地球科学进展 ›› 2019, Vol. 34 ›› Issue (10): 1015 -1027. doi: 10.11867/j.issn.1001-8166.2019.10.1015

综述与评述 上一篇    下一篇

中国多年冻土制图:进展、挑战与机遇
冉有华 1, 2( ),李新 2, 3, 4   
  1. 1. 中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2. 中国科学院大学,北京 100049
    3. 中国科学院青藏高原研究所,北京 100101
    4. 中国科学院青藏高原地球科学卓越创新中心,北京 100101
  • 收稿日期:2019-07-08 修回日期:2019-09-28 出版日期:2019-10-10
  • 基金资助:
    中国科学院青年创新促进会项目(2016375)

Progress, Challenges and Opportunities of Permafrost Mapping in China

Youhua Ran 1, 2( ),Xin Li 2, 3, 4   

  1. 1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    4. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2019-07-08 Revised:2019-09-28 Online:2019-10-10 Published:2019-12-05
  • About author:Ran Youhua (1980-), male, Zhenyuan County, Gansu Province, Associate professor. Research areas include application of remote sensing and GIS in ecohydrology and cryospheric research, science data integration, management and service. E-mail: ranyh@lzb.ac.cn
  • Supported by:
    the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2016375)

多年冻土制图是冻土学的基础研究方向之一。通过总结我国多年冻土制图的发展历程,讨论了多年冻土分类系统和多年冻土(区)面积,并从经验模型、物理模型、统计学习3个方面探讨了我国多年冻土制图方法的研究进展。根据制图手段、数据可用性、模型和方法的不同,将我国多年冻土制图分为3个发展阶段:起步阶段(20世纪60~80年代)、遥感和GIS初步应用阶段(20世纪90年代至2010年)和多源观测与综合模型融合阶段(2010年至今)。不同阶段对多年冻土面积的认识有较大差别,随着制图空间分辨率与精度的提高,新的冻土图更接近代表真实的多年冻土面积。在制图方法方面,经验模型与物理模型的发展贯穿3个阶段,经验模型与遥感的结合是目前中国多年冻土制图的主要方法;冻土物理模型发展迅速,通过与其他模型的耦合,特别是与分布式水文模型的耦合,为模拟冻土变化的生态水文效应提供了重要工具;随着地面与遥感观测数据的积累,统计学习方法表现出较大潜力。地球观测系统的发展为冻土监测提供了前所未有的机遇。地面调查的优化、数据积累与开放共享、冻土遥感方法的进一步发展、深化多年冻土深层过程的理解与物理模型的进一步改进及其与观测的融合等,都将有助于突破中国多年冻土制图面临的挑战,促进对中国多年冻土过去、现在和未来变化的认识。

Permafrost mapping is the basic research direction of geocryology. This paper summarized the development history of permafrost mapping in China. The classification system, permafrost (region) area, and the progress of mapping methods at three aspects, i.e. statistical learning, empirical model and physical model in China were discussed. According to the differences of tools, data availability, models, and methods, permafrost mapping in China has experienced three development stages, including initial stage (1960s-1980s), preliminary application of remote sensing and GIS (1990s-2000s), and fusion of multi-source observation and integrated model (2010-). There are differences in the understanding of permafrost distribution and area in different stages. With the improvement of spatial resolution and maps accuracy, the new permafrost map represents the true permafrost distribution and area better. For methodology, the development of empirical model and physical model runs through three stages. The combination of remote sensing and empirical-based model is the dominated method at present, but statistical learning shows great potential with the accumulation of ground-based and remote sensed data, and physical-based model develops rapidly in China. Coupling with other models, especially with distributed hydrological models, physical-based model provides an important tool for simulating the ecological and hydrological effects of frozen soil changes. The development of earth observation system provides unprecedented opportunities for monitoring permafrost. The optimization of ground survey, data accumulation and open sharing, further development of remote sensing methods, deepening processes understanding of deeper permafrost, further improvement of physical models and their integration with multi-source observations will help break through the challenges faced by permafrost mapping in China and promote the understanding of past, present and future changes of permafrost in China.

