Please wait a minute...
img img
高级检索
地球科学进展  2013, Vol. 28 Issue (8): 948-956    DOI: 10.11867/j.issn.1001-8166.2013.08.0948
全球变化研究     
黑河中游绿洲灌溉区土地覆盖与种植结构空间格局遥感监测
王志慧1,2 , 刘良云1*
1.中国科学院遥感与数字地球研究所,北京 100094; 2.中国科学院大学,北京 100049
Monitoring on Land Cover Pattern and Crops Structure of Oasis Irrigation Area of Middle Reaches in Heihe River Basin Using Remote Sensing Data
Wang Zhihui1,2, Liu Liangyun1
1.Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094,China;
2.University of Chinese Academy of Sciences, Beijing 100049,China
 全文: PDF(6312 KB)  
摘要:

以高空间分辨率、高光谱分辨率CASI航空遥感数据作为采样带,对黑河中游绿洲灌溉区土地覆盖和农作物种植结构空间格局进行遥感监测。设计了分层分类方法,综合采用基于像素和基于对象的2种遥感图像分类方法对航空样带区域进行土地覆盖制图。根据实地土地覆盖类型调查与目视解译,对样带土地覆盖和农作物种植结构的分类结果进行精度评价,总体分类精度为84.2%,Kappa系数为0.793。与样带区域2007年Landsat TM/ETM+土地覆盖产品相比,高分辨率CASI航空数据能够对树木、草地与农作物类别进行有效监测。监测结果表明,中游绿洲灌溉区内接近59.1%的地区为裸地与建筑用地;植被覆盖区域占39.8%,其中,农田34.9%,树木5.3%,草地仅有0.1%;而在农田区域中玉米为大宗作物,分类成数占96.1%。研究结果表明高质量与高分辨率的航空遥感数据能够实现对流域下垫面异质性进行有效监测,为生态—水文过程研究提供高分辨率的下垫面类型信息。

关键词: 航空样带遥感高光谱CASI分类    
Abstract:

The land cover pattern and crops structure of oasis irrigation area of middle reaches in the Heihe River Basin were monitored using CASI aerial data with high spatial and spectral resolution as transects. We designed a hierarchical classification structure integrated by pixelbased classification and object-based classification to map land cover types and crop planting structure in this region. According to surveyed reference data about land cover and visual interpretation from high resolution imagery, the accuracy of the classification result about land cover and crops pattern from CASI transect data was evaluated, and the result showed that overall accuracy was 84.61%, Kappa coefficient was 0.8262. Compared with landsat TM/ETM+ land cover product in Zhangye in 2007 within flight transects, CASI aerial data with high resolution was able to effectively identify the trees, shrubs and various crops. Land cover pattern of oasis irrigation area and various crop proportions within cropland area were analyzed using CASI classification result. The result showed that almost 59.1% of oasis irrigation area of middle reaches in the  Heihe River Basin was barren or builtup region, and vegetated region accounted for 39.8%. Cropland, trees and grassland accounted for 39.4%, 5.3% and 0.1% respectively, and corn was staple crop, accounting for 96.1% within cropland area. This study demonstrated that aerial remote sensing data with high quality and high spatial resolution was able to effectively monitor spatial heterogeneity of underlying surface in the basin, and offer high-resolution information about underlying surface types for study on eco-hydrological process.

Key words: Aerial transect    Remote sensing    Hyperspectral    CASI    Classification
收稿日期: 2013-05-07 出版日期: 2013-08-10
:  P96  
基金资助:

国家自然科学基金重点项目“黑河流域生态—水文过程综合遥感观测试验:航空光学遥感”(编号:91125003)资助.

通讯作者: 刘良云(1975-),男,湖南邵阳人,研究员,主要从事植被生态定量遥感研究.E-mail:lyliu@ceode.ac.cn     E-mail: 刘良云lyliu@ceode.ac.cn
作者简介: 王志慧(1985-),男,山西太原人,博士研究生,主要从事地表覆盖与地表参量遥感反演研究.E-mail:wangzhihui@ceode.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王志慧
刘良云

引用本文:

王志慧, 刘良云. 黑河中游绿洲灌溉区土地覆盖与种植结构空间格局遥感监测[J]. 地球科学进展, 2013, 28(8): 948-956.

