地球科学进展 ›› 2020, Vol. 35 ›› Issue (10): 1073 -1086. doi: 10.11867/j.issn.1001-8166.2020.086

所属专题: 地球系统科学大会纪念专刊

水生关键带有机碳循环过程:从分子水平到全球尺度 上一篇    下一篇

北极东西伯利亚陆架沉积有机碳的源汇过程研究进展
胡利民 1, 2, 3( ),石学法 2, 3,叶君 2, 3,张钰莹 2   
  1. 1.中国海洋大学海洋地球科学学院 海底科学与探测技术教育部重点实验室,山东 青岛 266100
    2.自然资源部第一海洋研究所 海洋沉积与成矿作用重点实验室,山东 青岛 266061
    3.青岛 海洋科学与技术试点国家实验室 海洋地质过程与环境功能实验室,山东 青岛 266237
  • 收稿日期:2020-09-01 修回日期:2020-10-04 出版日期:2020-10-10
  • 基金资助:
    国家自然科学基金优秀青年科学基金项目“海洋沉积地球化学:沉积有机质的源汇过程及其环境响应”(41722603);国家自然科学基金面上项目“近百年亚欧北极陆架沉积有机碳源汇差异性演化:海冰变化与冻土碳输入的制约”(42076074)

Advances in the Sources and Sink of Sedimentary Organic Carbon in the East Siberian Arctic Shelf

Limin Hu 1, 2, 3( ),Xuefa Shi 2, 3,Jun Ye 2, 3,Yuying Zhang 2   

  1. 1.College of Marine Geosciences,Key Laboratory of Submarine Geosciences and Prospecting Technology,Ocean University of China,Qingdao 266100,China
    2.Key Laboratory of Marine Geology and Metallogeny,First Institute of Oceanography,Ministry of Natural Resources,Qingdao 266061,China
    3.Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China
  • Received:2020-09-01 Revised:2020-10-04 Online:2020-10-10 Published:2020-11-30
  • About author:Hu Limin (1983-), male, Liaocheng City, Shandong Province, Professor. Research areas include marine geochemistry and organic geochemistry. E-mail: hulimin@ouc.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Marine sedimentary geochemistry: Source and sink process of sedimentary organic matter and its environmental response”(41722603);“Differential evolution of the source-sink of sedimentary organic carbon along the Eurasian Artic shelf seas over the past century: Constrained by the sea ice variability the permafrost carbon input”(42076074)

东西伯利亚陆架作为全球最为宽浅的陆架之一,在全球变暖和北极快速变化背景下,受海冰减少、冻土退化、径流增加和海岸侵蚀加剧等因素的影响,该区沉积有机碳的来源、输运和埋藏发生着显著变化,且不同地区之间差异显著。东西伯利亚海西部和拉普捷夫海沉积有机碳以陆源贡献为主,海岸侵蚀作用提高了冻土碳的入海通量,对气候变化具正反馈效应;楚科奇海具有较高的有机碳埋藏效率,季节性海冰变化对有机碳的源汇有直接的影响。受沉积水动力作用影响,陆源沉积有机碳从勒拿河河口输运到陆架边缘需3 000~4 000年,不同类型有机碳存在显著的分异和降解。陆架有机碳埋藏具有显著的时空差异,大量高活性的冻土碳由陆向海的快速沉积对于北极土壤碳库的稳定性、水生环境有机碳的矿化及CO2的排放等方面具有重要的意义。今后该区的研究应加强综合地球化学指标和典型有机分子碳同位素等手段的应用,开展区域对比研究,重视海冰过程与有机碳源汇的联系,结合区域碳循环多模型集成,从现代过程与地质记录、替代指标与数值模拟相结合的角度去认识不同时间尺度快速气候变化下的有机碳源汇格局及其气候环境效应。

The East Siberian Arctic Shelf (ESAS) is one of the widest and shallowest continental shelves in the world. In the context of the global warming and rapid Arctic changes, the sources, transport and burial of sedimentary Organic Carbon (OC) in this area have experienced significant changes with spatial heterogeneity, which could be related to the sea-ice reduction, permafrost degradation, increased runoff and intensified coastal erosion. The sedimentary OC is mainly contributed by Terrestrial Organic Carbon (TerrOC) in the western East Siberian Sea and the Laptev Sea, and the coastal erosion increases the flux of Permafrost Carbon (PF/C) with a positive climate feedback effect. The Chukchi Sea has high organic carbon burial efficiency, where the seasonal variation of sea ice has direct effect on the source and sink of OC. Under the influence of