中图分类号: 

图1 中国多年冻土制图发展的3个阶段
Fig.1 Three development stages of permafrost mapping in China
图2 卫星遥感应用于多年冻土制图的主要方式与途径
Fig.2 Main approaches for applications of satellite remote sensing for permafrost mapping
1 Qin Dahe , Yao Tandong , Ding Yongjian , et al . Glossary of Cryosphere Science [M]. Beijing:China Meteorological Press, 2014.
秦大河, 姚檀栋, 丁永健, 等 . 冰冻圈科学辞典[M]. 北京: 中国气象出版社, 2014.
2 Zhang T , Barry R G , Knowles K , et al . Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere [J]. Polar Geography, 2008, 31(1/2): 47-68.
3 Bockheim J G , Hall K J . Permafrost, active-layer dynamics and periglacial environments of continental Antarctica: Periglacial and permafrost research in the Southern Hemisphere [J]. South African Journal of Science, 2002, 98(1/2): 82-90.
4 Osterkamp T E . Characteristics of the recent warming of permafrost in Alaska [J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2).DOI: 10.1029/2006JF000578 .
doi: 10.1029/2006JF000578    
5 Cheng G D , Wu T H . Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research-Earth Surface, 2007, 112(F 02S03): 93-104.
6 Zhang Tingjun . Progress in global permafrost and climate change studies [J]. Quaternary Sciences, 2012, 32(1): 27-38.
张廷军 . 全球多年冻土与气候变化研究进展[J]. 第四纪研究, 2012, 32(1): 27-38.
7 Smith S L , Romanovsky V E , Lewkowicz A G , et al . Thermal state of permafrost in North America: A contribution to the international polar year [J]. Permafrost and Periglacial Processes, 2010, 21(2): 117-135.
8 Drozdov D S , Ukraintseva N G , Tsarev A M , et al . Changes in the temperature field and in the state of the geosystems within the territory of the Urengoy field during the last 35 years (1974-2008) [J]. Earth's Cryosphere, 2010, 14: 22-31.
9 Li X , Cheng G , Jin H , et al . Cryospheric change in China [J]. Global and Planetary Change, 2008, 62(3): 210-218.
10 Ran Y , Li X , Cheng G , et al . Distribution of permafrost in China: An overview of existing permafrost maps [J]. Permafrost and Periglacial Processes, 2012, 23(4): 322-333.
11 Zhao L , Jin H , Li C , et al . The extent of permafrost in China during the Local Last Glacial Maximum (LLGM)[J]. Boreas, 2014, 43(3): 688-698.
12 Zhao L , Wu Q , Marchenko S S , et al . Thermal state of permafrost and active layer in Central Asia during the International Polar Year [J]. Permafrost and Periglacial Processes, 2010, 21(2): 198-207.
13 Romanovsky V E , Drozdov D S , Oberman N G , et al . Thermal state of permafrost in Russia [J]. Permafrost and Periglacial Processes, 2010, 21(2): 136-155.
14 Zhou Youwu , Guo Dongxin . Principal characteristics of permafrost in China [J]. Journal of Glaciology and Cryopedology, 1982, 4(1): 1-19.
周幼吾, 郭东信 . 我国多年冻土的主要特征[J]. 冰川冻土, 1982, 4(1): 1-19.
15 Cui Zhijiu , Zhou Youwu . Permafrost and periglacial landform [M]//Zeng Zhaoxuan, Huang Shaomin. Physical Geography of China (Volume of Physiognomy). Beijing: Science Press, 1980.
崔之久, 周幼吾 . 多年冻土与冰缘地貌[M]//曾昭璇, 黄少敏. 中国自然地理(地貌). 北京: 科学出版社, 1980.
16 Tong Boliang , Zhou Youwu . Permafrost Distribution Map in China [M]. Lanzhou: Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences, 1975.
童伯良, 周幼吾 . 中国冻土分布图[M]. 兰州: 中国科学院兰州冰川冻土研究所, 1975.
17 Shi Yafeng , Mi Desheng . Map of Snow, Ice and frozen Ground in China(1∶4000000) (First Edition) [M]. Beijing: China Cartographic Publishing House, 1988.
施雅风, 米德生 . 中国冰雪冻土图(1∶400万)(第一版)[M]. 北京: 中国地图出版社, 1988.
