Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (10): 1167-1174    DOI: 10.11867/j.issn.1001-8166.2014.10.1167
研究论文     
海底地热通量对海洋深层温度和环流的长期影响
刘泽栋1, 万修全1, 2, 刘福凯1
1.中国海洋大学海洋环境学院海洋系,中国海洋大学,山东 青岛 266100; 2.中国海洋大学物理海洋教育部重点实验室,中国海洋大学,山东 青岛 266100
Long-term Impact of Geothermal Heat Flux on the Deep Ocean Temperature and Circulation
Liu Zedong1, Wan Xiuquan1, 2, Liu Fukai1
1. Department of Oceanography, College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266100, China; 2.Physical Oceanography Laboratory of the Ministry of Education, Ocean University of China, Qingdao 266100, China
 全文: PDF(7242 KB)   HTML
摘要:

虽然地球海底地热通量在全球热能收支平衡中所占的比例非常低,在目前的海洋气候模式开发中也并没有将其包含在内,但是由于海底地热通量可以持续改变海洋的浮力而影响海水层结,进而影响海洋温度分布以及环流等海洋水文要素,并且可以进一步影响海水的化学性质、碳氮的分布循环以及生物分布等,因此其对海洋环流和气候变化长期影响的潜在可能性仍不能完全排除。在通用地球系统耦合模式(CESM)的基础上,通过在全球大洋中脊区域持续加入1 W/m2的地热通量的方式运行了长达5000年的数值模拟实验,模式结果显示:海底地热通量对深层海洋的物理性质和全球海洋环流的长期影响是不可忽略的;受地热通量的局地加热效应影响,大洋深层3000~3500 m 总体升温约0.4 ℃;在南大洋和北大西洋的深层水形成区域,海洋深层的增温信号可以影响到表层海洋。北大西洋深层水和南极底层水形成增强,并且模拟的北大西洋深层水的深度加深,更符合观测结果。

关键词: 海洋环流海洋模式气候变化温度地热通量    
Abstract:

Although Geothermal Heat Flux (GHF) through the seafloor has a trivial contribution to the oceanic heat budget balance, and is excluded in the development of most climate models, its potential effect on long-term ocean circulation and climate change may not be ignored. The GHF could be as a continuously buoyancy forcing and changes ocean stratification, affects the ocean temperature distribution as well as the ocean circulation and other hydrological elements, and further affects the chemical properties of seawater, carbon and nitrogen cycle and biological distribution, etc. Here we presented a 5000-year sensitivity experiment with the Community Earth System Model (CESM) by adding geothermal heat flux of 1 W/m2 at the seafloor near the Mid-ocean ridge. The numerical results suggested that the long-term impact of GHF on deep ocean circulation and physical characters was not to be neglected. Comparing to the control experiment, the local geothermal heating contributed to an overall warming of deep waters (between 3 000~3 500 m) by 0.4 ℃, with the maximum warming of 0.85 ℃ at the southeast Pacific Ocean. It then further decreased the stability of the water column, enhanced the formation rates of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW), and strengthend the corresponding Meridional Overturning Circulations (MOC) by 1.7 Sv and 3.7 Sv, respectively. In the sensitivity experiment, the penetration depth of NADW also increased to the depth of 3 000~3 500 m, which was closer to observations. At the deep water formation region of North Atlantic and Southern Ocean, the GHF-induced warming signals could even reach to sea surface.

Key words: Ocean Model    Ocean Circulation    Climate Change.    Temperature    Geothermal Heat Flux
收稿日期: 2014-07-02 出版日期: 2014-10-20
:  P731  
基金资助:

国家自然科学基金面上项目“天气噪声对大西洋经向翻转环流变异的作用”(编号:41276013); 国家自然科学基金创新群体项目“海洋动力过程的演变机理及其在气候变化中的作用(二期)”(编号:41221063)资助

通讯作者: 万修全(1977-),男,山东日照人,副教授,主要从事物理海洋学和气候变化研究.      E-mail: xqwan@ouc.edu.cn
作者简介: 作者简介:刘泽栋(1987-),男,山东潍坊人,博士研究生,主要从事物理海洋学研究. E-mail: zdliu@ouc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
万修全
刘福凯
刘泽栋

引用本文:

刘泽栋, 万修全, 刘福凯. 海底地热通量对海洋深层温度和环流的长期影响[J]. 地球科学进展, 2014, 29(10): 1167-1174.

