1 |
Burdige D J. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007, 107(2): 467-485.
|
2 |
Keil R. Anthropogenic forcing of carbonate and organic carbon preservation in marine sediments[J]. Annual Review of Marine Science, 2017, 9(1): 151-172.
|
3 |
Bianchi T S, Cui X, Blair N E, et al. Centers of organic carbon burial and oxidation at the land-ocean interface[J]. Organic Geochemistry, 2018, 115: 138-155.
|
4 |
Berner R A. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance[J]. American Journal of Science, 1982, 282(4): 451-473.
|
5 |
Hedges J I, Keil R G. Sedimentary organic matter preservation: An assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3):123-126.
|
6 |
Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012, 4(1): 401-423.
|
7 |
McKee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes[J]. Continental Shelf Research, 2004, 24(7): 899-926.
|
8 |
Regnier P, Friedlingstein P, Ciais P, et al. Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience, 2013, 6(8): 597-607.
|
9 |
Stein R, Macdonald R W. The Organic Carbon Cycle in the Arctic Ocean[M]. Berlin: Springer-Verlag, 2004.
|
10 |
Stocker T F, Qin D, Plattner G K, et al. Summary for policymakers[M]//Proceedings of the Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge UK, and New York, NY, USA: Cambridge University Press, 2013.
|
11 |
Vonk J E, ? Gustafsson. Permafrost-carbon complexities[J]. Nature Geoscience, 2013, 6(9): 675-676.
|
12 |
Macdougall A H, Avis C A, Weaver A J. Significant contribution to climate warming from the permafrost carbon feedback[J]. Nature Geoscience, 2012, 5(10): 719-721.
|
13 |
Chen Jianfang, Jin Haiyan, Li Hongliang, et al. Accumulation of sedimentary organic carbon in the Arctic shelve and its significance on global carbon budge[J]. Chinese Journal of Polar Research, 2004, 16(3): 193-201.
|
|
陈建芳,金海燕,李宏亮,等. 北极陆架沉积碳埋藏及其在全球碳循环中的作用[J]. 极地研究, 2004, 16(3): 193-201.
|
14 |
Chen Jianfang, Jin Haiyan, Li Hongliang, et al. Carbon sink mechanism and processes in the Arctic Ocean under Arctic rapid change[J]. China Science Bulletin, 2015, 60(35): 3 406-3 416.
|
|
陈建芳, 金海燕, 李宏亮,等. 北极快速变化对北冰洋碳汇机制和过程的影响[J]. 科学通报, 2015, 60(35): 3 406-3 416.
|
15 |
Chen Jianfang, Jin Haiyan, Bai Youcheng, et al. Marine ecological land environmental response to the Arctic rapid change[J]. Haiyang Xuebao, 2018, 40(10): 22-31.
|
|
陈建芳, 金海燕, 白有成,等. 北极快速变化的生态环境响应[J]. 海洋学报, 2018, 40(10): 22-31.
|
16 |
Wild B, Andersson A, Broder L, et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(21): 10 280-10 285.
|
17 |
Stein R, Korolev S. Shelf-to-basin sediment transport in the eastern Arctic Ocean[J]. Report on Polar Research, 1994, 144: 87-100.
|
18 |
Macdonald R W, Kuzyk Z Z, Johannessen S C, et al. The vulnerability of Arctic shelf sediments to climate change[J]. Environmental Reviews, 2015, 23(4): 461-479.
|
19 |
Arrigo K R, Van Dijken G L, Pabi S, et al. Impact of a shrinking Arctic ice cover on marine primary production[J]. Geophysical Research Letters, 2008, 35(19): L035028.
|
20 |
Tarnocai C, Canadell J G, Schuur E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2009, 23(2): GB2023. DOI:10.1029/2008GB003327.
doi: 10.1029/2008GB003327
|
21 |
Vonk J E, Sanchezgarcia L, Van Dongen B E, et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia[J]. Nature, 2012, 489(7 414): 137-140.
|
22 |
Feng X, Vonk J E, Van Dongen B E, et al. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(35): 14 168-14 173.