hydrodynamic sorting, the cross-shelf transport times of TerrOC from the Lena estuary to the shelf edge requires approximately 3 000~4 000 years, by coupling with a significant geochemical differentiation and degradation. There existed spatio-temporal variation for the OC burial on the ESAS, and the large amount and rapid deposition of highly-reactive PF/C from the land to the sea could have important significance for the Arctic soil carbon, the OC mineralization in the aquatic environment, and CO2 outgassing. The following research should strengthen the application of the comprehensive geochemical indices and the compound-specific isotope method, emphasizing the relation between the sea-ice and the sources and sink of the OC. By coupling with the models of regional carbon cycle, we should emphasize the integration of the modern process and geological records, proxy records with the numerical simulation, which is necessary to better understand the sources and sink of sedimentary OC and the climate and environmental effect from the varied timescales.

中图分类号: 

图1 北极陆架沉积有机碳输入示意图(据参考文献[ 15 , 17 ]修改)
Fig.1 Schematic illustration showing the input of sedimentary organic carbon on the Arctic shelf (modified from references [15,17])
图2 北极东西伯利亚陆架区域地理位置
Fig.2 The geographic map of the location of the East Siberian Arctic Shelf (ESAS)
图3 北极东西伯利亚陆架沉积有机碳的来源及空间分布(据参考文献[ 21 ]修改,端元值来源于参考文献[ 21 ],数据来源于参考文献[ 21 , 31 , 34 , 35 ])
(a)沉积有机碳来源的端元分析;(b)不同来源沉积有机碳的空间分布
Fig.3 Sources and spatial distribution of sedimentary organic carbon in the ESAS modified after reference 21 ],end-member values cited from reference 21 ],data derived from references21313435])
(a)End-member analysis of sedimentary organic carbon sources; (b)The spatial distribution of different sedimentary organic carbon
图4 东西伯利亚陆架陆源沉积有机碳的跨陆架输运时间(据参考文献[ 32 ]修改)
Fig.4 Bounding cross-shelf transport time of terrestrial sedimentary organic carbon in the ESAS (modified from reference [ 32 ])
图5 北极陆架沉积有机碳埋藏保存概念模式图(据参考文献[ 87 ]修改)
Fig.5 The schematic illustration showing the burial and preservation of sedimentary organic carbon in the Arctic shelf (modified after reference [ 87 ])
图6 东西伯利亚陆架不同来源有机碳通量模式图(据参考文献[ 21 ]修改)
Fig.6 The burial fluxes patterns of different organic carbon in the ESAS (modified after reference [ 21 ])
1 Burdige D J. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007, 107(2): 467-485.
2 Keil R. Anthropogenic forcing of carbonate and organic carbon preservation in marine sediments[J]. Annual Review of Marine Science, 2017, 9(1): 151-172.
3 Bianchi T S, Cui X, Blair N E, et al. Centers of organic carbon burial and oxidation at the land-ocean interface[J]. Organic Geochemistry, 2018, 115: 138-155.
4 Berner R A. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance[J]. American Journal of Science, 1982, 282(4): 451-473.
5 Hedges J I, Keil R G. Sedimentary organic matter preservation: An assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3):123-126.
6 Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012, 4(1): 401-423.
