地球科学进展 ›› 2013, Vol. 28 ›› Issue (8): 948 -956. doi: 10.11867/j.issn.1001-8166.2013.08.0948

全球变化研究 上一篇    

黑河中游绿洲灌溉区土地覆盖与种植结构空间格局遥感监测
王志慧 1,2 , 刘良云 1*   
  1. 1.中国科学院遥感与数字地球研究所,北京 100094; 2.中国科学院大学,北京 100049
  • 收稿日期:2013-05-07 修回日期:2013-07-15 出版日期:2013-08-10
  • 通讯作者: 刘良云(1975-),男,湖南邵阳人,研究员,主要从事植被生态定量遥感研究.E-mail:lyliu@ceode.ac.cn E-mail:刘良云lyliu@ceode.ac.cn
  • 基金资助:

    国家自然科学基金重点项目“黑河流域生态—水文过程综合遥感观测试验:航空光学遥感”(编号:91125003)资助.

Monitoring on Land Cover Pattern and Crops Structure of Oasis Irrigation Area of Middle Reaches in Heihe River Basin Using Remote Sensing Data

Wang Zhihui 1,2, Liu Liangyun 1   

  1. 1.Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094,China;
    2.University of Chinese Academy of Sciences, Beijing 100049,China
  • Received:2013-05-07 Revised:2013-07-15 Online:2013-08-10 Published:2013-08-10

以高空间分辨率、高光谱分辨率CASI航空遥感数据作为采样带,对黑河中游绿洲灌溉区土地覆盖和农作物种植结构空间格局进行遥感监测。设计了分层分类方法,综合采用基于像素和基于对象的2种遥感图像分类方法对航空样带区域进行土地覆盖制图。根据实地土地覆盖类型调查与目视解译,对样带土地覆盖和农作物种植结构的分类结果进行精度评价,总体分类精度为84.2%,Kappa系数为0.793。与样带区域2007年Landsat TM/ETM+土地覆盖产品相比,高分辨率CASI航空数据能够对树木、草地与农作物类别进行有效监测。监测结果表明,中游绿洲灌溉区内接近59.1%的地区为裸地与建筑用地;植被覆盖区域占39.8%,其中,农田34.9%,树木5.3%,草地仅有0.1%;而在农田区域中玉米为大宗作物,分类成数占96.1%。研究结果表明高质量与高分辨率的航空遥感数据能够实现对流域下垫面异质性进行有效监测,为生态—水文过程研究提供高分辨率的下垫面类型信息。

The land cover pattern and crops structure of oasis irrigation area of middle reaches in the Heihe River Basin were monitored using CASI aerial data with high spatial and spectral resolution as transects. We designed a hierarchical classification structure integrated by pixelbased classification and object-based classification to map land cover types and crop planting structure in this region. According to surveyed reference data about land cover and visual interpretation from high resolution imagery, the accuracy of the classification result about land cover and crops pattern from CASI transect data was evaluated, and the result showed that overall accuracy was 84.61%, Kappa coefficient was 0.8262. Compared with landsat TM/ETM+ land cover product in Zhangye in 2007 within flight transects, CASI aerial data with high resolution was able to effectively identify the trees, shrubs and various crops. Land cover pattern of oasis irrigation area and various crop proportions within cropland area were analyzed using CASI classification result. The result showed that almost 59.1% of oasis irrigation area of middle reaches in the  Heihe River Basin was barren or builtup region, and vegetated region accounted for 39.8%. Cropland, trees and grassland accounted for 39.4%, 5.3% and 0.1% respectively, and corn was staple crop, accounting for 96.1% within cropland area. This study demonstrated that aerial remote sensing data with high quality and high spatial resolution was able to effectively monitor spatial heterogeneity of underlying surface in the basin, and offer high-resolution information about underlying surface types for study on eco-hydrological process.

中图分类号: 

[1]Chu Duo, Basanta Shrestha, Wang Wei, et al. Land cover mapping in the Tibet Plateau using MODIS imagery[J].Resources Science, 2010, 32(11):2 152-2 159.[除多,Basanta Shrestha,王伟,等. 基于MODIS的西藏高原土地覆盖分类研究[J].资源科学, 2010, 32(11):2 152-2 159.]

[2]Liu Qingfeng, Liu Jiping, Song Kaishan. Land cover classification based on MODIS/NDVI times series data[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2010, 27(2):163-169.[刘庆凤,刘吉平,宋开山. 基于MODIS/NDVI时序数据的土地覆盖分类[J]. 中国科学院研究生院学报, 2010, 27(2):163-169.]

[3]Liu Yonghong, Niu Zheng. Reginal land cover image classification and accuracy evaluation using MODIS data[J]. Remote Sensing Technology and Application, 2004, 19(4):217-224.[刘勇洪,牛铮. 基于MODIS遥感数据的宏观土地覆盖特征分类方法与精度分析研究[J].遥感技术与应用, 2004, 19(4):217-224.]

[4]Friedl M A, Sulla-Menashe D, Tan B, et al. MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets [J]. Remote Sensing of Environment,2010,114(1):168-182.

[5]Sulla-Menashe D, Friedl M A, Krankina O N, et al. Hierarchical mapping of Northren Eurasian land cover using MODIS data [J]. Remote Sensing of Environment, 2011, 115(2):392-403.

[6]Al-Kofahi S, Steele C, Vanleeuwen D, et al. Mapping land cover in urban residential landscapes using very high spatial resolution aerial photographs [J]. Urban Forestry & Urban Greening, 2012, 11(3): 291-301.