|
23 |
Eicken H, Gradinger R, Gaylord A G, et al. Sediment transport by sea ice in the Chukchi and Beaufort Seas: Increasing importance due to changing ice conditions?[J]. Deep-sea Research Part II: Topical Studies in Oceanography, 2005, 52(24): 3 281-3 302.
|
24 |
Mironov Y U, Gudkovich Z, Karklin V, et al. The Arctic Eurasian Shelf Seas[M]. Berlin and Chichester: Springer and Praxis Press, 2007.
|
25 |
Peterson B J, Holmes R M, Mcclelland J W, et al. Increasing river discharge to the arctic ocean[J]. Science, 2002, 298(5 601): 2 171-2 173.
|
26 |
Stroeve J, Holland M M, Meier W N, et al. Arctic sea ice decline: Faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): L09501. DOI:10.1029/2007GL029703.
doi: 10.1029/2007GL029703
|
27 |
Arrigo K R, Perovich D K, Pickart R S, et al. Massive phytoplankton blooms under Arctic Sea ice[J]. Science, 2012, 336(6 087): 1 408.
|
28 |
Broder L, Andersson A, Tesi T, et al. Quantifying degradative loss of terrigenous organic carbon in surface sediments across the Laptev and East Siberian Sea[J]. Global Biogeochemical Cycles, 2019, 33(1): 85-99.
|
29 |
Lindsay R W, Schweiger A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations[J]. The Cryosphere, 2014, 9(1): 269-283.
|
30 |
Tesi T, Semiletov I P, Hugelius G, et al. Composition and fate of terrigenous organic matter along the Arctic land-ocean continuum in East Siberia: Insights from biomarkers and carbon isotopes[J]. Geochimica et Cosmochimica Acta, 2014(133): 235-256.
|
31 |
Karlsson E, Gelting J, Tesi T, et al. Different sources and degradation state of dissolved, particulate, and sedimentary organic matter along the Eurasian Arctic coastal margin[J]. Global Biogeochemical Cycles, 2016, 30(6): 898-919.
|
32 |
Broder L, Tesi T, Andersson A, et al. Bounding cross-shelf transport time and degradation in Siberian-Arctic land-ocean carbon transfer[J]. Nature Communications, 2018, 9(1): 806.
|
33 |
Semiletov I P, Shakhova N E, Sergienko V I, et al. On carbon transport and fate in the East Siberian Arctic land-shelf-atmosphere system[J]. Environmental Research Letters, 2012, 7(1):015201.
|
34 |
Vonk J E, Semiletov I P, Dudarev O, et al. Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters[J]. Journal of Geophysical Research, 2014, 119(12): 8 410-8 421.
|
35 |
Tesi T, Semiletov I, Dudarev O, et al. Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross-shelf transport in the Laptev and East Siberian shelf seas[J]. Journal of Geophysical Research Biogeosciences, 2016, 121(3): 731-752.
|
36 |
Karlsson E, Bruchert V, Tesi T, et al. Contrasting regimes for organic matter degradation in the East Siberian Sea and the Laptev Sea assessed through microbial incubations and molecular markers[J]. Marine Chemistry, 2015, 179: 11-22.
|
37 |
Semiletov I P, Dudarev O V, Luchin V, et al. The East Siberian Sea as a transition zone between Pacific‐derived waters and Arctic shelf waters[J]. Geophysical Research Letters, 2005, 32(10): 153-174.
|
38 |
Li Hongliang, Chen Jianfang, Jin Haiyan, et al. Biogenic constituents of surfaces sediments in the Chukchi Sea: Implications for organic carbon burying efficiency[J]. Haiyang Xuebao, 2008, 30(1): 165-171.
|
|
李宏亮, 陈建芳, 金海燕,等. 楚科奇海表层沉积物的生源组分及其对碳埋藏的指示意义[J]. 海洋学报, 2008, 30(1): 165-171.
|
39 |
Wang Xinyi, Li Zhongqiao, Jin Haiyan, et al. Sources and degradation of organic carbon in the surface sediments across the Chukchi Sea, insights from lignin phenols[J]. Haiyang Xuebao, 2017, 39(10): 19-31.
|
|
王心怡,李中乔,金海燕,等. 应用木质素示踪楚科奇海表层沉积物中有机碳的来源和降解程度[J].海洋学报,2017, 39(10): 19-31.