Liu Zedong, Wan Xiuquan, Liu Fukai. Long-term Impact of Geothermal Heat Flux on the Deep Ocean Temperature and Circulation. Advances in Earth Science, 2014, 29(10): 1167-1174.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.10.1167        http://www.adearth.ac.cn/CN/Y2014/V29/I10/1167

[1] J R, Marotzke J, Adcroft A. Geothermal heating and its influence on the meridional overturning circulation[J]. Journal of Geophysical Research: Oceans(1978-2012), 2001, 106(C12): 31 141-31 154.
[2] A, Scott J R, Marotzke J. Impact of geothermal heating on the global ocean circulation[J]. Geophysical Research Letters, 2001, 28(9): 1 735-1 738.
[3] J, Madec G. Geothermal heating, diapycnal mixing and the abyssal circulation[J]. Ocean Science, 2009, 5:203-217.
[4] M, Maqueda M. Geothermal heat flux and its influence on the oceanic abyssal circulation and radiocarbon distribution[J]. Geophysical Research Letters, 2009, 36(3):L03603, doi:10.1029/2008GL036078.
[5] J C, Emile-Geay J, Iudicone D, et al. Helium isotopic constraints on simulated ocean circulations: Implications for abyssal theories[J]. Environmental Fluid Mechanics, 2010, 10(1/2): 257-273.
[6] A, Ferrari R, Vettoretti G, et al. The role of the geothermal heat flux in driving the abyssal ocean circulation[J]. Geophysical Research Letters, 2013, 40(12): 3 144-3 149.
[7] Houzan, Liu Hui, Yu Yongqiang. Numerical simulation of El Niño events induced by the activity of volcano and hot spot at the ocean floor[J]. Acta Meteorologica Sinica, 1998, 56(5):602-610.[刘厚赞, 刘辉, 俞永强. 海底火山喷发引发厄尔尼诺事件的数值模拟[J].气象学报,1998,56(5):602-610.]
[8] J G, Jaupart C, Galson D. The heat flow through oceanic and continental crust and the heat loss of the Earth[J]. Reviews of Geophysics, 1980, 18(1): 269-311.
[9] C A, Stein S. A model for the global variation in oceanic depth and heat flow with lithospheric age[J]. Nature, 1992, 359(6 391): 123-129.
[10] C A, Stein S, Pelayo A M. Heat flow and hydrothermal circulation[J]. Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions, 1995, 91: 425-445.
[11] H N, Hurter S J, Johnson J R. Heat flow from the Earth’s interior: Analysis of the global data set[J]. Reviews of Geophysics, 1993, 31(3): 267-280.
[12] R X. Mixing and energetics of the oceanic thermohaline circulation[J]. Journal of Physical Oceanography, 1999, 29(4): 727-746.
[13] A M. The global ocean circulation: A hydrographic estimate and regional analysis[J]. Progress in Oceanography, 1998, 41(3): 281-382.
[14] R X, Jin X. Deep circulation in the South Atlantic induced by bottom-intensified mixing over the midocean ridge[J]. Journal of Physical Oceanography, 2002, 32(4):1 150-1 164.
[15] J F, Ingersoll A P, Pasquero C. Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating[J]. Quaternary Science Reviews, 2005, 24(5): 581-594.
[16] J C, Griffiths R W, Hughes G O. The effects of geothermal heating on the ocean overturning circulation[J]. Geophysical Research Letters, 2006, 33(2): L02607, doi:10.1029/2005GL024956.
[17] V, Williams R G, Follows M J, et al. Role of bottom water transport and diapycnic mixing in determining the radiocarbon distribution in the Pacific[J]. Journal of Geophysical Research, 2004, 109(C6): C06015, doi:10.1029/2003JC002188.
[18] Bin, Zhou Tianjun, Yu Yongqiang. A perspective on Earth system model development[J]. Acta Meteorologica Sinica, 2008, 66(6): 857-869.[王斌, 周天军, 俞永强. 地球系统模式发展展望[J]. 气象学报, 2008, 66(6): 857-869.]
[19] Xiuquan,Liu Zedong,Shen Biao,et al.Introduction to the community Earth system model and application to high performance computing[J]. Advances in Earth Science, 2014, 29(4):482-491, doi:10.11867/j.issn.1001-8166.2014.04.0482"> doi:10.11867/j.issn.1001-8166.2014.04.0482.[万修全,刘泽栋,沈飙,等. 地球系统模式CESM 及其在高性能计算机上的配置应用实例[J].地球科学进展,2014,29 (4):482-491, doi:10.11867/j.issn.1001-8166.2014.04.0482"> doi:10.11867/j.issn.1001-8166.2014.04.0482.]
[20] M D. An idealized model of the world ocean. Part I: The global-scale water masses[J]. Journal of Physical Oceanography, 1989, 19(11): 1 730-1 752.
[21] R, Speer K. Global ocean meridional overturning[J]. Journal of Physical Oceanography, 2007, 37(10): 2 550-2 562.
[22] Hao, Wang Zhaomin, Shi Jiuxin. The role of the Southern Ocean physical processes in global climate system[J]. Advances in Earth Science, 2012, 27(4): 398-412.[马浩,王召民,史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展, 2012, 27(4): 398-412.]
[23] J R, Samuels B. Effect of drake passage on the global thermohaline circulation[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42(4): 477-500.
[24] R, Delworth T L. Simulated tropical response to a substantial weakening of the Atlantic Thermocline Circulation[J]. Journal of Climate, 2005, 18:1 853-1 860.
[25] X Q, Chang P, Saravanan R, et al. On the interpretation of Caribbean paleo-temperature reconstructions during the Younger Dryas[J]. Geophysical Research Letters, 2009, 36: L02701, doi:10.1029/2008GL035805.
[1] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[2] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[3] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[4] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[5] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[6] 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.
[7] 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
[8] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[9] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[10] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[11] 王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.
[12] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
[13] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[14] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[15] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.