7 McKee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes[J]. Continental Shelf Research, 2004, 24(7): 899-926.
8 Regnier P, Friedlingstein P, Ciais P, et al. Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience, 2013, 6(8): 597-607.
9 Stein R, Macdonald R W. The Organic Carbon Cycle in the Arctic Ocean[M]. Berlin: Springer-Verlag, 2004.
10 Stocker T F, Qin D, Plattner G K, et al. Summary for policymakers[M]//Proceedings of the Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge UK, and New York, NY, USA: Cambridge University Press, 2013.
11 Vonk J E, ? Gustafsson. Permafrost-carbon complexities[J]. Nature Geoscience, 2013, 6(9): 675-676.
12 Macdougall A H, Avis C A, Weaver A J. Significant contribution to climate warming from the permafrost carbon feedback[J]. Nature Geoscience, 2012, 5(10): 719-721.
13 Chen Jianfang, Jin Haiyan, Li Hongliang, et al. Accumulation of sedimentary organic carbon in the Arctic shelve and its significance on global carbon budge[J]. Chinese Journal of Polar Research, 2004, 16(3): 193-201.
陈建芳,金海燕,李宏亮,等. 北极陆架沉积碳埋藏及其在全球碳循环中的作用[J]. 极地研究, 2004, 16(3): 193-201.
14 Chen Jianfang, Jin Haiyan, Li Hongliang, et al. Carbon sink mechanism and processes in the Arctic Ocean under Arctic rapid change[J]. China Science Bulletin, 2015, 60(35): 3 406-3 416.
陈建芳, 金海燕, 李宏亮,等. 北极快速变化对北冰洋碳汇机制和过程的影响[J]. 科学通报, 2015, 60(35): 3 406-3 416.
15 Chen Jianfang, Jin Haiyan, Bai Youcheng, et al. Marine ecological land environmental response to the Arctic rapid change[J]. Haiyang Xuebao, 2018, 40(10): 22-31.
陈建芳, 金海燕, 白有成,等. 北极快速变化的生态环境响应[J]. 海洋学报, 2018, 40(10): 22-31.
16 Wild B, Andersson A, Broder L, et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(21): 10 280-10 285.
17 Stein R, Korolev S. Shelf-to-basin sediment transport in the eastern Arctic Ocean[J]. Report on Polar Research, 1994, 144: 87-100.
18 Macdonald R W, Kuzyk Z Z, Johannessen S C, et al. The vulnerability of Arctic shelf sediments to climate change[J]. Environmental Reviews, 2015, 23(4): 461-479.
19 Arrigo K R, Van Dijken G L, Pabi S, et al. Impact of a shrinking Arctic ice cover on marine primary production[J]. Geophysical Research Letters, 2008, 35(19): L035028.
20 Tarnocai C, Canadell J G, Schuur E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2009, 23(2): GB2023. DOI:10.1029/2008GB003327.
doi: 10.1029/2008GB003327    
21 Vonk J E, Sanchezgarcia L, Van Dongen B E, et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia[J]. Nature, 2012, 489(7 414): 137-140.
22 Feng X, Vonk J E, Van Dongen B E, et al. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(35): 14 168-14 173.
23 Eicken H, Gradinger R, Gaylord A G, et al. Sediment transport by sea ice in the Chukchi and Beaufort Seas: Increasing importance due to changing ice conditions?[J]. Deep-sea Research Part II: Topical Studies in Oceanography, 2005, 52(24): 3 281-3 302.
24 Mironov Y U, Gudkovich Z, Karklin V, et al. The Arctic Eurasian Shelf Seas[M]. Berlin and Chichester: Springer and Praxis Press, 2007.
25 Peterson B J, Holmes R M, Mcclelland J W, et al. Increasing river discharge to the arctic ocean[J]. Science, 2002, 298(5 601): 2 171-2 173.
