Please wait a minute...
img img
高级检索
地球科学进展  2021, Vol. 36 Issue (2): 172-184    DOI: 10.11867/j.issn.1001-8166.2021.012
研究论文     
东南极LGB69冰芯17122001年气温变化记录的初步研究
张子洋1,2(),闫明1(),MULVANEY Robert3,季峻峰2,效存德4,刘雷保1,安春雷1
1.中国极地研究中心,上海 200136
2.南京大学表生地球化学教育部重点实验室,江苏 南京 210023
3.British Antarctic Survey,High Cross,Madingley Road,Cambridge CB3 0ET,UK
4.中国科学院 西北生态环境资源研究院,甘肃 兰州 730000
Preliminary Study on Air Temperature Records from 1712 to 2001 Revealed by LGB69 Ice Core in East Antarctica
Ziyang ZHANG1,2(),Ming YAN1(),Robert MULVANEY3,Junfeng JI2,Cunde XIAO4,Leibao LIU1,Chunlei AN1
1.Polar Research Institute of China,Shanghai 200136,China
2.Key Laboratory of Surficial Geochemistry,Ministry of Education,Nanjing University,Nanjing 210023,China
3.British Antarctic Survey,High Cross,Madingley Road,Cambridge CB3 0ET,UK
4.Northwest Institue of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
 全文: PDF(6970 KB)   RICH HTML
摘要:

南极冰芯记录着过去气温、降水等气候环境参数以及影响其变化的太阳活动、火山作用等各种因子变化,是研究古气候、古环境变化及其影响机制的良好载体。东南极LGB69冰芯高分辨率的地球化学分析表明:该冰芯的水当量年平均积累率高达259 mm/a,利用δ18O和Na+季节性变化和火山喷发标志层,通过数年层的方法确定其沉积时间为290 a(1712—2001年)±2 a;该冰芯δ18O与邻近的戴维斯站气温距平5年滑动平均值(1968—2001年)之间具有良好的正相关关系,是有效的气温代用指标,1712—2001年该地区气温是一个波动变暖的过程,划分为4个阶段,小冰期结束于1914年,20世纪5年滑动平均气温距平年平均值较小冰期末次冷阶段升高0.43 ℃;Morlet小波分析表明,1712—2001年该冰芯δ18O(气温)和积累率(降水量)均存在约11年、约22年和约60年的共同周期,多重时间周期的嵌套表明其对气候变化非常敏感。上述研究结果为进一步重建南极气候冷暖、降水序列变化,以及研究太阳活动、火山作用等因子对气候变化影响的内在规律奠定了基础。

关键词: 南极冰芯定年气候变化稳定氧同位素积累率    
Abstract:

Antarctic ice core is an ideal paleoclimatic and paleoenvironmental carrier, which records the past variations of various parameters such as air temperature, precipitation and their major factors, e.g. solar activity, volcanism. High-resolution geochemical analyses of LGB69 ice core, East Antarctica show that Based on the combination of seasonal variations of δ18O and Na+ with volcanic eruption markers, LGB69 ice core is dated to 290 a (A.D.1712-A.D.2001)±2 a through annual layer counting, with a high average annual accumulation rate of 259 mm w.e./a; Five-year moving average (A.D.1968-A.D.2001) of δ18O of LGB69 ice core has good positive correlation with that of temperature departure at adjacent Davis Station, indicating that δ18O is an effective proxy for air temperature. Air temperature from A.D.1712 to A.D.2001 in LGB69 region is a process of fluctuating warming, which can be divided into four stages. The average annual value of 5-year moving average temperature departure is 0.43 ℃ higher than that of last cold stage in the Little Ice Age which ended in A.D.1914; By Morlet wavelet analysis, both δ18O (air temperature) and accumulation rate (precipitation) of LGB69 ice core from A.D.1712 to A.D.2001 present ca. 11-year, ca. 22-year and ca. 60-year cycles. Multinest of cycles for δ18O, accumulation rate of LGB69 ice core implies its sensitivity to climate change. The above-mentioned results build up a good basis for further research on the reconstruction of temporal variations in air temperature and precipitation and the effects of factors such as solar activity, volcanism on climate change in Antarctica.