18 Tong Boliang , Li Shude , Pu Jueying , et al. Principle and method of compilation of map of the distribution of permafrost along the Qinghai-Tibetan Highway ( 1∶600,000[C]//Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences. Proceedings of the 2nd Chinese Conference on Glaciology and Geocryology.Lanzhou:Gansu People’s Publishing House, 1983: 75-80.
童伯良,李数德,卜觉英,等.青藏公路沿线多年冻土图( 1∶60万)编制原则与方法[C]//中国科学院兰州冰川冻土研究所编.第二届全国冻土学术会议论文选集. 兰州:甘肃人民出版社, 1983: 75-80.
19 The Study Group on Permafrost in Northeast China . Distribution characteristics of permafrost in Northeast China [C]// Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences. Proceedings of 2nd National Conference on Permafrost (Selection). Lanzhou: Gansu People’s Publishing House, 1983: 36-44.
东北冻土研究协作组 . 中国东北部多年冻土分布的基本特征[C]//中国科学院兰州冰川冻土研究所编. 第二届全国冻土学术会议论文选集. 兰州: 甘肃人民出版社, 1983: 36-44.
20 Guo Dongxin , Wang Shaoling , Lu Guowei , et al . Division of permafrost regions in Daxiao Hinggan Ling northeast China [J]. Journal of Glaciology and Cryopedology, 1981,3(3):1-9.
郭东信, 王绍令, 鲁国威, 等 . 东北大小兴安岭多年冻土分区[J]. 冰川冻土, 1981, 3(3): 1-9.
21 Guo Pengfei . Permafrost in Qilian Shan area [C]//Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences. Proceedings of 2nd National Conference on Permafrost(Selection). Lanzhou: Gansu People’s Publishing House, 1983: 30-35.
郭鹏飞 . 祁连山地区的多年冻土[C]//中国科学院兰州冰川冻土研究所编. 第二届全国冻土学术会议论文选集. 兰州: 甘肃人民出版社, 1983: 30-35.
22 Qiu Guoqing , Huang Yizhi , Li Zuofu . Basic characteristics of permafrost in Tian Shan , China [C]//Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences. Proceedings of 2nd National Conference on Permafrost(Selection). Lanzhou: Gansu People’s Publishing House, 1983: 21-29.
邱国庆, 黄以职, 李作福 . 中国天山地区冻土的基本特征[C]// 中国科学院兰州冰川冻土研究所编. 第二届全国冻土学术会议论文选集. 兰州: 甘肃人民出版社, 1983: 21-29.
23 Cheng Guodong . Problem on zonation of high-altitude permafrost [J]. Acta Geographica Sinica, 1984, 39 (2): 185-193.
程国栋 . 我国高海拔多年冻土地带性规律之探讨[J]. 地理学报, 1984, 39(2): 185-193.
24 Li Xin , Cheng Guodong . A GIS-aided response model of high-altitude permafrost to global change [J]. Science in China (Series D), 1999, 42(1): 72-79.
李新, 程国栋 . 高海拔多年冻土对全球变化的响应模型[J]. 中国科学: D辑, 1999, 29(2): 185-192.
25 Li Shude , Cheng Guodong . Map of Frozen Ground on Qinghai-Xizang Plateau [M]. Lanzhou: Gansu Culture Press, 1966.
李树德, 程国栋 .青藏高原冻土图[M]. 兰州: 甘肃文化出版社, 1996.
26 Qiu Guoqing , Zhou Youwu , Guo Dongxin , et al. Permafrost zone and type distribution map in China ( 1∶10 million) [M]//Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al . Geocryology in China. Beijing:Science Press,2000.
邱国庆, 周幼吾, 郭东信, 等 . 1∶1000万中国冻土区划及类型分布图[M]//周幼吾, 郭东信, 邱国庆, 等 .中国冻土. 北京: 科学出版社, 2000.
27 Wang Tao . Map of the Glaciers, Frozen Ground and Deserts in China (1∶4 million) [M]. Beijing: Sino Maps Press, 2006.
王涛 .中国冰川冻土沙漠图(1∶400万)[M]. 北京: 中国地图出版社, 2006.
28 Zou D , Zhao L , Yu S , et al . A new map of permafrost distribution on the Tibetan Plateau [J]. The Cryosphere, 2017, 11(6): 2 527.
29 Ran Y , Li X , Cheng G . Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau [J]. The Cryosphere, 2018, 12(2): 595-608.