Wang Zhihui, Liu Liangyun. Monitoring on Land Cover Pattern and Crops Structure of Oasis Irrigation Area of Middle Reaches in Heihe River Basin Using Remote Sensing Data. Advances in Earth Science, 2013, 28(8): 948-956.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2013.08.0948        http://www.adearth.ac.cn/CN/Y2013/V28/I8/948

[1]Chu Duo, Basanta Shrestha, Wang Wei, et al. Land cover mapping in the Tibet Plateau using MODIS imagery[J].Resources Science, 2010, 32(11):2 152-2 159.[除多,Basanta Shrestha,王伟,等. 基于MODIS的西藏高原土地覆盖分类研究[J].资源科学, 2010, 32(11):2 152-2 159.]

[2]Liu Qingfeng, Liu Jiping, Song Kaishan. Land cover classification based on MODIS/NDVI times series data[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2010, 27(2):163-169.[刘庆凤,刘吉平,宋开山. 基于MODIS/NDVI时序数据的土地覆盖分类[J]. 中国科学院研究生院学报, 2010, 27(2):163-169.]

[3]Liu Yonghong, Niu Zheng. Reginal land cover image classification and accuracy evaluation using MODIS data[J]. Remote Sensing Technology and Application, 2004, 19(4):217-224.[刘勇洪,牛铮. 基于MODIS遥感数据的宏观土地覆盖特征分类方法与精度分析研究[J].遥感技术与应用, 2004, 19(4):217-224.]

[4]Friedl M A, Sulla-Menashe D, Tan B, et al. MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets [J]. Remote Sensing of Environment,2010,114(1):168-182.

[5]Sulla-Menashe D, Friedl M A, Krankina O N, et al. Hierarchical mapping of Northren Eurasian land cover using MODIS data [J]. Remote Sensing of Environment, 2011, 115(2):392-403.

[6]Al-Kofahi S, Steele C, Vanleeuwen D, et al. Mapping land cover in urban residential landscapes using very high spatial resolution aerial photographs [J]. Urban Forestry & Urban Greening, 2012, 11(3): 291-301.

[7]Lucas R, Bunting P, Paterson M, et al. Classification of Australian forest communities using aerial photography, CASI and HyMap data[J]. Remote Sensing of Environment, 2008, 112(5):  2 088-2 103.

[8]Cleve C, Kelly M, Kearns F R, et al. Classification of the wildland-urban interface: A comparison of pixel-and object-based classifications using high-resolution aerial photography. [J]. Environment and Urban Systems, 2008, 32(4): 317-326.

[9]Wu Bingfang, Li Qiangzi. Crop acreage estimation using two individual sampling frameworks with stratification[J]. Journal of Remote Sensing, 2004, 8(6):551-569.[吴炳方,李强子. 基于两个独立抽样框架的农作物种植面积遥感估算方法[J]. 遥感学报,2004,8(6):551-569.]

[10]Liu Haiqi, Jin Minyu. Applications of remote sensing in agriculture in the United States[J]. China Agricultural Resources and Regional Planning, 1999, 20(2): 56-60.[刘海启,金敏毓.美国农业遥感技术应用状况概述[J].中国农业资源与区划,1999,20(2): 56-60.]

[11]Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological process in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5):481-498.[李新,刘绍民,马明国,等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展,2012,27(5): 481-498.]

[12]Tian Jing, Su Hongbo, Chen Shaohui, et al. Spatial-temporal processes of desertification and oasification in the middle reaches of the Heihe River based on remote sensing[J]. Resources Science, 2011, 33(2): 347-355.[田静,苏红波,陈少辉,等. 黑河中游绿洲化荒漠化的时空变化遥感分析[J]. 资源科学, 2011, 33(2): 347-355.]

[13]Liu Jiyuan, Liu Mingliang, Tian Hanqin, et al. Spatia land temporal patterns of China’s cropland during 1990-2000: An analysis based on Landsat TM data[J]. Remote Sensing of Environment, 2005, 98: 442-456.

[14]Tang Huajun, Wu Wenbin, Yang Peng, et al. Recent progresses in monitoring crop spatial patterns by using remote sensing technologies[J]. Scientia Agricultura Sinica, 2010, 43(14):2 879-2 888.[唐华俊,吴文斌,杨鹏,等. 农作物空间格局遥感监测研究进展[J]. 中国农业科学,2010,43(14):2 879-2 888.]