Key words: Antarctica    Ice core    Dating    Climate change    Stable oxygen isotope    Accumulation rate
收稿日期: 2020-07-25 出版日期: 2021-04-19
ZTFLH:  P343.6  
基金资助: 国家自然科学基金项目“极地冰芯中记录的火山作用及其对气候的影响”(41676192)
通信作者: 闫明     E-mail: zhzyang@139.com;mingyan@pric.org.cn
作者简介: 张子洋(1991-),男,广东中山人,硕士研究生,主要从事极地环境地球化学研究. E-mail:zhzyang@139.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张子洋
闫明
MULVANEY Robert
季峻峰
效存德
刘雷保
安春雷

引用本文:

张子洋,闫明,MULVANEY Robert,季峻峰,效存德,刘雷保,安春雷. 东南极LGB69冰芯17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.

Ziyang ZHANG,Ming YAN,Robert MULVANEY,Junfeng JI,Cunde XIAO,Leibao LIU,Chunlei AN. Preliminary Study on Air Temperature Records from 1712 to 2001 Revealed by LGB69 Ice Core in East Antarctica. Advances in Earth Science, 2021, 36(2): 172-184.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2021.012        http://www.adearth.ac.cn/CN/Y2021/V36/I2/172

图1  东南极LGB69冰芯所在位置
图2  冰芯取样横切面
图3  LGB69冰芯野外实测密度与深度散点图
图4  LGB69冰芯nssSO42-浓度记录的火山喷发信号
火山事件火山名称及喷发时间火山爆发指数(VEI)深度/m水当量深度/m冰芯定年(A.D.)
---002002年
V1

Cerro/1991年3738

Pinatubo/1991年3233

5/64.662.061992年
V2Chichon/1982年2759.394.401983年
V314.347.081969年
V4Agung/1963年3439517.108.681964年
V5Bezymianny/1955年35520.2210.551956年
V6Santa Maria/1902年26639.6823.761904年
V7Agung/1843年39560.4539.811845年
V8Cosiguina/1835年30563.6142.371836年
V967.9245.891821年
V10Tambora/1815年2829769.6947.341816年
V1170.9448.381813年
V12Unkown/1809年31671.6348.951811年
V1372.8549.961808年
V1477.3853.741791年
V15Katla/1755年36586.6061.531758年
表1  LGB69冰芯中火山喷发信号记录
图5  LGB69冰芯δ18O、Na+、nssSO42-变化序列和定年结果
图6  1958—2001年LGB69冰芯δ18O和戴维斯站气温距平5年滑动平均曲线
图7  1968—2001年LGB69冰芯δ18O与戴维斯站气温距平5年滑动平均散点图
图8  1712—2001年LGB69冰芯δ18O和气温距平5年滑动平均曲线
时间段5年滑动平均δ18O年平均值/‰

5年滑动平均气温距平年平均值/℃

(相对于1961—1990年戴维斯站年平均气温)