26 Stroeve J, Holland M M, Meier W N, et al. Arctic sea ice decline: Faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): L09501. DOI:10.1029/2007GL029703.
doi: 10.1029/2007GL029703    
27 Arrigo K R, Perovich D K, Pickart R S, et al. Massive phytoplankton blooms under Arctic Sea ice[J]. Science, 2012, 336(6 087): 1 408.
28 Broder L, Andersson A, Tesi T, et al. Quantifying degradative loss of terrigenous organic carbon in surface sediments across the Laptev and East Siberian Sea[J]. Global Biogeochemical Cycles, 2019, 33(1): 85-99.
29 Lindsay R W, Schweiger A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations[J]. The Cryosphere, 2014, 9(1): 269-283.
30 Tesi T, Semiletov I P, Hugelius G, et al. Composition and fate of terrigenous organic matter along the Arctic land-ocean continuum in East Siberia: Insights from biomarkers and carbon isotopes[J]. Geochimica et Cosmochimica Acta, 2014(133): 235-256.
31 Karlsson E, Gelting J, Tesi T, et al. Different sources and degradation state of dissolved, particulate, and sedimentary organic matter along the Eurasian Arctic coastal margin[J]. Global Biogeochemical Cycles, 2016, 30(6): 898-919.
32 Broder L, Tesi T, Andersson A, et al. Bounding cross-shelf transport time and degradation in Siberian-Arctic land-ocean carbon transfer[J]. Nature Communications, 2018, 9(1): 806.
33 Semiletov I P, Shakhova N E, Sergienko V I, et al. On carbon transport and fate in the East Siberian Arctic land-shelf-atmosphere system[J]. Environmental Research Letters, 2012, 7(1):015201.
34 Vonk J E, Semiletov I P, Dudarev O, et al. Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters[J]. Journal of Geophysical Research, 2014, 119(12): 8 410-8 421.
35 Tesi T, Semiletov I, Dudarev O, et al. Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross-shelf transport in the Laptev and East Siberian shelf seas[J]. Journal of Geophysical Research Biogeosciences, 2016, 121(3): 731-752.
36 Karlsson E, Bruchert V, Tesi T, et al. Contrasting regimes for organic matter degradation in the East Siberian Sea and the Laptev Sea assessed through microbial incubations and molecular markers[J]. Marine Chemistry, 2015, 179: 11-22.
37 Semiletov I P, Dudarev O V, Luchin V, et al. The East Siberian Sea as a transition zone between Pacific‐derived waters and Arctic shelf waters[J]. Geophysical Research Letters, 2005, 32(10): 153-174.
38 Li Hongliang, Chen Jianfang, Jin Haiyan, et al. Biogenic constituents of surfaces sediments in the Chukchi Sea: Implications for organic carbon burying efficiency[J]. Haiyang Xuebao, 2008, 30(1): 165-171.
李宏亮, 陈建芳, 金海燕,等. 楚科奇海表层沉积物的生源组分及其对碳埋藏的指示意义[J]. 海洋学报, 2008, 30(1): 165-171.
39 Wang Xinyi, Li Zhongqiao, Jin Haiyan, et al. Sources and degradation of organic carbon in the surface sediments across the Chukchi Sea, insights from lignin phenols[J]. Haiyang Xuebao, 2017, 39(10): 19-31.
王心怡,李中乔,金海燕,等. 应用木质素示踪楚科奇海表层沉积物中有机碳的来源和降解程度[J].海洋学报,2017, 39(10): 19-31.
40 Feng X, Gustafsson O, Holmes R M, et al. Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic: Comparison of hydrolyzable components with plant wax lipids and lignin phenols[J]. Biogeosciences, 2015, 12(15): 4 841-4 860.
41 Pearson A, Mcnichol A P, Benitez-Nelson B C, et al. Origins of lipid biomarkers in Santa Monica Basin surface sediment: A case study using compound-specific Δ14C analysis[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 2 123-2 137.
