[J]. Ocean Science, 2009, 5:203-217.
[4] Hofmann M, Maqueda M. Geothermal heat flux and its influence on the oceanic abyssal circulation and radiocarbon distribution[J]. Geophysical Research Letters, 2009, 36(3):L03603, doi:10.1029/2008GL036078.
[5] Dutay J C, Emile-Geay J, Iudicone D, et al. Helium isotopic constraints on simulated ocean circulations: Implications for abyssal theories[J]. Environmental Fluid Mechanics, 2010, 10(1/2): 257-273.
[6] Mashayek A, Ferrari R, Vettoretti G, et al. The role of the geothermal heat flux in driving the abyssal ocean circulation[J]. Geophysical Research Letters, 2013, 40(12): 3144-3149.
[7] Liu Houzan, Liu Hui, Yu Yongqiang. Numerical simulation of El Niño events induced by the activity of volcano and hot spot at the ocean floor[J]. Acta Meteorologica Sinica, 1998, 56(5):602-610.
[刘厚赞, 刘辉, 俞永强. 海底火山喷发引发厄尔尼诺事件的数值模拟[J].气象学报,1998,56(5):602-610.]
[8] Sclater J G, Jaupart C, Galson D. The heat flow through oceanic and continental crust and the heat loss of the Earth[J]. Reviews of Geophysics, 1980, 18(1): 269-311.
[9] Stein C A, Stein S. A model for the global variation in oceanic depth and heat flow with lithospheric age[J]. Nature, 1992, 359(6391): 123-129.
[10] Stein C A, Stein S, Pelayo A M. Heat flow and hydrothermal circulation[J]. Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions, 1995, 91: 425-445.
[11] Pollack H N, Hurter S J, Johnson J R. Heat flow from the Earth’s interior: Analysis of the global data set[J]. Reviews of Geophysics, 1993, 31(3): 267-280.
[12] Huang R X. Mixing and energetics of the oceanic thermohaline circulation[J]. Journal of Physical Oceanography, 1999, 29(4): 727-746.
[13] Macdonald A M. The global ocean circulation: A hydrographic estimate and regional analysis[J]. Progress in Oceanography, 1998, 41(3): 281-382.
[14] Huang R X, Jin X. Deep circulation in the South Atlantic induced by bottom-intensified mixing over the midocean ridge[J]. Journal of Physical Oceanography, 2002, 32(4):1150-1164.
[15] Adkins J F, Ingersoll A P, Pasquero C. Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating[J]. Quaternary Science Reviews, 2005, 24(5): 581-594.
[16] Mullarney J C, Griffiths R W, Hughes G O. The effects of geothermal heating on the ocean overturning circulation[J]. Geophysical Research Letters, 2006, 33(2): L02607, doi:10.1029/2005GL024956.
[17] Roussenov V, Williams R G, Follows M J, et al. Role of bottom water transport and diapycnic mixing in determining the radiocarbon distribution in the Pacific[J]. Journal of Geophysical Research, 2004, 109(C6): C06015, doi:10.1029/2003JC002188.
[18] Wang Bin, Zhou Tianjun, Yu Yongqiang. A perspective on Earth system model development[J]. Acta Meteorologica Sinica, 2008, 66(6): 857-869.
[王斌, 周天军, 俞永强. 地球系统模式发展展望[J]. 气象学报, 2008, 66(6): 857-869.]
[19] Wan Xiuquan,Liu Zedong,Shen Biao,et al. Introduction to the community Earth system model and application to high performance computing[J]. Advances in Earth Science, 2014, 29(4):482-491, doi:10.11867/j.issn.1001-8166.2014.04.0482.
[万修全,刘泽栋,沈飙,等. 地球系统模式CESM 及其在高性能计算机上的配置应用实例[J].地球科学进展,2014,29(4):482-491, doi:10.11867/j.issn.1001-8166.2014.04.0482.]
[20] Cox M D. An idealized model of the world ocean. Part I: The global-scale water masses[J]. Journal of Physical Oceanography, 1989, 19(11): 1730-1752.
[21] Lumpkin R, Speer K. Global ocean meridional overturning[J]. Journal of Physical Oceanography, 2007, 37(10): 2550-2562.
[22] Ma Hao, Wang Zhaomin, Shi Jiuxin. The role of the Southern Ocean physical processes in global climate system[J]. Advances in Earth Science, 2012, 27(4): 398-412.
[马浩,王召民,史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展, 2012, 27(4): 398-412.]
[23] Toggweiler J R, Samuels B. Effect of drake passage on the global thermohaline circulation[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42(4): 477-500.
[24] Zhang R, Delworth T L. Simulated tropical response to a substantial weakening of the Atlantic Thermocline Circulation[J]. Journal of Climate, 2005, 18:1853-1860.
[25] Wan X Q, Chang P, Saravanan R, et al. On the interpretation of Caribbean paleo-temperature reconstructions during the Younger Dryas[J]. Geophysical Research Letters, 2009, 36: L02701, doi:10.1029/2008GL035805.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 胡棉舒, 李阔, 曹海月, 王兆国, 刘钦甫. 湘中寒婆坳矿区测水组无烟煤—煤系石墨变质温度研究[J]. 地球科学进展, 2021, 36(10): 1015-1025.
[8] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[9] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[10] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[11] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[12] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[13] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[14] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[15] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
阅读次数
全文


摘要