1712—1819年-33.33-0.57
1820—1871年-32.21-0.30
1872—1914年-33.03-0.56
1915—2001年-31.83-0.13
表2  LGB69冰芯不同阶段5年滑动平均δ18O年平均值和气温距平年平均值
图9  1712—2001年LGB69冰芯δ18O距平小波方差(a)和Morlet小波变换(b)
图10  1712—2001年LGB69冰芯积累率距平小波方差(a)和Morlet小波变换(b)
1 KANG Shichang,QIN Dahe,YAO Tandong,et al. Ice core records for present environmental events[J]. Acta Scientiae Circumstantiae,2001,21(3): 301-306.
1 康世昌,秦大河,姚檀栋,等. 现代环境事件的冰芯记录[J]. 环境科学学报,2001,21(3): 301-306.
2 ZHANG Mingjun,LI Zhongqin,QIN Dahe,et al. A study of volcanic activity record in Princess Elizabeth Land,Antarctica in the past 250 years[J]. Progress in Natural Science (State Key Laboratory Newslette),2000,10(10): 920-924.
2 张明军,李忠勤,秦大河,等. 南极洲伊利莎白公主地区250年来火山活动记录研究[J]. 自然科学进展:国家重点实验室通讯,2000,10(10): 920-924.
3 ZHANG Mingjun,LI Zhongqin,QIN Dahe,et al. A study of accumulation rate and temperatue in Princess Elizabeth Land,Antarctica in the past 250 years[J]. Progress in Natural Science(State Key Laboratory Newsletter),2001,11(4): 374-378.
3 张明军,李忠勤,秦大河,等. 南极洲伊利莎白公主地区250 a来积累率和气温变化研究[J]. 自然科学进展:国家重点实验室通讯,2001,11(4): 374-378.
4 ZHANG Mingjun,LI Zhongqin,QIN Dahe,et al. A study of climate and environment in Princess Elizabeth Land,Antarctica in the past 250 years[J]. Earth Science Frontiers,2002,9(1): 193-197.
4 张明军,李忠勤,秦大河,等. 南极洲伊丽莎白公主地区250年来气候环境变化研究[J]. 地学前缘,2002,9(1): 193-197.
5 ZHOU L,LI Y,COLE-DAI J,et al. A 780-year record of explosive volcanism from DT263 ice core in east Antarctica[J]. Chinese Science Bulletin,2006,51(22): 2 771-2 780.
6 REN J W,LI C J,HOU S G,et al. A 2680 year volcanic record from the DT401 East Antarctic ice core[J]. Journal of Geophysical Research Atmospheres,2010,115,D11301. DOI:10.1029/2009JD012892.
doi: 10.1029/2009JD012892
7 LI C J,REN J W,QIN D H,et al. Factors controlling the nitrate in the DT-401 ice core in eastern Antarctica[J]. Science China Earth Sciences,2013,56(9): 1 531-1 539.
8 LI C J,REN J W,XIAO C D,et al. A 2680-year record of sea ice extent in the Ross Sea and the associated atmospheric circulation derived from the DT401 East Antarctic ice core[J]. Science China Earth Sciences,2015,58(11): 2 090-2 102.
9 HOU S G,LI Y S,XIAO C D,et al. Preliminary results of the close-off depth and the stable isotopic records along a 109.91 m ice core from Dome A,Antarctica[J]. Science in China,2009,52(10): 1 502-1 509.
10 JIANG S,COLE-DAI J,LI Y,et al. A detailed 2840 year record of explosive volcanism in a shallow ice core from Dome A,East Antarctica[J]. Journal of Glaciology,2012,58(207): 65-75.
11 LI C J,XIAO C D,HOU S G,et al. Dating a 109.9 m ice core from Dome A (East Antarctica) with volcanic records and a firn densification model[J]. Science China Earth Sciences,2012,55(8): 1 280-1 288.
12 LI Y,COLE DAI J,ZHOU L. Glaciochemical evidence in an East Antarctica ice core of a recent (AD 1450-1850) neoglacial episode[J]. Journal of Geophysical Research Atmospheres,2009,114:D08117. DOI:10.1029/2008JD011091.
doi: 10.1029/2008JD011091
13 LIS G,WASSENAAR L I,HENDRY M J. High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples[J]. Analytical Chemistry,2008,80(1): 287-293.
14 HAMMER C U. Past volcanism revealed by Greenland Ice Sheet impurities[J]. Nature,1977,270(5 637): 482-486.
15 MOSLEY-THOMPSON E,THOMPSON L G,GROOTES P M,et al. Little ice age (neoglacial) paleoenvironmental conditions at Siple station,Antarctica[J]. Annals of Glaciology,1990,14: 199-204.
