地球科学进展 ›› 2020, Vol. 35 ›› Issue (10): 1087 -1098. doi: 10.11867/j.issn.1001-8166.2020.083

新学科·新技术·新发现 上一篇    

动态摄影测量在物理模型实验全过程地形数据获取中的应用
魏勇( ),许强( ),王卓,李骅锦,李松林   
  1. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
  • 收稿日期:2020-06-04 修回日期:2020-09-08 出版日期:2020-10-10
  • 通讯作者: 许强 E-mail:ceweiyong@hotmail.com;xq@cdut.edu.cn
  • 基金资助:
    国家自然科学基金重大项目“面向人地协调的黄土重大工程灾变防控研究”(41790445);国家自然科学基金重点项目“溃散性滑坡成因机理、监测预警与定量风险评价”(41630640)

Application of Dynamic Terrain Data Through the Whole Process of Model Test Using Dynamic Photogrammetry

Yong Wei( ),Qiang Xu( ),Zhuo Wang,Huajin Li,Songlin Li   

  1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China
  • Received:2020-06-04 Revised:2020-09-08 Online:2020-10-10 Published:2020-11-30
  • Contact: Qiang Xu E-mail:ceweiyong@hotmail.com;xq@cdut.edu.cn
  • About author:Wei Yong (1985-), male, Linshui County, Sichuan Province, Ph.D student. Research areas include rock and soil stability and engineering effect. E-mail: ceweiyong@hotmail.com
  • Supported by:
    the National Natural Science Foundation of China “Prevention and control of geo-disasters for coordination mechanism between human race and geo-environment of mega constructions in loess area”(41790445);“Formation mechanisms, monitoring and early warning and quantitative risk assessment of diffuse failure landslides”(41630640)

物理模型实验广泛应用于土木工程、采矿工程及地球科学等领域。目前主要采用三维激光扫描技术采集实验前和实验后的两期静态地形数据,若要获取实验过程的动态地形数据就需要探索新的技术手段。以某碎屑流物理模型实验为例,利用动态摄影测量技术对物理模型实验进行四维建模,在对数据结果进行处理后获得了实验过程的动态地形数据,并以此分析碎屑颗粒的运动与堆积特征。结果表明:利用动态摄影测量技术可以快速准确地获取实验过程的动态空间影像数据,对这些数据成果进行详细分析,有助于我们更好地寻找和理解地质体的运动堆积规律。该技术方法是一种全新的物理模型实验动态地形数据获取方法,它将促使后期的实验分析工作发生巨大变化,值得推广应用。

Model test is widely accepted and used in the field of civil engineering, mining engineering and earth sciences, etc. At present, the static terrain data are measured before and after each experiment by terrestrial laser scanning, however it is necessary to explore new technology to obtain dynamic terrain data in the course of the experiment. By taking the specified experimental tests of debris avalanche as an example, the method of 4D reconstruction based on dynamic photogrammetry was described in detail. The dynamic terrain data of the model test were obtained after the data had been processed, and then the propagation and deposit features of debris avalanche were analyzed in detail. The results show that the dynamic terrain data of the model test can be obtained accurately with the method, and the interpretation of the propagation and deposit should be relatively easy by analyzing the data of model test in detail. This is not only the new technology applied in the document of the dynamic terrain of the model test, but also causes a great change for the experimental analysis, and it deserves to be applied widely.

中图分类号: 