|
40 |
Feng X, Gustafsson O, Holmes R M, et al. Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic: Comparison of hydrolyzable components with plant wax lipids and lignin phenols[J]. Biogeosciences, 2015, 12(15): 4 841-4 860.
|
41 |
Pearson A, Mcnichol A P, Benitez-Nelson B C, et al. Origins of lipid biomarkers in Santa Monica Basin surface sediment: A case study using compound-specific Δ14C analysis[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 2 123-2 137.
|
42 |
Guo L, Semiletov I P, Gustafsson O, et al. Characterization of Siberian Arctic coastal sediments: Implications for terrestrial organic carbon export[J]. Global Biogeochemical Cycles, 2004, 18(1): GB1036. DOI:10.1029/2003GB002087.
doi: 10.1029/2003GB002087
|
43 |
Stroeve J, Barrett A, Serreze M, et al. Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness[J]. The Cryosphere, 2014, 8(2):1 839-1 854.
|
44 |
Chen Liqi, Zhao Jinping, Bian Lin'gen, et al. Study on key processes affecting rapid changes in the Arctic[J]. Chinese Journal of Polar Research, 2003, 15(4): 283-302.
|
|
陈立奇, 赵进平, 卞林根,等. 影响北极地区迅速变化的一些关键过程研究[J]. 极地研究, 2003, 15(4): 283-302.
|
45 |
Gao Zhongyong, Chen Liqi, Cai Weijun, et al. Arctic carbon sink in global change: Present and future[J]. Advances in Earth Science, 2007, 22(8): 857-865.
|
|
高众勇, 陈立奇, Cai Weijun, 等. 全球变化中的北极碳汇: 现状与未来[J]. 地球科学进展, 2007, 22(8): 857-865.
|
46 |
Zhao Jinping, Zhu Dayong, Shi Jiuxin, et al. Seasonal variations in sea ice and its main driving factors in the Chukchi Sea[J]. Advances in Marine Science, 2003, 21(2): 123-131.
|
|
赵进平, 朱大勇, 史久新, 等. 楚科奇海海冰周年变化特征及其主要关联因素[J]. 海洋科学进展, 2003, 21(2): 123-131.
|
47 |
Li Tao, Zhao Jinping, Zhu Dayong, et al. Seasonal variations of sea ice cover in the East Siberian Seas and its main factors [J]. Chinese Journal of Polar Research, 2007, 19(2): 87-98.
|
|
李涛, 赵进平, 朱大勇, 等. 东西伯利亚海海冰季节变化特征及主要影响因素分析[J]. 极地研究, 2007, 19(2): 87-98.
|
48 |
Boetius A, Albrecht S, Bakker K, et al. Export of algal biomass from the melting Arctic Sea ice[J]. Science, 2013, 339(6 126): 1 430-1 432.
|
49 |
Bai Y, Sicre M, Chen J, et al. Seasonal and spatial variability of sea ice and phytoplankton biomarker flux in the Chukchi Sea (Western Arctic Ocean)[J]. Progress in Oceanography, 2019, 171: 22-37.
|
50 |
Riebesell U, Schloss I, Smetacek V. Aggregation of algae released from melting sea ice: Implications for seeding and sedimentation[J]. Polar Biology, 1991, 11(4): 239-248.
|
51 |
Wassmann P, Duarte C M, Agusti S, et al. Footprints of climate change in the Arctic marine ecosystem[J]. Global Change Biology, 2011, 17(2): 1 235-1 249.
|
52 |
Dethleff D, Kuhlmann G. Fram Strait sea-ice sediment provinces based on silt and clay compositions identify Siberian Kara and Laptev Seas as main source regions[J]. Polar Research, 2010, 29(3): 265-282.
|
53 |
Hu L M, Liu Y G, Xiao X T, et al. Sedimentary records of bulk organic matter and lipid biomarkers in the Bering Sea: A centennial perspective of sea-ice variability and phytoplankton community[J]. Marine Geology, 2020, 429: 106308.
|
54 |
Gosselin M, Levasseur M, Wheeler P A, et al. New measurements of phytoplankton and ice algal production in the Arctic Ocean[J]. Deep-sea Research Part II: Topical Studies in Oceanography, 1997, 44(8): 1 623-1 644.