16 WILSON A T,HENDY C H. The chemical stratigraphy of polar ice sheets—A method of dating ice cores[J]. Nature,1980,279(95): 315-317.
17 HERRON M M. Impurity sources of F-,Cl-,NO3- and SO42- in Greenland and Antarctic precipitation[J]. Journal of Geophysical Research Oceans,1982,87(C4): 3 052-3 060.
18 LEGRAND M R,DELMAS R J. The ionic balance of Antarctic snow: A 10-year detailed record[J]. Atmospheric Environment,1984,18(9): 1 867-1 874.
19 ZHANG Xiaowei,KANG Jiancheng,ZHOU Shangzhe. Environmental geochemical index in polar snow and ice and its significance[J]. Chinese Journal of Polar Research,2002,14(3): 213-225.
19 张小伟,康建成,周尚哲. 极地冰雪环境地球化学指标及其指示意义[J]. 极地研究,2002,14(3): 213-225.
20 O'BRIEN S R,MAYEWSKI P A,MEEKER L D,et al. Complexity of holocene climate as reconstructed from a Greenland Ice core[J]. Science,1995,270(5 244): 1 962-1 964.
21 HOLLAND H D. The chemistry of the atmosphere and oceans[M]. John Wiley,1978.
22 DE ANGELIS M,STEFFENSEN J P,LEGRAND M,et al. Primary aerosol (sea salt and soil dust) deposited in Greenland ice during the last climatic cycle: Comparison with east Antarctic records[J]. Journal of Geophysical Research Oceans,1997,1 022(C12): 26 681-26 698.
23 COLE-DAI J,MOSLEY-THOMPSON E,THOMPSON L G. Annually resolved southern hemisphere volcanic history from two Antarctic ice cores[J]. Journal of Geophysical Research Atmospheres,1997,102(D14): 16 761-16 771.
24 LEGRAND M,WAGENBACH D. Impact of the Cerro Hudson and Pinatubo volcanic eruptions on the Antarctic air and snow chemistry[J]. Journal of Geophysical Research Atmospheres,1999,104(D1): 1 581-1 596.
25 Smithsonian. Global volcanism program database [Z/OL][2016-07-24]. .
26 ROSE W I. Notes on the 1902 eruption of Santa Maria volcano,Guatemala[J]. Bulletin of Volcanology,1972,36(1): 29-45.
27 TILLING R I,RUBIN M,SIGURDSSON H,et al. Holocene eruptive activity of El Chichón Volcano,Chiapas,Mexico[J]. Science,1984,224(4 650): 747-750.
28 SELF S,RAMPINO M R,NEWTON M S,et al. Volcanological study of the great Tambora eruption of 1815[J]. Geology,1984,12(11): 659-663.
29 STOTHERS R B. The great Tambora eruption in 1815 and its aftermath[J]. Science,1984,224(4 654): 1 191-1 198.
30 SELF S,RAMPINO M R,CARR M J. A reappraisal of the 1835 eruption of Cosigüina and its atmospheric impact[J]. Bulletin of Volcanology,1989,52(1): 57-65.
31 DELMAS R J,KIRCHNER S,PALAIS J M,et al. 1000 years of explosive volcanism recorded at the South Pole[J]. Tellus B,1992,44(4): 335-350.
32 HOBLITT R P,WOLFE E W,SCOTT W E,et al. The preclimactic eruptions of Mount Pinatubo,June 1991[M]//Newhall C G, Punongbayan R S. Fire and Mud: Eruptions and Lahars of Mount Pinatubo,Philippines,1996:457-511.
33 DELFIN F G J,VILLAROSA H G,LAYUGAN D B,et al. Geothermal exploration of the pre-1991 Mount Pinatubo hydrothermal system[M]//Newhall C G, Punongbayan R S. Fire and Mud: Eruptions and Lahars of Mount Pinatubo,Philippines,1996:197-212.
34 SELF S,KING A J. Petrology and sulfur and chlorine emissions of the 1963 eruption of Gunung Agung,Bali,Indonesia[J]. Bulletin of Volcanology,1996,58(4): 263-285.
35 BELOUSOV A. Deposits of the 30 March 1956 directed blast at Bezymianny volcano,Kamchatka,Russia[J]. Bulletin of Volcanology,1996,57(8): 649-662.
36 LARSEN G. Holocene eruptions within the Katla volcanic system,south Iceland: Characteristics and environmental impact[J]. J?kull,2000,49: 1-28.
37 STERN C R. Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes[J]. Bulletin of Volcanology,2008,70(4): 435-454.