42 Guo L, Semiletov I P, Gustafsson O, et al. Characterization of Siberian Arctic coastal sediments: Implications for terrestrial organic carbon export[J]. Global Biogeochemical Cycles, 2004, 18(1): GB1036. DOI:10.1029/2003GB002087.
doi: 10.1029/2003GB002087    
43 Stroeve J, Barrett A, Serreze M, et al. Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness[J]. The Cryosphere, 2014, 8(2):1 839-1 854.
44 Chen Liqi, Zhao Jinping, Bian Lin'gen, et al. Study on key processes affecting rapid changes in the Arctic[J]. Chinese Journal of Polar Research, 2003, 15(4): 283-302.
陈立奇, 赵进平, 卞林根,等. 影响北极地区迅速变化的一些关键过程研究[J]. 极地研究, 2003, 15(4): 283-302.
45 Gao Zhongyong, Chen Liqi, Cai Weijun, et al. Arctic carbon sink in global change: Present and future[J]. Advances in Earth Science, 2007, 22(8): 857-865.
高众勇, 陈立奇, Cai Weijun, 等. 全球变化中的北极碳汇: 现状与未来[J]. 地球科学进展, 2007, 22(8): 857-865.
46 Zhao Jinping, Zhu Dayong, Shi Jiuxin, et al. Seasonal variations in sea ice and its main driving factors in the Chukchi Sea[J]. Advances in Marine Science, 2003, 21(2): 123-131.
赵进平, 朱大勇, 史久新, 等. 楚科奇海海冰周年变化特征及其主要关联因素[J]. 海洋科学进展, 2003, 21(2): 123-131.
47 Li Tao, Zhao Jinping, Zhu Dayong, et al. Seasonal variations of sea ice cover in the East Siberian Seas and its main factors [J]. Chinese Journal of Polar Research, 2007, 19(2): 87-98.
李涛, 赵进平, 朱大勇, 等. 东西伯利亚海海冰季节变化特征及主要影响因素分析[J]. 极地研究, 2007, 19(2): 87-98.
48 Boetius A, Albrecht S, Bakker K, et al. Export of algal biomass from the melting Arctic Sea ice[J]. Science, 2013, 339(6 126): 1 430-1 432.
49 Bai Y, Sicre M, Chen J, et al. Seasonal and spatial variability of sea ice and phytoplankton biomarker flux in the Chukchi Sea (Western Arctic Ocean)[J]. Progress in Oceanography, 2019, 171: 22-37.
50 Riebesell U, Schloss I, Smetacek V. Aggregation of algae released from melting sea ice: Implications for seeding and sedimentation[J]. Polar Biology, 1991, 11(4): 239-248.
51 Wassmann P, Duarte C M, Agusti S, et al. Footprints of climate change in the Arctic marine ecosystem[J]. Global Change Biology, 2011, 17(2): 1 235-1 249.
52 Dethleff D, Kuhlmann G. Fram Strait sea-ice sediment provinces based on silt and clay compositions identify Siberian Kara and Laptev Seas as main source regions[J]. Polar Research, 2010, 29(3): 265-282.
53 Hu L M, Liu Y G, Xiao X T, et al. Sedimentary records of bulk organic matter and lipid biomarkers in the Bering Sea: A centennial perspective of sea-ice variability and phytoplankton community[J]. Marine Geology, 2020, 429: 106308.
54 Gosselin M, Levasseur M, Wheeler P A, et al. New measurements of phytoplankton and ice algal production in the Arctic Ocean[J]. Deep-sea Research Part II: Topical Studies in Oceanography, 1997, 44(8): 1 623-1 644.
55 Grebmeier J M, Cooper L W, Feder H M, et al. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic[J]. Progress in Oceanography, 2006, 71(2): 331-361.
56 Wang K, Zhang H, Han X, et al. Sources and burial fluxes of sedimentary organic carbon in the Northern Bering Sea and the Northern Chukchi Sea in response to global warming[J]. Science of the Total Environment, 2019,679: 97-105.
