[1]Group on Earth Observations. Global Earth Observation System of Systems GEOSS-10 Year Implementation Plan Reference Document[M]. Netherlands: ESA Publications Division, 2005.
[2]Luo L F, Robock A, Mitchell K E, et al. Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains[J]. Journal of Geophysical Research-Atmospheres,2003, 108(D22): 8 843, doi:10.1029/2002JD003246.
[3]Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society,2004, 85(3): 381-394.
[4]Robinson A R, Lermusiaux P F J. Overview of Data Assimilation[R].Cambridge, 2000.
[5]Huang Chunlin, Li Xin. A review of land data assimilation system[J]. Remote Sensing Technology and Application, 2004, 19(5):424-430.[黄春林,李新. 陆面数据同化系统的研究综述[J]. 遥感技术与应用,2004, 19(5):424-430.]
[6]Li Xin, Bai Yulong. A Bayesian Filter framework for sequential data assimilation[J].Advances in Earth Science, 2010, 25(5): 515-522.[李新,摆玉龙. 顺序数据同化的Bayes滤波框架[J]. 地球科学进展,2010,25(5):515-522.]
[7]Li Xin, Huang Chunlin. Data assimilation: A new means for multi-source geospatial data integration[J]. Science & Technology Review, 2004,(12):13-17.[李新, 黄春林. 数据同化——一种集成多源地理空间数据的新思路[J]. 科技导报,2004,(12): 13-17.]
[8]Gong Peng. Some leading problems of remote sensing science and technology[J].Journal of Remote Sensing, 2009, 13(1):13-23.[宫鹏. 遥感科学与技术中的一些前沿问题[J]. 遥感学报,2009,13(1): 13-23.]
[9]Mathieu P, Alano′Neill. Data assimilation: From photo counts to Earth System forecasts[J]. Remote Sensing of Environment,2008, 112(4): 1 258-1 267.
[10]Roger Daley. Atmospheric Data Analysis[M]. New York: Cambridge University Press, 1991.
[11]Courtier P, Derber J, Errico R, et al. Important literature on the use of adjoint, variational-methods and the Kalman Filter in meteorology[J]. Tellus Series A—Dynamic Meteorology and Oceanography,1993, 45A(5): 342-357.
[12]Dimet F X L, Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects[J]. Tellus Series A—Dynamic Meteorology and Oceanography,1986, 38A(2): 97-110.
[13]Zhang Hua, Xue Jishan, Zhuang Shiyu, et al. Idea experiments of grapes Three-Dimensional Variational data assimilation system[J].Acta Meteorological Sinica, 2004, 62(1): 34-41.[张华, 薛纪善, 庄世宇,等. GRAPES三维变分同化系统的理想试验[J].气象学报,2004, 62(1): 31-41.]
[14]Andersson E, Haseler J, Unden P, et al. The ECMWF implementation of Three-Dimensional Variational assimilation (3D-Var). III: Experimental results[J]. Quarterly Journal of the Royal Meteorological Society,1998, 124(550): 1 831-1 860.
[15]Courtier P, Andersson E, Heckley W, et al. The ECMWF implementation of Three-Dimensional Variational assimilation (3D-Var). I: Formulation[J]. Quarterly Journal of the Royal Meteorological Society,1998, 124(550): 1 783-1 807.
[16]Rabier F, Mcnally A, Andersson E, et al. The ECMWF implementation of Three-Dimensional Variational assimilation (3D-Var). II: Structure functions[J]. Quarterly Journal of the Royal Meteorological Society,1998, 124(550): 1 809-1 829.
[17]Lorenc A C, Ballard S P, Bell R S, et al. The Met. Office global Three-Dimensional Variational data assimilation scheme[J]. Quarterly Journal of the Royal Meteorological Society,2000, 126(570): 2 991-3 012.
[18]Talagrand O, Courtier P. Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory[J]. Quarterly Journal of the Royal Meteorological Society,1987, 113(478): 1 311-1 328.
[19]Courtier P, Talagrand O. Variational assimilation of meteorological observations with the adjoint vorticity equation. Li: Numerical Results[J]. Quarterly Journal of the Royal Meteorological Society,1987, 113(478): 1 329-1 347.
[20]Courtier P, Thépaut J N, Hollingsworth A. A strategy for operational implementation of 4D-VAR,using an incremental approach[J]. Quarterly Journal of the Royal Meteorological Society,1994, 120(519): 1 367-1 387.
[21]Xu L, Rosmond T, Goerss J, et al. Toward a weak constraint operational 4D-Var system: Application to the Burgers’ equation[J]. Meteorologische Zeitschrift,2007, 16(6): 741-753.