30 Wu Ziwang . Engineering classification of permafrost soils [J]. Journal of Glaciology and Geocryology, 1979, 1(2): 52-60.
吴紫汪 . 多年冻土的工程分类 [J]. 冰川冻土, 1979, 1(2): 52-60.
31 Wu Ziwang . Classification of frozen soils in engineering construction [J]. Journal of Glaciology and Geocryology, 1982, 4(4): 43-48.
吴紫汪 .冻土工程分类 [J]. 冰川冻土, 1982,4(4): 43-48.
32 Jin Huijun , Lanzhi Lü , He Ruixia , et al . A new aridity-based classification of permafrost zones on the Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2014, 36 (5): 1 049-1 057.
金会军, 吕兰芝, 何瑞霞, 等 . 基于气候干燥度的青藏高原多年冻土区分类新方案[J]. 冰川冻土, 2014, 36(5): 1 049-1 057.
33 Harris S A , Brouchkov A , Guodong C . Geocryology: Characteristics and Use of Frozen Ground and Permafrost Landforms [M]. New York: CRC Press, 2017.
34 Harris S A . The Permafrost Environment [M]. London: Croom Helm, 1986.
35 Zhuotong Nan , Li Shuxun , Liu Yongzhi . Mean annual ground temperature distribution on the Tibetan Plateau:Permafrost distribution mapping and further application [J]. Journal of Glaciology and Geocryology, 2002, 24 (2): 142-148.
南卓铜, 李述训, 刘永智 . 基于年平均地温的青藏高原冻土分布制图及应用[J]. 冰川冻土, 2002, 24 (2): 142-148.
36 Wu Qingbai , Zhu Yuanlin , Liu Yongzhi . Assessment model of permafrost thermal stability under engineering activity [J]. Journal of Glaciology and Geocryology, 2002, 24(2): 129-133.
吴青柏, 朱元林, 刘永智 . 工程活动下多年冻土热稳定性评价模型[J]. 冰川冻土, 2002, 24(2): 129-133.
37 Shur Y L , Jorgenson M T . Patterns of permafrost formation and degradation in relation to climate and ecosystems[J]. Permafrost and Periglacial Processes, 2007, 18(1): 7-19.
38 Hjort J , Karjalainen O , Aalto J , et al . Degrading permafrost puts Arctic infrastructure at risk by mid-century[J]. Nature Communications, 2018, 9(1): 5 147.
39 Jin H , Yu Q , Lü L , et al . Degradation of permafrost in the Xing'anling Mountains, Northeastern China [J]. Permafrost and Periglacial Processes, 2007, 18(3): 245-258.
40 Zhao L , Cheng G D , Ding Y J . Studies on frozen ground of China [J]. Journal of Geographical Sciences, 2004, 14(4): 411-416.
41 Holloway J , Mengersen K . Statistical machine learning methods and remote sensing for sustainable development goals: A review [J]. Remote Sensing, 2018, 10(9): 1 365.
42 Zhang Xiumin , Zhuotong Nan , Wu Jichun , et al . Modeling permafrost distribution in Wenquan area over Qinghai-Tibet Plateau by using multivariate adaptive regression splines [J]. Journal of Glaciology and Geocryology, 2011, 35 (5): 1 088-1 097.
张秀敏, 南卓铜, 吴吉春, 等 . 基于多元自适应回归样条的青藏高原温泉区域的冻土分布制图[J]. 冰川冻土, 2011, 33(5): 1 088-1 097.
43 Zhang Xiumin , Sheng Yu , Zhao Lin , et al . Permafrost distribution using sub-region classification and multivariate data in the Wenquan area over the Qinghai-Tibet Plateau [J]. Scientia Geographica Sincia, 2012, 32 (12): 1 513-1 520.
张秀敏, 盛煜, 赵林, 等 . 基于分区和多元数据的青藏高原温泉区域多年冻土分布研究[J]. 地理科学, 2012, 32(12): 1 513-1 520.
44 Lu Jiahao , Niu Fujun , Lin Zhanju , et al . Permafrost modeling and mapping along the Qinghai-Tibet Engineering corridor considering slope-aspect [J]. Geography and Geo-Information Science, 2012, 28 (3): 53-67.