57 Kim J, Gal J, Jun S, et al. Reconstructing spring sea ice concentration in the Chukchi Sea over recent centuries: Insights into the application of the PIP25 index[J]. Environmental Research Letters, 2019, 14(12): 125004.
58 Belt S T, Masse G, Rowland S J, et al. A novel chemical fossil of palaeo sea ice: IP25 [J]. Organic Geochemistry, 2007, 38(1): 16-27.
59 Belt S T, Vare L L, Masse G, et al. Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years[J]. Quaternary Science Reviews, 2010, 29(25): 3 489-3 504.
60 Xiao X, Fahl K, Stein R, et al. Biomarker distributions in surface sediments from the Kara and Laptev seas (Arctic Ocean): Indicators for organic-carbon sources and sea-ice coverage[J]. Quaternary Science Reviews, 2013,79: 40-52.
61 Rivkina E, Gilichinsky D, Wagener S, et al. Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments[J]. Geomicrobiology Journal, 1998, 15(3): 187-193.
62 Zimov S, Schuur E A, Chapin F S, et al. Permafrost and the global carbon budget[J]. Science, 2006, 312(5 780): 1 612-1 613.
63 Grigoriev M N, Rachold V. The degradation of coastal permafrost and the organic carbon balance of the Laptev and East Siberian Seas[M]// Permafrost: Proceedings of the 8th In-ternational Conference on Permafrost. Netherlands: A Balkema Publishers, 2003.
64 Lantuit H, Overduin P, Wetterich S, et al. Recent progress regarding permafrost coasts[J]. Permafrost and Periglacial Processes, 2013, 24(2): 120-130.
65 Romanovskii N N, Hubberten H, Gavrilov A V, et al. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas[J]. Geo-Marine Letters, 2005, 25(2): 167-182.
66 Guillemette F, Bianchi T S, Spencer R G, et al. Old before your time: Ancient carbon incorporation in contemporary aquatic foodwebs[J]. Limnology and Oceanography, 2017, 62(4): 1 682-1 700.
67 Guo L D, Peng C L, Macdonald R W. Mobilization of organic carbon from arctic permafrost to fluvial systems in a changing climate[J]. Geophysical Research Letters, 2007, 34(13): L13603. DOI:10.1029/2007GL030689.
doi: 10.1029/2007GL030689    
68 Guo L D, Macdonald R W. Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases[J]. Global Biogeochemical Cycles, 2006, 20(2): GB2011. DOI:10.1029/2005GB002593.
doi: 10.1029/2005GB002593    
69 Kicklighter D W,Hayes D J,McClelland J W,et al. Insights and issues with simulating terrestrial DOC loading of Arctic river networks[J]. Ecological Applications,2013,23(8):1 817-1 836.
70 Arctic Climate Impact Assessment. Arctic Climate Impact Assessment Scientific Report[M]. Cambridge: Cambridge University Press, 2005.
71 Ni Jie, Wu Tonghua, Zhao Lin, et al. Carbon cycle in circum?Arctic permafrost regions: Progress and prospects[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 101-113.
倪杰, 吴通华, 赵林, 等. 环北极多年冻土区碳循环研究进展与展望[J]. 冰川冻土, 2019, 41(4): 101-113.
72 Gustafsson E, Humborg C, G?ran Bj?rk, et al. Carbon cycling on the East Siberian Arctic Shelf—A change in air-sea CO2 flux induced by mineralization of terrestrial organic carbon[J]. Biogeoences Discussions, 2017. DOI:10.5194/bg-2017-115.
doi: 10.5194/bg-2017-115    
73 Alling V, Porcelli D, M?rth C M, et al. Degradation of terrestrial organic carbon, primary production and out-gassing of CO2 in the Laptev and East Siberian Seas as inferred from δ13C values of DIC[J]. Geochimica et Cosmochimica Acta, 2012, 95: 143-159.