[7]Lucas R, Bunting P, Paterson M, et al. Classification of Australian forest communities using aerial photography, CASI and HyMap data[J]. Remote Sensing of Environment, 2008, 112(5):  2 088-2 103.

[8]Cleve C, Kelly M, Kearns F R, et al. Classification of the wildland-urban interface: A comparison of pixel-and object-based classifications using high-resolution aerial photography. [J]. Environment and Urban Systems, 2008, 32(4): 317-326.

[9]Wu Bingfang, Li Qiangzi. Crop acreage estimation using two individual sampling frameworks with stratification[J]. Journal of Remote Sensing, 2004, 8(6):551-569.[吴炳方,李强子. 基于两个独立抽样框架的农作物种植面积遥感估算方法[J]. 遥感学报,2004,8(6):551-569.]

[10]Liu Haiqi, Jin Minyu. Applications of remote sensing in agriculture in the United States[J]. China Agricultural Resources and Regional Planning, 1999, 20(2): 56-60.[刘海启,金敏毓.美国农业遥感技术应用状况概述[J].中国农业资源与区划,1999,20(2): 56-60.]

[11]Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological process in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5):481-498.[李新,刘绍民,马明国,等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展,2012,27(5): 481-498.]

[12]Tian Jing, Su Hongbo, Chen Shaohui, et al. Spatial-temporal processes of desertification and oasification in the middle reaches of the Heihe River based on remote sensing[J]. Resources Science, 2011, 33(2): 347-355.[田静,苏红波,陈少辉,等. 黑河中游绿洲化荒漠化的时空变化遥感分析[J]. 资源科学, 2011, 33(2): 347-355.]

[13]Liu Jiyuan, Liu Mingliang, Tian Hanqin, et al. Spatia land temporal patterns of China’s cropland during 1990-2000: An analysis based on Landsat TM data[J]. Remote Sensing of Environment, 2005, 98: 442-456.

[14]Tang Huajun, Wu Wenbin, Yang Peng, et al. Recent progresses in monitoring crop spatial patterns by using remote sensing technologies[J]. Scientia Agricultura Sinica, 2010, 43(14):2 879-2 888.[唐华俊,吴文斌,杨鹏,等. 农作物空间格局遥感监测研究进展[J]. 中国农业科学,2010,43(14):2 879-2 888.]

[15]Schotten C G J, van Rooy W W L, Janssen L L F. Assessment of the capabilities of multi-temporal ERS-1 SAR data to discriminate between agricultural crops[J]. International Journal of Remote Sensing, 1995, 16(14): 2 619-2 637.

[16]Yu Qingxiao, Yuan Can, Fu Z, et al. An autonomous restaurant service robot with high positioning accuracy[J]. Industrial Robot: An International Journal,2012, 39(3):271-281.

[17]Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5): 603-619.

[18]Wang Zhihui, Li Shiming, Zhang Yiwei. The study on the detection of the variations of forest resources based on C5.0 algorithm—A case of Culai forest in Shandong[J]. Journal of Northwest Forestry University,2011,26(5):185-191.[王志慧,李世明,张艺伟. 基于C5.0算法的森林资源变化检测方法研究——以山东省徂徕山林区为例[J].西北林学院学报,2011,26(5):185-191.]

[19]Liu Liangyun, Wang Jihua, Zhao Chunjiang, et al. Study of floating prior probability MLC based on spatial features and local spatial autocorrelation[J]. Journal of Remote Sensing, 2006, 10(2):227-235.[刘良云,王纪华,赵春江,等. 基于地物空间信息的浮动先验概率的最大似然分类研究[J].遥感学报,2006,10(2):227-235.]

[20]Hansen M C, Defries R S, Townshend J, et al. Global land cover classification at 1 km spatial resolution using a classification tree approach [J]. International Journal of Remote Sensing,2000,21(6/7):1 331-1 364.

[21]Blaschke T. Object based image analysis for remote sensing [J]. ISPRS Journal of Photogrammetry and Remote Sensing,2005,65(1):2-16.

[22]Friedl M A, McIver D K, Hodges J C F, et al. Global land cover mapping from MODIS: Algorithms and early results [J]. Remote Sensing of Environment,2002,83(2):287-302.

[23]Loveland T R, Reed B C, Brown J F, et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data [J]. International Journal of Remote Sensing,2002,21(6/7):1 303-1 330.

[24]Li Xin, Li Xiaowen, Li Zenyuan, et al. Watershed allied telemetry experimental research [J]. Journal of Geophysical Research,2009,114(22):D22103.

[25]Guanter L, Víctor Estellés, Moreno J. Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data: Application to CASI-1500 data [J]. Remote Sensing of Environment,2007,109 (1):54-65.

[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[3] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[4] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[5] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[6] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[7] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[8] 程惠红,孙长青,王聪. 2020年度地球物理学和空间物理学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1163-1170.
[9] 何建军,郭郁葱,刘哲,吴捷,李莉. 2020年度大气科学领域项目评审与资助成果简析[J]. 地球科学进展, 2020, 35(11): 1201-1210.
[10] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[11] 邓辉,李果营,杨海风,温宏雷,张参. 走滑应变椭圆模型的改进及应用举例[J]. 地球科学进展, 2019, 34(8): 868-878.
[12] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[13] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[14] 李积明,刘哲,郭郁葱,彭怡然,闻新宇. 2019年度大气科学领域项目评审与研究成果分析[J]. 地球科学进展, 2019, 34(11): 1212-1217.
[15] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
阅读次数
全文


摘要