鲁嘉濠, 牛富俊, 林战举, 等 . 考虑局地因素坡向影响的青藏高原工程走廊冻土分布与制图研究[J]. 地理与地理信息科学, 2012, 28(3): 63-67.
45 Li Jing , Sheng Yu , Chen Ji , et al . Modeling the distribution of permafrost along a transportation corridor from Cetar to Muri in Qinghai Province [J]. Progress in Geography, 2010, 29(9): 1 100-1 106.
李静, 盛煌, 陈继, 等 . 青海省柴达尔—木里地区道路沿线多年冻土分布模拟[J]. 地理科学进展, 2010, 29(9): 1 100-1 106.
46 Li Jing , Sheng Yu , Wu Jichun , et al . Mapping frozen soil distribution and modeling permafrost stability in the source area of the Yellow River [J]. Scientia Geographica Sinica, 2016, 36 (4): 588-596.
李静, 盛煜, 吴吉春, 等 . 黄河源区冻土分布制图及其热稳定性特征模拟[J]. 地理科学, 2016, 36(4): 588-596.
47 Zhuotong Nan , Huang Peipei , Zhao Lin . Permafrost distribution modeling and depth estimation in the western Qinghai-Tibet Plateau [J]. Scientia Geographica Sinica, 2013, 68(3): 318-327.
南卓铜, 黄培培, 赵林 . 青藏高原西部区域多年冻土分布模拟及其下限估算[J]. 地理学报, 2013, 68(3): 318-327.
48 Ran Y , Li X , Jin R , et al . Remote sensing of the mean annual surface temperature and surface frost number for mapping permafrost in China [J]. Arctic, Antarctic, and Alpine Research, 2015, 47(2): 255-265.
49 Shi Y , Niu F , Yang C , et al . Permafrost presence/absence mapping of the Qinghai-Tibet Plateau based on multi-source remote sensing data [J]. Remote Sensing, 2018, 10(2): 309.
50 Niu F , Yin G , Luo J , et al . Permafrost distribution along the Qinghai-Tibet engineering Corridor, China using high-resolution statistical mapping and modeling integrated with remote sensing and GIS [J]. Remote Sensing, 2018, 10(2): 215.
51 Wang T , Yang D , Fang B , et al . Data-driven mapping of the spatial distribution and potential changes of frozen ground over the Tibetan Plateau[J]. Science of The Total Environment, 2019, 649: 515-525.
52 Perry G L W , Dickson M E . Using machine‐learning to predict geomorphic disturbance: The effects of sample size, sample prevalence and sampling strategy[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(11): 2 954-2 970.
53 Jin H , Jin X , He R , et al . Evolution of permafrost in China during the last 20 ka [J]. Science in China (Series D), 2019, 62(8): 1 207-1 223.
54 Cui Z , Yang J , Zhang W , et al . Discovery of a large area of ice-wedge networks in Ordos: Implications for the southern boundary of permafrost in the north of China as well as for the environment in the latest 20 kaBP[J]. Chinese Science Bulletin, 2004, 49(11): 1 177-1 184.
55 Jin Huijun , Zhao Lin , Wang Shaoling , et al . Evolution of permafrost and environmental changes of cold regions in eastern and interior Qinghai-Tibetan Plateau since the Holocene[J]. Quaternary Sciences, 2006, 26(2): 198-210.
金会军, 赵林, 王绍令, 等 . 青藏高原中, 东部全新世以来多年冻土演化及寒区环境变化[J]. 第四纪研究, 2006, 26(2): 198-210.
56 Jiao Shihui , Wang Lingyue , Sun Caiqi , et al . Discussion about the variation of permafrost boundary in Last Glacial Maximum and Holocene Megathermal, Tibetan Plateau[J]. Quaternary Sciences, 2015, 35(1): 1-11.
焦世晖, 王凌越, 孙才奇,等 . 青藏高原末次盛冰期和全新世大暖期多年冻土边界变化的探讨[J]. 第四纪研究, 2015, 35(1): 1-11.
57 Langer M , Westermann S , Boike J . Spatial and temporal variations of summer surface temperatures of wet polygonal tundra in Siberia-implications for MODIS LST based permafrost monitoring [J]. Remote Sensing of Environment, 2010, 114(9): 2 059-2 069.