74 Günther F, Overduin P P, Sandakov A, et al. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region[J]. Biogeosciences, 2013, 10(6): 4 297-4 318.
75 Salvadó J A, Tesi T, Andersson A, et al. Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf[J]. Geophysical Research Letters, 2015, 42(19): 8 122-8 130.
76 Frey K E, Mcclelland J W. Impacts of permafrost degradation on arctic river biogeochemistry[J]. Hydrological Processes, 2010, 23(1): 169-182.
77 Shimada K, Kamoshida T, Itoh M, et al. Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean[J]. Geophysical Research Letters, 2006, 33(8): 153-172.
78 Bauch H A, Kassens H. Arctic Siberian shelf environments—An introduction[J]. Global & Planetary Change, 2005, 48(1/3): 1-8.
79 Karlsson E S, Charkin A, Dudarev O, et al. Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea[J]. Biogeosciences, 2011, 8(7): 1 865-1 879.
80 Wegner C, Bauch D, Holemann J, et al. Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer[J]. Biogeosciences, 2013, 10(2): 1 117-1 129.
81 Viscosishirley C, Pisias N G, Mammone K, et al. Sediment source strength, transport pathways and accumulation patterns on the Siberian-Arctic's Chukchi and Laptev shelves[J]. Continental Shelf Research, 2003, 23(11/13): 1 201-1 225.
82 Nürnberg D, Wollenburg I, Dethleff D, et al. Sediments in Arctic sea ice: Implications for entrainment, transport and release[J]. Marine Geology, 1994, 119: 185-214.
83 Li Qiuling, Qiao Shuqing, Shi Xuefa, et al. Sediment provenance of the East Siberian Arctic shelf: Evidence from clay minerals and chemical elements[J]. Acta Oceanologica Sinica,2020, in press.
李秋玲, 乔淑卿, 石学法, 等. 北极东西伯利亚陆架沉积物物源:来自粘土矿物和化学元素的证据[J]. 海洋学报,2020,待刊.
84 Anderson L G, Jutterstrom S, Hjalmarsson S, et al. Out-gassing of CO2 from Siberian Shelf seas by terrestrial organic matter decomposition[J]. Geophysical Research Letters, 2009, 36(20): L20601.
85 Semiletov I P, Pipko I I, Repina I, et al. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean: Pacific sector of the Arctic[J]. Journal of Marine Systems, 2007, 66(1): 204-226.
86 Bruchert V, Broder L, Sawicka J E, et al. Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment[J]. Biogeosciences, 2017, 15(2): 471-490.
87 Macdonald R W, Kuzyk Z Z, Johannessen S C, et al. The vulnerability of Arctic shelf sediments to climate change[J]. Environmental Reviews, 2015, 23(4): 461-479.
88 He Jianhua, Yu Wen, Yin Mingduan. Study on the burial carbon in the sediment of continental Chukchi Sea[J]. Journal of Oceanography in Taiwan Strait, 2010, 29(2): 132-137.
何建华, 余雯, 尹明端. 楚科奇海陆架有机碳埋藏研究[J]. 台湾海峡, 2010,29(2): 132-137.
89 Lawrence D M, Slater A G, Tomas R A, et al. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss[J]. Geophysical Research Letters, 2008, 35(11): GL033985. DOI:10.1029/2008GL033985.
doi: 10.1029/2008GL033985    
90 Keil R G, Montlucon D B, Prahl F G, et al. Sorptive preservation of labile organic matter in marine sediments[J]. Nature, 1994, 370(6 490): 549-552.
91 Hartnett H E, Keil R G, Hedges J I, et al. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments[J]. Nature, 1998, 391(6 667): 572-574.
92 Mayer L M. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments[J]. Chemical Geology, 1994, 114: 347-363.
93 Eglinton T I. Geochemistry: A rusty carbon sink[J]. Nature, 2012, 483(7 388): 165-166.
94 Lalonde K, Mucci A, Ouellet A, et al.Preservation of organic matter in sediments promoted by iron[J]. Nature,2012, 483 (7 388): 198-200.