38 KRATZMANN D J,CAREY S,SCASSO R,et al. Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano,Chile[J]. Bulletin of Volcanology,2009,71(4): 419-439.
39 FONTIJN K,COSTA F,SUTAWIDJAJA I,et al. A 5000-year record of multiple highly explosive mafic eruptions from Gunung Agung (Bali,Indonesia): Implications for eruption frequency and volcanic hazards[J]. Bulletin of Volcanology,2015,77(7): 59.
40 LANGWAY JR C C,OSADA K,CLAUSEN H B,et al. New chemical stratigraphy over the last millennium for Byrd Station,Antarctica[J]. Tellus B,1994,46(1): 40-51.
41 COLE DAI J,MOSLEY THOMPSON E,WIGHT S P,et al. A 4100-year record of explosive volcanism from an East Antarctica ice core[J]. Journal of Geophysical Research Atmospheres,2000,105(D19): 24 431-24 441.
42 JIANG Su,LI Yuansheng,MA Hongmei,et al.Research progress on volcanic records in polar ice cores[J]. Chinese Journal of Polar Research,2011,23(4): 338-345.
42 姜苏,李院生,马红梅,等. 极地冰芯中火山记录的研究进展[J]. 极地研究,2011,23(4): 338-345.
43 DANSGAARD W. Stable isotopes in precipitation[J]. Tellus,1964,16(4): 436-468.
44 CUFFEY K M,ALLEY R B,GROOTES P M,et al. Calibration of the δ18O isotopic paleothermometer for central Greenland,using borehole temperatures[J]. Journal of Glaciology,1994,40(135): 341-349.
45 JOUZEL J,ALLEY R B,CUFFEY K M,et al. Validity of the temperature reconstruction from water isotopes in ice cores[J]. Journal of Geophysical Research Oceans,1997,102(C12): 26 471-26 487.
46 PETIT J,JOUZEL J,RAYNAUD D,et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core,Antarctica[J]. Nature,1999,399(6 735): 429-436.
47 WANG N,YAO T,PU J,et al. Variations in air temperature during the last 100 years revealed by δ18O in the Malan ice core from the Tibetan Plateau[J]. Chinese Science Bulletin,2003,48(19): 2 134-2 138.
48 ZHAO Huabiao,XU Baiqing,WANG Ninglian. Study on the water stable isotopes in Tibetan Plateau ice cores as a proxy of temperature[J]. Quaternary Sciences,2014,34(6): 1 215-1 226.
48 赵华标,徐柏青,王宁练. 青藏高原冰芯稳定氧同位素记录的温度代用性研究[J]. 第四纪研究,2014,34(6): 1 215-1 226.
49 JONES P D,LISTER D H,OSBORN T J,et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010[J]. Journal of Geophysical Research Atmospheres,2012,117,D05127. DOI:10.1029/2011JD017139.
doi: 10.1029/2011JD017139
50 OSBORN T J,JONES P D. The CRUTEM4 land-surface air temperature dataset: Construction,previous versions and dissemination via Google Earth[J]. Earth System Science Data,2014,6(1): 61-68.
51 HOLDSWORTH G. A composite isotopic thermometer for snow[J]. Journal of Geophysical Research Atmospheres,2008,113,D08102. DOI:10.1029/2007JD008634.
doi: 10.1029/2007JD008634
52 IPCC. Climate change 2014: Synthesis report[M]. 2015..
53 TORRENCE C,COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society,1998,79(1): 61-78.
54 KASPERSEN J H,KROGSTAD P. Wavelet-based method for burst detection[J]. Fluid Dynamics Research,2001,28(3): 223-236.
55 YAN Yinhan,KONG Xinggong,WANG Yongjin,et al. Holocene climate millennium cycle and causes based on wavelet analysis[J]. Quaternary Sciences,2012,32(2): 294-303.
55 严银汉,孔兴功,汪永进,等. 基于小波分析的全新世气候千年周期及其成因[J]. 第四纪研究,2012,32(2): 294-303.
56 YAO Tandong,JIAO Keqin,YANG Meixue. Precipitation variations recorded in Guliya ice core in the past 400 years[J]. Progress in Natural Science,2000,10(4): 288-293.
56 姚檀栋,焦克勤,杨梅学. 古里雅冰芯中过去400 a降水变化研究[J]. 自然科学进展,1999,9(A12): 1 161-1 165.