[22]Tremolet Y. Accounting for an imperfect model in 4D-Var [J]. Quarterly Journal of the Royal Meteorological Society,2006, 132(621): 2 483-2 504.
[23]Liu C S, Xiao Q N, Wang B. An ensemble—Based Four-Dimensional Variational data assimilation scheme. Part II: Observing system simulation experiments with Advanced Research WRF (ARW)[J]. Monthly Weather Review,2009, 137(5): 1 687-1 704.
[24]Liu C S, Xiao Q N, Wang B. An ensemble-based Four-Dimensional Variational data assimilation scheme. Part I: Technical formulation and preliminary test[J]. Monthly Weather Review,2008, 136(9): 3 363-3 373.
[25]Evensen G. The Ensemble Kalman Filter—Theoretical formulation and practical implementation[J]. Ocean Dynamics,2003, 53(4): 343-367.
[26]Evensen G. Sampling strategies and square root analysis schemes for the EnKF[J]. Ocean Dynamics,2004, 54(6): 539-560.
[27]Huang Chunlin, Li Xin, Lu Ling, et al. Experiments of one-dimensional soil moisture assimilation system based on Ensemble Kalman Filter[J]. Remote Sensing of Environment,2008, 112(3): 888-900.
[28]Huang Chunlin,Li Xin. Retrieving soil temperature profile by assimilating MODIS LST products with Ensemble Kalman Filter[J]. Remote Sensing of Environment,2008,112(4): 1 320-1 336.
[29]Burgers G, Van Leeuwen P J, Evensen G. Analysis scheme in the Ensemble Kalman Filter[J]. Monthly Weather Review,1998, 126(6): 1 719-1 724.
[30]Houtekamer P L, Mitchell H L. Data assimilation using an Ensemble Kalman Filter technique[J]. Monthly Weather Review,1998, 126(3): 796-811.
[31]Bishop C H, Etherton B J, Majumdar S J. Adaptive sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical aspects[J]. Monthly Weather Review,2001, 129(3): 420-436.
[32]Anderson J L. An Ensemble Adjustment Kalman Filter for data assimilation[J]. Monthly Weather Review,2001, 129(12): 2 884-2 903.
[33]Whitaker J S, Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review,2002, 130(7): 1 913-1 924.
[34]Ott E, Hunt B R, Szunyogh I, et al. A Local Ensemble Kalman Filter for atmospheric data assimilation[J]. Tellus Series A—Dynamic Meteorology and Oceanography,2004, 56(5): 415-428.
[35]Hansen J A, Smith L A. Probabilistic noise reduction[J]. Tellus Series A—Dynamic Meteorology and Oceanography,2001, 53(5): 585-598.
[36]Hu Shiqiang, Jing Zhongliang. Overview of Particle Filter algorithm[J]. Control and Decision, 2005, 20(4):361-365.[胡士强, 敬忠良. 粒子滤波算法综述[J]. 控制与决策,2005, 20(4): 361-365.]
[37]Moradkhani H, Hsu K L, Gupta H, et al. Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the Particle Filter[J]. Water Resources Research,2005, 41(5): 1-17,doi:10.1029/2004WR003604.
[38]Moradkhani H, Sorooshian S, Gupta H V, et al. Dual state-parameter estimation of hydrological models using Ensemble Kalman Filter[J]. Advances in Water Resources,2005, 28(2): 135-147.
[39]Zhou Y H, Mclaughlin D, Entekhabi D. Assessing the performance of the Ensemble Kalman Filter for land surface data assimilation[J]. Monthly Weather Review,2006, 134(8): 2 128-2 142.
[40]Han X, Li X. An evaluation of the nonlinear/non-Gaussian Filters for the sequential data assimilation[J]. Remote Sensing of Environment,2008, 112(4): 1 434-1 449.
[41] Pan M. Assimilation of Satellite Observation into a Land Surface Hydrologic Modeling System[D]. Princeton :Princeton University, 2006.
[42]Qin J, Liang S, Yang K, et al. Simultaneous estimation of both soil moisture and model parameters using Particle Filtering Method through the assimilation of microwave signal[J]. Journal of Geophysical Research,2009, 114:D15103, doi:10.1029/2008JD11358.
[43]Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian Filtering[J]. Statistics and Computing,2000, 10(3): 197-208.
[44]Berliner L M. Hierarchical bayesian time series models[M]∥Hanson K, Silver R, eds.Maximum Entropy and Bayesian Methods. Dordrecht: Kluwer Academic Public, 1996:15-23.
[45]Cressie N, Wikle C K. Statistics for Spatio-temporal Data[M]. New Jersey: Wiley, John & Sons, 2010.