|
55 |
Grebmeier J M, Cooper L W, Feder H M, et al. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic[J]. Progress in Oceanography, 2006, 71(2): 331-361.
|
56 |
Wang K, Zhang H, Han X, et al. Sources and burial fluxes of sedimentary organic carbon in the Northern Bering Sea and the Northern Chukchi Sea in response to global warming[J]. Science of the Total Environment, 2019,679: 97-105.
|
57 |
Kim J, Gal J, Jun S, et al. Reconstructing spring sea ice concentration in the Chukchi Sea over recent centuries: Insights into the application of the PIP25 index[J]. Environmental Research Letters, 2019, 14(12): 125004.
|
58 |
Belt S T, Masse G, Rowland S J, et al. A novel chemical fossil of palaeo sea ice: IP25 [J]. Organic Geochemistry, 2007, 38(1): 16-27.
|
59 |
Belt S T, Vare L L, Masse G, et al. Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years[J]. Quaternary Science Reviews, 2010, 29(25): 3 489-3 504.
|
60 |
Xiao X, Fahl K, Stein R, et al. Biomarker distributions in surface sediments from the Kara and Laptev seas (Arctic Ocean): Indicators for organic-carbon sources and sea-ice coverage[J]. Quaternary Science Reviews, 2013,79: 40-52.
|
61 |
Rivkina E, Gilichinsky D, Wagener S, et al. Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments[J]. Geomicrobiology Journal, 1998, 15(3): 187-193.
|
62 |
Zimov S, Schuur E A, Chapin F S, et al. Permafrost and the global carbon budget[J]. Science, 2006, 312(5 780): 1 612-1 613.
|
63 |
Grigoriev M N, Rachold V. The degradation of coastal permafrost and the organic carbon balance of the Laptev and East Siberian Seas[M]// Permafrost: Proceedings of the 8th In-ternational Conference on Permafrost. Netherlands: A Balkema Publishers, 2003.
|
64 |
Lantuit H, Overduin P, Wetterich S, et al. Recent progress regarding permafrost coasts[J]. Permafrost and Periglacial Processes, 2013, 24(2): 120-130.
|
65 |
Romanovskii N N, Hubberten H, Gavrilov A V, et al. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas[J]. Geo-Marine Letters, 2005, 25(2): 167-182.
|
66 |
Guillemette F, Bianchi T S, Spencer R G, et al. Old before your time: Ancient carbon incorporation in contemporary aquatic foodwebs[J]. Limnology and Oceanography, 2017, 62(4): 1 682-1 700.
|
67 |
Guo L D, Peng C L, Macdonald R W. Mobilization of organic carbon from arctic permafrost to fluvial systems in a changing climate[J]. Geophysical Research Letters, 2007, 34(13): L13603. DOI:10.1029/2007GL030689.
doi: 10.1029/2007GL030689
|
68 |
Guo L D, Macdonald R W. Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases[J]. Global Biogeochemical Cycles, 2006, 20(2): GB2011. DOI:10.1029/2005GB002593.
doi: 10.1029/2005GB002593
|
69 |
Kicklighter D W,Hayes D J,McClelland J W,et al. Insights and issues with simulating terrestrial DOC loading of Arctic river networks[J]. Ecological Applications,2013,23(8):1 817-1 836.
|
70 |
Arctic Climate Impact Assessment. Arctic Climate Impact Assessment Scientific Report[M]. Cambridge: Cambridge University Press, 2005.
|
71 |
Ni Jie, Wu Tonghua, Zhao Lin, et al. Carbon cycle in circum?Arctic permafrost regions: Progress and prospects[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 101-113.
|
|
倪杰, 吴通华, 赵林, 等. 环北极多年冻土区碳循环研究进展与展望[J]. 冰川冻土, 2019, 41(4): 101-113.
|
72 |
Gustafsson E, Humborg C, G?ran Bj?rk, et al. Carbon cycling on the East Siberian Arctic Shelf—A change in air-sea CO2 flux induced by mineralization of terrestrial organic carbon[J]. Biogeoences Discussions, 2017. DOI:10.5194/bg-2017-115.