58 Ouyang Bin , Che Tao , Dai Liyun , et al . Estimating mean daily surface temperature over the Tibetan Plateau based on MODIS LIST products [J]. Journal of Glaciology and Geocryology, 2012(2):296-303.
欧阳斌, 车涛, 戴礼云, 等 . 基于MODISLST产品估算青藏高原地区的日平均地表温度[J]. 冰川冻土, 2012, 34(2): 296-303.
59 Jin M , Dickinson R E . Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle 1: Without clouds [J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D2): 2 105-2 116.
60 Jin M L . Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle 2: Cloudy-pixel treatment[J]. Journal of Geophysical Research—Atmospheres, 2000, 105(D3): 4 061-4 076.
61 Wang X , Liu L , Zhao T , et al . Mapping and inventorying active rock glaciers in the northern Tien Shan of China using satellite SAR interferometry[J]. The Cryosphere, 2017, 11: 997-1 014.
62 Lewkowicz A G , Bonnaventure P P . Equivalent elevation: A new method to incorporate variable surface lapse rates into mountain permafrost modelling[J]. Permafrost and Periglacial Processes, 2011, 22(2): 153-162.
63 Nelson F E , Outcalt S I . A computational method for prediction and regionalization of permafrost [J]. Arctic and Alpine Research, 1987,19(3): 279-288.
64 Jumikis AR . Thermal Geotechnics [M]. New Brunswick, New Jersey: Rutgers University Press, 1977.
65 Riseborough D W . The mean annual temperature at the top of permafrost, the TTOP model, and the effect of unfrozen water [J]. Permafrost and Periglacial Processes, 2002, 13(2): 137-143.
66 Sazonova T S , Romanovsky V E . A model for regional‐scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures [J]. Permafrost and Periglacial Processes, 2003, 14(2): 125-139.
67 Romanovsky V E , Osterkamp T E . Thawing of active layer on the coastal plain of the Alaskan arctic [J]. Permafrost and Periglacial Processes, 1997, 8(1): 1-22.
68 Luo D L , Jin H J , Marchenko S , et al . Distribution and changes of Active Layer Thickness (ALT) and soil temperature (TTOP) in the source area of the Yellow River using the GIPL model [J]. Science in China(Series D), 2014, 57(8): 1 834-1 845.
69 Cheng W M , Zhao S M , Zhou C H , et al . Simulation of the decadal permafrost distribution on the Qinghai-Tibet Plateau (China) over the past 50 years[J]. Permafrost and Periglacial Processes, 2012, 23(4): 292-300.
70 Zhuotong Nan , Huang Peipei , Zhao Lin . Permafrost distribution modeling and depth estimation in the western Qinghai-Tibet Plateau [J]. Scientia Geographica Sinica, 2013, 68(3): 318-327.
南卓铜, 黄培培, 赵林 . 青藏高原西部区域多年冻土分布模拟及其下限估算[J]. 地理学报, 2013, 68(3): 318-327.
71 Qin Y , Chen J , Yang D , et al . Estimating seasonally frozen ground depth from historical climate data and site measurements using a Bayesian model [J]. Water Resources Research, 2018, 54(7): 4 361-4 375.
72 Li Xin , Cheng Guodong . Review on the Interaction models between climatic system and frozen soil [J]. Journal of Glaciology and Geocryology, 2002, 24 (3): 315-321.
李新, 程国栋 . 冻土—气候关系模型评述[J]. 冰川冻土, 2002, 24(3): 315-321.
73 Schaefer K , Zhang T , Slater A G , et al . Improving simulated soil temperatures and soil freeze/thaw at high‐latitude regions in the Simple Biosphere/Carnegie‐Ames‐Stanford Approach model [J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F2). DOI:10.1029/2008JF001125 .
doi: 10.1029/2008JF001125    
74 Wania R , Ross I , Prentice I C . Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes [J]. Global Biogeochemical Cycles, 2009, 23(3): GB3014. DOI: 10.1029/2008GB003412 .
doi: 10.1029/2008GB003412    
75 Wania R , Ross I , Prentice I C . Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes[J]. Global Biogeochemical Cycles, 2009,23(3): GB3015.DOI :10.1029/2008GB003413 .
doi: 10.1029/2008GB003413    
76 Lawrence D M , Oleson K W , Flanner M G , et al . Parameterization improvements and functional and structural advances in version 4 of the Community Land Model [J]. Journal of Advances in Modeling Earth Systems, 2011,(3): M03001.DOI :10.1029/2011MS000045 .
doi: 10.1029/2011MS000045    
77 Guo D , Wang H , Li D . A projection of permafrost degradation on the Tibetan Plateau during the 21st century [J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D5). DOI: 10.1029/2011JD016545 .
doi: 10.1029/2011JD016545    
78 Guo D , Wang H . Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010 [J]. Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5 216-5 230.