[46]Gelman A, Carlin J B, Stern H S, et al. Bayesian Data Analysis[M]. New York: Chapman & Hall/CRC, 2003.
[47]Gelfand A E, Diggle P, Guttorp P, et al. Handbook of Spatial Statistics[M].New York: Chapman and Hall/CRC, 2010.
[48]Gelfand A E, Sahu S K. Combining monitoring data and computer model output in assessing environmental exposure[M]∥Hagan A O, West M,eds. The Oxford Handbook of Applied Bayesian Analysis. Oxford:Oxford University Press, 2009.
[49]Sahu S K, Yip S, Holland D M. Improved space-time forecasting of next day ozone concentrations in the eastern US[J]. Atmospheric Environment,2009, 43(3):494-501.
[50]Liu Y, Gupa H V. Uncertainty in hydrologic modeling toward an integrated data assimilation framework[J]. Water Resources Research,2007,43,doi:10.1029/2006WR005756.
[51]Wikle C K, Berliner L M. Combining information across spatial scales[J]. Technometrics, 2002, 47:80-91.
[52]Wikle C K, Berliner L M, Cressie N. Hierarchical Bayesian Space-Time Models[J]. Environment and Ecological Statistics,1998, 5(2): 117-154.
[53]Fuentes M. A formal test for non-stationarity of spatial stochastic processes[J]. Journal of Multivariate Analysis,2005, 96(1): 30-54.
[54]Mcmillan N J, Holland D M, Morara M, et al. Combining numerical model output and particulate data using Bayesian Space-Time Modeling[J]. Environmetrics,2010, 21(1): 48-65.
[55]Wikle C K, Berliner L M. A Bayesian tutorial for data assimilation[J]. Physica D,2006, 230(1/2): 1-16.
[56]Banerjee S, Gelfand A E, Carlin B P, et al. Hierarchical Modeling and Analysis for Spatial Data[M]. London:Chapman and Hall Press, 2003.
[57]Clark J S, Gelfand A. Hierarchical Modelling for the Environmental Sciences: Statistical Methods and Applications[M]. Oxford: Oxford University Press, 2006.
[58]Wikle C K. Hierarchical Models in environmental science[J]. International Statistical Review,2002,71(2):181-199.
[59]Talagrand O, Courtier P. A variational approach to the problem of the assimilation of meteorological observations[J].Lecture Notes in Control and Information Sciences,1986, 83: 728-746.
[60]Kalman R E. A new approach to linear filtering and prediction problems[J]. Transactions of the Asme—Journal of Basic Engineering,1960, 82(Series D): 35-45.
[61]Reichle R H, Walker J P, Koster R D, et al. Extended versus Ensemble Kalman Filtering for land data assimilation[J]. Journal of Hydrometeorology,2002, 3(6): 728-740.
[62]Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics[J]. Journal of Geophysical Research-Oceans,1994, 99(C5): 10 143-10 162.
[63]Huang Chunlin, Li Xin. Experiments of soil moisture data assimilation system based on Ensemble Kalman Filter[J]. Plateau Meteology, 2006, 25(4):665-671.[黄春林, 李新. 基于集合卡尔曼滤波的土壤水分同化试验[J]. 高原气象,2006, 25(4):665-671.]
[64]Qin J, Liang S L, Yang K, et al. Simultaneous estimation of both soil moisture and model parameters using Particle Filtering method through the assimilation of microwave signal[J]. Journal of Geophysical Research-Atmospheres,2009, 114: D15103,doi:10.1029/2008JD011358.
[65]Chen Yingying. Study on Land Surface Simulation and Land Data Assimilation based on Noah Model[D]. Beijing: Graduate University of the Chinese Academy of Sciences, 2008.[陈莹莹. 基于Noah 模型的陆面模拟和陆面数据同化研究[D]. 北京:中国科学院研究生院, 2008.]
[66]Berliner L M, Royle J A, Wikle C K, et al. Bayesian Methods in the atmospheric sciences[J]. Bayesian Statistics,1998, 6:83-100.
[67]Fuentes M, Raftery A E. Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models[J]. Biometrics,2005, 61(1): 36-45.
[68]Sahu S K, Yip S, Holland D M. Improved space-time forecasting of next day ozone concentrations in the eastern US[J]. Atmospheric Environment,2009, 43(3): 494-501.
[69]Plant N G, Holland K T. Prediction and assimilation of surf-zone processes using a Bayesian network: Forward models[J]. Coastal Engineering,2011, 58(1): 119-130.
[70]Plant N G, Holland K T. Prediction and assimilation of surf-zone processes using a Bayesian network: Inverse Model[J]. Coastal Engineering,2011, 58(3): 256-266. |