图1 斜槽装置结构图
Fig.1 The device structure
图2 碎屑流模型实验设备全貌图
Fig.2 The experiment device schematic diagram of debris avalanche
图3 动态摄影测量工作流程
Fig.3 The workflow of dynamic photogrammetry
表1 碎屑流模型实验分组依据
Table 1 The basis of experimental grouping for debris avalanche
图4 斜槽底板形状
Fig.4 The bed pro?le of the chute
表2 相机采集系统参数
Table 2 Characteristics of the camera acquisition systems
图5 动态摄影测量空间影像数据
(a)全局影像数据; (b)点云数据; (c)网格模型; (d) 图像模型
Fig.5 The 3D image data of dynamic photogrammetry
(a) Full image data; (b) Point cloud data; (c) Mesh data;(d) Texture data
图6 动态地形数据成果对比
Fig.6 The comparison of dynamic terrain
图7 碎屑颗粒体积变化曲线
(a)总体积; (b)体积产出率
Fig.7 Temporal evolution of volume for granular mass
(a) Total volume ;(b) Production rate of volume
图8 碎屑颗粒厚度演化图
灰色为斜槽底板高度数据,彩色为堆积厚度数据
Fig.8 The evolution of depth for granular mass
Gray data indicate Z-values of bed and colored data indicate the deposit depth
图9 典型时刻剖面变化图
Fig.9 The evolution of typical pro?le
图10 监测点位置
Fig.10 Sampling probe locations
图11 监测点厚度时程曲线
Fig.11 Temporal evolution of sampling probe
1 Rui Rui, He Qing, Chen Cheng, et al. Model tests on Earth pressure and settlement of shield tunnel crossing adjacent underground retaining structures[J]. Chinese Journal of Geotechnical Engineering, 2020,42(5): 864-872.
芮瑞,何清,陈成,等.盾构穿越临近地下挡土结构土压力及沉降影响模型试验[J].岩土工程学报,2020,42(5):864-872.
2 Sun Qiang. Mechanism and Method of Key Aquiclude Strata Reconstruction by Backfill Mining Technology[D]. Xuzhou: China University of Mining and Technology,2019.
孙强. 充填开采再造隔水关键层机理及方法研究[D].徐州:中国矿业大学,2019.
3 Feng Jiarui, Gao Zhiyong, Cui Jinggang, et al. Reservoir porosity evolution characteristics and evaluation of the jurassic deep reservoir from Dibei in Kuqa depression: Insight from diagenesis modeling experiments under the influence of burial mode[J]. Advances in Earth Science, 2018, 33(3): 305-320.
冯佳睿,高志勇,崔京钢,等.库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J].地球科学进展,2018,33(3):305-320.
4 Zhao Hongze, Du Hairui, Su Haiyun, et al. Basal contact friction experiment of composite slope containing soft rock and multiple seam in open pit[J]. Journal of China Coal Society,2018,43(10):2 724-2 731.
赵红泽,杜海瑞,苏海云,等. 露天矿多煤层软岩复合边坡底摩擦实验研究[J].煤炭学报,2018,43(10):2 724-2 731.
5 Kaitna R, Palucis M C, Yohannes B, et al. Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(2): 415-441.
6 Caballero L, Sarocchi D, Borselli L, et al. Particle interaction inside debris flows: Evidence through experimental data and quantitative clast shape analysis[J]. Journal of Volcanology and Geothermal Research, 2012, 231/232: 12-23.
7 Liu Run, Li Chengfeng, Lian Jijian, et al. Centrifugal shaking table tests on dynamic response of bucket foundation-sandy soil [J]. Chinese Journal of Geotechnical Engineering,2020,42(5): 817-826.
刘润,李成凤,练继建,等.筒型基础—砂土地基动力响应的离心振动台试验研究[J].岩土工程学报,2020,42(5):817-826.
8 Zhou G G D, Li S, Song D, et al. Depositional mechanisms and morphology of debris flow: Physical modelling[J]. Landslides, 2019, 16(2): 315-332.
9 Cao Congwu, Xu Qiang, Peng Dalei, et al. Research on the failure mechanism of the Heifangtai loess landslides based on the physical simulation experiments[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 72-77.
曹从伍,许强,彭大雷,等. 基于物理模拟实验的黑方台黄土滑坡破坏机理研究[J]. 水文地质工程地质, 2016, 43(4): 72-77.
10 De Haas T, Braat L, Leuven J R, et al. Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(9): 1 949-1 972.
11 Deng Hui, Li Guoying, Yang Haifeng, et al. Improvement and application of riedel shear systerm[J]. Advances in Earth Science, 2019, 34(8): 868-878.
邓辉,李果营,杨海风,等. 走滑应变椭圆模型的改进及应用举例[J].地球科学进展, 2019, 34(8): 868-878.
12 Dooley T P, Schreurs G. Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results[J]. Tectonophysics,2012,574/575(11):1-71.