doi: 10.5194/bg-2017-115
|
73 |
Alling V, Porcelli D, M?rth C M, et al. Degradation of terrestrial organic carbon, primary production and out-gassing of CO2 in the Laptev and East Siberian Seas as inferred from δ13C values of DIC[J]. Geochimica et Cosmochimica Acta, 2012, 95: 143-159.
|
74 |
Günther F, Overduin P P, Sandakov A, et al. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region[J]. Biogeosciences, 2013, 10(6): 4 297-4 318.
|
75 |
Salvadó J A, Tesi T, Andersson A, et al. Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf[J]. Geophysical Research Letters, 2015, 42(19): 8 122-8 130.
|
76 |
Frey K E, Mcclelland J W. Impacts of permafrost degradation on arctic river biogeochemistry[J]. Hydrological Processes, 2010, 23(1): 169-182.
|
77 |
Shimada K, Kamoshida T, Itoh M, et al. Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean[J]. Geophysical Research Letters, 2006, 33(8): 153-172.
|
78 |
Bauch H A, Kassens H. Arctic Siberian shelf environments—An introduction[J]. Global & Planetary Change, 2005, 48(1/3): 1-8.
|
79 |
Karlsson E S, Charkin A, Dudarev O, et al. Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea[J]. Biogeosciences, 2011, 8(7): 1 865-1 879.
|
80 |
Wegner C, Bauch D, Holemann J, et al. Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer[J]. Biogeosciences, 2013, 10(2): 1 117-1 129.
|
81 |
Viscosishirley C, Pisias N G, Mammone K, et al. Sediment source strength, transport pathways and accumulation patterns on the Siberian-Arctic's Chukchi and Laptev shelves[J]. Continental Shelf Research, 2003, 23(11/13): 1 201-1 225.
|
82 |
Nürnberg D, Wollenburg I, Dethleff D, et al. Sediments in Arctic sea ice: Implications for entrainment, transport and release[J]. Marine Geology, 1994, 119: 185-214.
|
83 |
Li Qiuling, Qiao Shuqing, Shi Xuefa, et al. Sediment provenance of the East Siberian Arctic shelf: Evidence from clay minerals and chemical elements[J]. Acta Oceanologica Sinica,2020, in press.
|
|
李秋玲, 乔淑卿, 石学法, 等. 北极东西伯利亚陆架沉积物物源:来自粘土矿物和化学元素的证据[J]. 海洋学报,2020,待刊.
|
84 |
Anderson L G, Jutterstrom S, Hjalmarsson S, et al. Out-gassing of CO2 from Siberian Shelf seas by terrestrial organic matter decomposition[J]. Geophysical Research Letters, 2009, 36(20): L20601.
|
85 |
Semiletov I P, Pipko I I, Repina I, et al. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean: Pacific sector of the Arctic[J]. Journal of Marine Systems, 2007, 66(1): 204-226.
|
86 |
Bruchert V, Broder L, Sawicka J E, et al. Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment[J]. Biogeosciences, 2017, 15(2): 471-490.
|
87 |
Macdonald R W, Kuzyk Z Z, Johannessen S C, et al. The vulnerability of Arctic shelf sediments to climate change[J]. Environmental Reviews, 2015, 23(4): 461-479.
|
88 |
He Jianhua, Yu Wen, Yin Mingduan. Study on the burial carbon in the sediment of continental Chukchi Sea[J]. Journal of Oceanography in Taiwan Strait, 2010, 29(2): 132-137.
|
|
何建华, 余雯, 尹明端. 楚科奇海陆架有机碳埋藏研究[J]. 台湾海峡, 2010,29(2): 132-137.
|
89 |
Lawrence D M, Slater A G, Tomas R A, et al. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss[J]. Geophysical Research Letters, 2008, 35(11): GL033985. DOI:10.1029/2008GL033985.
doi: 10.1029/2008GL033985
|
90 |
Keil R G, Montlucon D B, Prahl F G, et al. Sorptive preservation of labile organic matter in marine sediments[J]. Nature, 1994, 370(6 490): 549-552.
|
91 |
Hartnett H E, Keil R G, Hedges J I, et al. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments[J]. Nature, 1998, 391(6 667): 572-574.