[15]Schotten C G J, van Rooy W W L, Janssen L L F. Assessment of the capabilities of multi-temporal ERS-1 SAR data to discriminate between agricultural crops[J]. International Journal of Remote Sensing, 1995, 16(14): 2 619-2 637.

[16]Yu Qingxiao, Yuan Can, Fu Z, et al. An autonomous restaurant service robot with high positioning accuracy[J]. Industrial Robot: An International Journal,2012, 39(3):271-281.

[17]Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5): 603-619.

[18]Wang Zhihui, Li Shiming, Zhang Yiwei. The study on the detection of the variations of forest resources based on C5.0 algorithm—A case of Culai forest in Shandong[J]. Journal of Northwest Forestry University,2011,26(5):185-191.[王志慧,李世明,张艺伟. 基于C5.0算法的森林资源变化检测方法研究——以山东省徂徕山林区为例[J].西北林学院学报,2011,26(5):185-191.]

[19]Liu Liangyun, Wang Jihua, Zhao Chunjiang, et al. Study of floating prior probability MLC based on spatial features and local spatial autocorrelation[J]. Journal of Remote Sensing, 2006, 10(2):227-235.[刘良云,王纪华,赵春江,等. 基于地物空间信息的浮动先验概率的最大似然分类研究[J].遥感学报,2006,10(2):227-235.]

[20]Hansen M C, Defries R S, Townshend J, et al. Global land cover classification at 1 km spatial resolution using a classification tree approach [J]. International Journal of Remote Sensing,2000,21(6/7):1 331-1 364.

[21]Blaschke T. Object based image analysis for remote sensing [J]. ISPRS Journal of Photogrammetry and Remote Sensing,2005,65(1):2-16.

[22]Friedl M A, McIver D K, Hodges J C F, et al. Global land cover mapping from MODIS: Algorithms and early results [J]. Remote Sensing of Environment,2002,83(2):287-302.

[23]Loveland T R, Reed B C, Brown J F, et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data [J]. International Journal of Remote Sensing,2002,21(6/7):1 303-1 330.

[24]Li Xin, Li Xiaowen, Li Zenyuan, et al. Watershed allied telemetry experimental research [J]. Journal of Geophysical Research,2009,114(22):D22103.

[25]Guanter L, Víctor Estellés, Moreno J. Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data: Application to CASI-1500 data [J]. Remote Sensing of Environment,2007,109 (1):54-65.

[1] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[2] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[3] 李青, 雷连发, 王振会, 魏鸣, 李东帅. 雷电流热效应的遥感观测研究进展[J]. 地球科学进展, 2017, 32(5): 481-487.
[4] 王根, 张华, 杨寅. 高光谱大气红外探测器AIRS资料质量控制研究进展[J]. 地球科学进展, 2017, 32(2): 139-150.
[5] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[6] 彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.
[7] 姜波, 李明, 屈争辉, 刘杰刚, 李伍. 构造煤研究现状及展望[J]. 地球科学进展, 2016, 31(4): 335-346.
[8] 张 勇, 戎志国, 闵 敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展, 2016, 31(2): 171-179.
[9] 陈科贵, 吴刘磊, 陈愿愿, 王刚. 基于支持向量机的川中杂卤石分类识别研究[J]. 地球科学进展, 2016, 31(10): 1041-1046.
[10] 于文涛, 李静, 柳钦火, 曾也鲁, 尹高飞, 赵静, 徐保东. 中国地表覆盖异质性参数提取与分析[J]. 地球科学进展, 2016, 31(10): 1067-1077.
[11] 崔月菊, 杜建国, 李营, 刘雷, 周晓成, 陈扬, 陈志, 韩晓昆. 张渤地震带高光谱气体地球化学特征[J]. 地球科学进展, 2016, 31(1): 59-65.
[12] 李育, 朱耿睿. 三大自然区过渡地带近50年来气候类型变化及其对气候变化的响应[J]. 地球科学进展, 2015, 30(7): 791-801.
[13] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[14] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[15] 吴珊珊, 姚治君, 姜丽光, 刘兆飞. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246.