79 Li X , Koike T . Frozen soil parameterization in SiB2 and its validation with GAME-Tibet observations[J]. Cold Regions Science and Technology, 2003, 36(1/3): 165-182.
80 Wang L , Koike T , Yang K , et al . Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99) [J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D8). DOI:10.1029/2008JD010800 .
doi: 10.1029/2008JD010800    
81 Yang D W , Gao B , Jiao Y , et al . A distributed scheme developed for eco-hydrological modeling in the upper Heihe River [J]. Science in China (Series D), 2015, 58(1): 36-45.
82 Gao B , Qin Y , Wang Y , et al . Modeling ecohydrological processes and spatial patterns in the upper Heihe Basin in China [J]. Forests, 2015, 7(1): 10.
83 Gao B , Yang D , Qin Y , et al . Change in frozen soils and its effect on regional hydrology, upper Heihe Basin, northeastern Qinghai-Tibetan Plateau [J]. The Cryosphere, 2018, 12(2): 657-673.
84 Qin Y , Yang D , Gao B , et al . Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China [J]. Science of the Total Environment, 2017, 605: 830-841.
85 Wang Y , Yang H , Gao B , et al . Frozen ground degradation may reduce future runoff in the headwaters of an inland river on the northeastern Tibetan Plateau[J]. Journal of Hydrology, 2018, 564: 1 153-1 164.
86 Zhang Y L , Cheng G D , Li X , et al . Coupling of a simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed [J]. Hydrological Processes, 2013, 27(25): 3 762-3 776.
87 Zhang Y L , Cheng G D , Li X , et al . Influences of frozen ground and climate change on the hydrological processes in an alpine watershed: A case study in the upstream area of the Hei'he River, Northwest China [J]. Permafrost and Periglacial Processes, 2017, 28(2): 420-432.
88 Chen H , Nan Z , Zhao L , et al . Noah modelling of the permafrost distribution and characteristics in the West Kunlun area, Qinghai‐Tibet Plateau, China [J]. Permafrost and Periglacial Processes, 2015, 26(2): 160-174.
89 Wu X , Nan Z , Zhao S , et al . Spatial modeling of permafrost distribution and properties on the Qinghai‐Tibet Plateau [J]. Permafrost and Periglacial Processes, 2018, 29(2): 86-99.
90 Jin R , Li X . Improving the estimation of hydrothermal state variables in the active layer of frozen ground by assimilating in situ observations and SSM/I data [J]. Science in China (Series D), 2009, 52(11): 1 732-1 745.
[1] 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用[J]. 地球科学进展, 2020, 35(10): 1087-1098.
[2] 贾凌云, 李琳, 王千遥, 马劲风, 王大兴. 致密砂岩储层岩石物理模型的优化建立[J]. 地球科学进展, 2018, 33(4): 416-424.
[3] 罗齐彬, 杨亚新, 张叶, 吴信民, 郑勇明, 赵柏宇. 地气测量在隐伏铀矿找矿中的应用与现状[J]. 地球科学进展, 2018, 33(1): 75-83.
[4] 向杰, 陈建平, 胡彬, 胡桥, 杨伟. 基于三维地质—地球物理模型的三维成矿预测——以安徽铜陵矿集区为例[J]. 地球科学进展, 2016, 31(6): 603-614.
[5] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.
[6] 李雄耀,王世杰,程安云. 月球表面温度物理模型研究现状[J]. 地球科学进展, 2007, 22(5): 480-485.
[7] 苏理宏,李小文,王锦地,唐世浩. 典型地物波谱知识库建库与波谱服务的若干问题[J]. 地球科学进展, 2003, 18(2): 185-191.
[8] 王绍令. 青藏高原冻土退化的研究[J]. 地球科学进展, 1997, 12(2): 164-167.
阅读次数
全文


摘要