|
92 |
Mayer L M. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments[J]. Chemical Geology, 1994, 114: 347-363.
|
93 |
Eglinton T I. Geochemistry: A rusty carbon sink[J]. Nature, 2012, 483(7 388): 165-166.
|
94 |
Lalonde K, Mucci A, Ouellet A, et al.Preservation of organic matter in sediments promoted by iron[J]. Nature,2012, 483 (7 388): 198-200.
|
95 |
Faust J C, Stevenson M A, Abbott G D, et al. Does Arctic warming reduce preservation of organic matter in Barents Sea sediments?[J]. Philosophical Transactions of the Royal Society of London, 2020,in press.
|
96 |
Schuur E, McGuire A, Sch?del C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520(7 546): 171-179.
|
97 |
Clark J, Mccabe A M, Bowen D Q, et al. Response of the Irish Ice Sheet to abrupt climate change during the last deglaciation[J]. Quaternary Science Reviews, 2012, 35: 100-115.
|
98 |
Per?oiu A, Onac B P, Wynn J G, et al. Holocene winter climate variability in Central and Eastern Europe[J]. Scientific Reports, 2017, 7(1): 1196.
|
99 |
Fahl K, Stein R. Biomarkers as organic-carbon-source and environmental indicators in the Late Quaternary Arctic Ocean: Problems and perspectives[J]. Marine Chemistry, 1999, 63(3): 293-309.
|
100 |
Muellerlupp T, Bauch H A, Erlenkeuser H, et al. Changes in the deposition of terrestrial organic matter on the Laptev Sea shelf during the Holocene: Evidence from stable carbon isotopes[J]. International Journal of Earth Sciences, 2000, 89(3): 563-568.
|
101 |
Tesi T, Muschitiello F, Smittenberg R H, et al. Massive remobilization of permafrost carbon during post-glacial warming[J]. Nature Communications, 2016, 7(1): 13 653-13 653.
|
102 |
Winterfeld M, Mollenhauer G, Dummann W, et al. Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost[J]. Nature Communications, 2018, 9(1):3666.
|
103 |
Meyer V, Hefter J, Kohler P, et al. Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming[J]. Environmental Research Letters, 2019, 14(8): 085003.
|
104 |
Ciais P, Tagliabue A, Cuntz M, et al. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum[J]. Nature Geoscience, 2012, 5(1): 74-79.
|
105 |
Kohler P, Knorr G, Bard E, et al. Permafrost thawing as a possible source of abrupt carbon release at the onset of the B?lling/Aller?d[J]. Nature Communications, 2014, 5(1): 5520.
|
106 |
Crichton K A, Bouttes N, Roche D M, et al. Corrigendum: Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation[J]. Nature Geoscience, 2016, 9(10): 795.
|
107 |
Zech R, Huang Y, Zech M, et al. High carbon sequestration in Siberian permafrost loess-paleosols during glacials[J]. Climate of the Past, 2011, 7(2): 501-509.
|
108 |
Zimov N S, Zimov S A, Zimova A E, et al. Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: Role in the global carbon budget[J]. Geophysical Research Letters, 2009, 36(2): L02502.
|
109 |
Martens J, Wild B, Pearce C, et al. Remobilization of old permafrost carbon to Chukchi Sea sediments during the end of the last deglaciation[J]. Global Biogeochemical Cycles, 2018, 33(1): 2-14.
|
110 |
Olefeldt D, Goswami S, Grosse G, et al. Circumpolar distribution and carbon storage of thermokarst landscapes[J]. Nature Communications, 2016, 7(1): 13043.
|
111 |
Keskitalo K, Tesi T, Broder L, et al. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea[J]. Climate of the Past, 2017, 13(9): 1 213-1 226.
|
112 |
Keigwin L D, Donnelly J P, Cook M S, et al. Rapid sea-level rise and Holocene climate in the Chukchi Sea[J]. Geology, 2006, 34(10): 861-864.
|
113 |
Semiletov I P, Shakhova N E, Pipko I I, et al. Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea[J]. Biogeosciences, 2013, 10(9): 5 977-5 996.
|
114 |
Mann P J, Eglinton T I, Mcintyre C, et al. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks[J]. Nature Communications, 2015, 6(1): 7856.
|