57 YANG Meixue,YAO Tandong. A preliminary study of the relationship between precipitation and temperature recorded in Guliya ice core since 300 a BP[J]. Journal of Glaciology and Geocryology,1999,21(2): 141-144.
57 杨梅学,姚檀栋. 300年以来古里雅冰芯中温度与降水量的关系及其原因探讨[J]. 冰川冻土,1999,21(2): 141-144.
58 ISAKSSON E,KARLéN W,GUNDESTRUP N,et al. A century of accumulation and temperature changes in Dronning Maud Land,Antarctica[J]. Journal of Geophysical Research Atmospheres,1996,101(D3): 7 085-7 094.
59 KARL?F L,J-G WINTHER,ISAKSSON E,et al. A 1500 year record of accumulation at Amundsenisen western Dronning Maud Land,Antarctica,derived from electrical and radioactive measurements on a 120 m ice core[J]. Journal of Geophysical Research Atmospheres,2000,105(D10): 12 471-12 483.
60 JONES P D,MARSH R,WIGLEY T,et al. Decadal timescale links between Antarctic Peninsula ice-core oxygen-18,deuterium and temperature[J]. The Holocene,1993,3(1): 14-26.
61 XIAO Cunde,CHENG Yanjie,REN Jiawen,et al. Signals of Antarctic circum-polar wave over the southern India ocean as recorded in an Antarctica ice core,2005,50(4): 347-355.[效存德,程彦杰,任贾文,等. 冰芯记录的南印度洋“南极绕极波”近期信号[J]. 科学通报,2004,49(23): 2 455-2 463.]
62 ZHOU Qin,ZHAO Jinping,HE Yijun. Review of studies of the Antarctic circumpolar wave[J]. Advances in Earth Science,2004,19(5): 761-766.
62 周琴,赵进平,何宜军. 南极绕极波研究综述[J]. 地球科学进展,2004,19(5): 761-766.
63 BIAN Lingen,LIN Xuechun. Interdecadal change of the Antarctic oscillation and the Antarctic circumpolar wave[J]. Chinese Journal of Atmospheric Sciences,2009,33(2): 251-260.
63 卞林根,林学椿. 南极涛动和南极绕极波的年代际变化[J]. 大气科学,2009,33(2): 251-260.
64 DUAN Keqin,WANG Ninglian,LI Yuefang,et al. Accumulation in Dasuopu ice core in Qinghai-Tibet Plateau and solar activity[J]. Chinese Science Bulletin,2000,45(11): 1 038-1 042.
65 QU Weizheng,CHEN Lu,HUANG Fei,et al. The decadal variations of climate in troposphere of southern hemisphere and its relation with solar activities[J]. Advances in Earth Science,2005,20(7): 794-803.
65 曲维政,陈璐,黄菲,等. 南半球对流层气候年代际变化及其与太阳活动的联系[J]. 地球科学进展,2005,20(7): 794-803.
66 REN Zhenqiu. The discuss of some problems of climatic changes at the present age[J]. Advances in Earth Science,1996,11(5): 504-507.
66 任振球. 当代气候变化若干问题商榷[J]. 地球科学进展,1996,11(5): 504-507.
67 YANG Xuexiang. Energy exchange among atmosphere,ocean and lithosphere[J]. Global Geology,2004,23(1): 28-34.
67 杨学祥. 大气、海洋与固体地球的能量交换[J]. 世界地质,2004,23(1): 28-34.
68 YANG Donghong,YANG Xuexiang. Study on cause of formation in Earth's climatic changes[J]. Progress in Geophysics,2013,28(4): 1 666-1 677.
68 杨冬红,杨学祥. 全球气候变化的成因初探[J]. 地球物理学进展,2013,28(4): 1 666-1 677.
[1] 崔林丽,史军,杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[2] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[3] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[4] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[5] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[6] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[7] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[8] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[9] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
[10] 谢正辉,陈思,秦佩华,贾炳浩,谢瑾博. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
[11] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
[12] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[13] 宁晓菊,张丽君,秦耀辰,刘凯. 60年来我国主要粮食作物适宜生长区的时空分布[J]. 地球科学进展, 2019, 34(2): 191-201.
[14] 王思佳,刘鹄,赵文智,李中恺. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
[15] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.