13 Wang Y F, Xu Q, Cheng Q G, et al. Spreading and deposit characteristics of a rapid dry granular avalanche across 3D Topography: Experimental study[J]. Rock Mechanics & Rock Engineering, 2016, 49(11):4 349-4 370.
14 Chen Liwei. Study on the Propagation Mechanism of Ground Fissures[D]. Xi'an: Chang'an University,2007.
陈立伟. 地裂缝扩展机理研究[D].西安:长安大学,2007.
15 Zhang Li, Wang Jinman, Liu Tao. Landscape reconstruction and recreation of damaged land in opencast coal mine: A review[J]. Advances in Earth Science,2016,31(12):1 235-1 246.
张莉,王金满,刘涛.露天煤矿区受损土地景观重塑与再造的研究进展[J].地球科学进展,2016,31(12):1 235-1 246.
16 Wang Yufeng. Experiments on the Fluidization of Rock Avalanches Under the Effect of Entrapped Air[D]. Chengdu: Southwest Jiaotong University, 2014.
王玉峰. 高速远程滑坡裹气流态化机理实验研究[D]. 成都:西南交通大学, 2014.
17 Iverson R M, Logan M, Denlinger R P. Granular avalanches across irregular three‐dimensional terrain: 2. Experimental tests[J]. Journal of Geophysical Research: Earth Surface, 2004, 109(F1). DOI:10.1029/2003JF000084.
doi: 10.1029/2003JF000084    
18 Caviedes-Voullième D, Juez C, Murillo J, et al. 2D dry granular free-surface flow over complex topography with obstacles. Part I: Experimental study using a consumer-grade RGB-D sensor[J]. Computers & Geosciences, 2014, 73: 177-197.
19 Peng Dalei, Xu Qiang, Dong Xiujun, et al. Application of unmanned aerial vehicles low-altitude photogrammetry in investigation and evaluation of loess landslide[J]. Advances in Earth Science, 2017, 32(3): 319-330.
彭大雷,许强,董秀军,等. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展, 2017, 32(3): 319-330.
20 Sun Peng. Research on Large Scale Dynamic Photogrammetry[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
孙鹏. 大尺寸动态摄影测量关键技术研究[D]. 北京:北京邮电大学, 2019.
21 Dong Xiujun. Research of Comprehensive Application of Three-dimensional Image Technology in Geologic Engineering[D]. Chengdu: Chengdu University of Technology, 2015.
董秀军. 三维空间影像技术在地质工程中的综合应用研究[D]. 成都:成都理工大学, 2015.
22 Eltner A, Kaiser A, Abellan A, et al. Time lapse structure-from-motion photogrammetry for continuous geomorphic monitoring[J]. Earth Surface Processes and Landforms, 2017, 42(14): 2 240-2 253.
23 Li Shaoxu. Research on High Dynamic Range Fringe Projection Three-dimensional Measurement[D]. Nanjing: Southeast University, 2018.
李韶旭. 高动态范围光栅投影三维测量技术研究[D]. 南京:东南大学, 2018.
24 Thielicke W, Stamhuis E J. PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB[J]. Journal of Open Research Software,2014, 2(1):1-10.
[1] 孙义博,苏德,全占军,商豪律,耿冰,林兴稳,荆平平,包扬,赵艳华,杨巍. 无人机涡动相关通量观测技术研究综述[J]. 地球科学进展, 2019, 34(8): 842-854.
[2] 王帅, 徐涵秋, 施婷婷. GF-1 WFV2传感器数据的缨帽变换系数反演[J]. 地球科学进展, 2018, 33(6): 641-652.
[3] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[4] 李爱农, 边金虎, 尹高飞, 靳华安, 赵伟, 张正健, 南希, 雷光斌. 山地典型生态参量遥感反演建模及其时空表征能力研究[J]. 地球科学进展, 2018, 33(2): 141-151.
[5] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[6] 于文涛, 李静, 柳钦火, 曾也鲁, 尹高飞, 赵静, 徐保东. 中国地表覆盖异质性参数提取与分析[J]. 地球科学进展, 2016, 31(10): 1067-1077.
[7] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[8] 韩培, 舒红, 许剑辉. EnKF同化的背景误差协方差矩阵局地化对比研究[J]. 地球科学进展, 2014, 29(10): 1175-1185.
[9] 李大治, 晋锐, 车涛, 高莹, 耶楠, 王树果. 联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究 *[J]. 地球科学进展, 2014, 29(2): 295-305.
[10] 栾海军,田庆久,余 涛,胡新礼,黄彦,刘李,杜灵通,魏曦. 定量遥感升尺度转换研究综述[J]. 地球科学进展, 2013, 28(6): 657-664.
[11] 李峰,李柏,吴蕾,杨荣康,邢毅,黄兴友,肖辉,王斌. WMO第八届阳江国际探空比对辅助遥感综合试验[J]. 地球科学进展, 2012, 27(8): 916-924.
[12] 马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.
[13] 曾也鲁,李静,柳钦火. 全球LAI地面验证方法及验证数据综述[J]. 地球科学进展, 2012, 27(2): 165-174.
[14] 摆玉龙, 李新, 韩旭军. 陆面数据同化系统误差问题研究综述[J]. 地球科学进展, 2011, 26(8): 795-804.
[15] 吴炳方,蒙继华,李强子. 国外农情遥感监测系统现状与启示[J]. 地球科学进展, 2010, 25(10): 1003-1012.
阅读次数
全文


摘要