95 Faust J C, Stevenson M A, Abbott G D, et al. Does Arctic warming reduce preservation of organic matter in Barents Sea sediments?[J]. Philosophical Transactions of the Royal Society of London, 2020,in press.
96 Schuur E, McGuire A, Sch?del C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520(7 546): 171-179.
97 Clark J, Mccabe A M, Bowen D Q, et al. Response of the Irish Ice Sheet to abrupt climate change during the last deglaciation[J]. Quaternary Science Reviews, 2012, 35: 100-115.
98 Per?oiu A, Onac B P, Wynn J G, et al. Holocene winter climate variability in Central and Eastern Europe[J]. Scientific Reports, 2017, 7(1): 1196.
99 Fahl K, Stein R. Biomarkers as organic-carbon-source and environmental indicators in the Late Quaternary Arctic Ocean: Problems and perspectives[J]. Marine Chemistry, 1999, 63(3): 293-309.
100 Muellerlupp T, Bauch H A, Erlenkeuser H, et al. Changes in the deposition of terrestrial organic matter on the Laptev Sea shelf during the Holocene: Evidence from stable carbon isotopes[J]. International Journal of Earth Sciences, 2000, 89(3): 563-568.
101 Tesi T, Muschitiello F, Smittenberg R H, et al. Massive remobilization of permafrost carbon during post-glacial warming[J]. Nature Communications, 2016, 7(1): 13 653-13 653.
102 Winterfeld M, Mollenhauer G, Dummann W, et al. Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost[J]. Nature Communications, 2018, 9(1):3666.
103 Meyer V, Hefter J, Kohler P, et al. Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming[J]. Environmental Research Letters, 2019, 14(8): 085003.
104 Ciais P, Tagliabue A, Cuntz M, et al. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum[J]. Nature Geoscience, 2012, 5(1): 74-79.
105 Kohler P, Knorr G, Bard E, et al. Permafrost thawing as a possible source of abrupt carbon release at the onset of the B?lling/Aller?d[J]. Nature Communications, 2014, 5(1): 5520.
106 Crichton K A, Bouttes N, Roche D M, et al. Corrigendum: Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation[J]. Nature Geoscience, 2016, 9(10): 795.
107 Zech R, Huang Y, Zech M, et al. High carbon sequestration in Siberian permafrost loess-paleosols during glacials[J]. Climate of the Past, 2011, 7(2): 501-509.
108 Zimov N S, Zimov S A, Zimova A E, et al. Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: Role in the global carbon budget[J]. Geophysical Research Letters, 2009, 36(2): L02502.
109 Martens J, Wild B, Pearce C, et al. Remobilization of old permafrost carbon to Chukchi Sea sediments during the end of the last deglaciation[J]. Global Biogeochemical Cycles, 2018, 33(1): 2-14.
110 Olefeldt D, Goswami S, Grosse G, et al. Circumpolar distribution and carbon storage of thermokarst landscapes[J]. Nature Communications, 2016, 7(1): 13043.
111 Keskitalo K, Tesi T, Broder L, et al. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea[J]. Climate of the Past, 2017, 13(9): 1 213-1 226.
112 Keigwin L D, Donnelly J P, Cook M S, et al. Rapid sea-level rise and Holocene climate in the Chukchi Sea[J]. Geology, 2006, 34(10): 861-864.
113 Semiletov I P, Shakhova N E, Pipko I I, et al. Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea[J]. Biogeosciences, 2013, 10(9): 5 977-5 996.
114 Mann P J, Eglinton T I, Mcintyre C, et al. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks[J]. Nature Communications, 2015, 6(1): 7856.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 吴延俊, 赵进平. 欧亚海盆大西洋水输运过程及热释放研究进展[J]. 地球科学进展, 2020, 35(3): 231-245.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要