地球科学进展 ›› 2019, Vol. 34 ›› Issue (10): 1028 -1037. doi: 10.11867/j.issn.1001-8166.2019.10.1028

综述与评述 上一篇    下一篇

海岸沙地风蚀坑形态—动力学研究进展
张绍云 1( ),董玉祥 1, 2( )   
  1. 1. 中山大学地理科学与规划学院/广东省城市化与地理环境空间模拟重点实验室,广东 广州 510275
    2. 中山大学新华学院,广东 广州 510520
  • 收稿日期:2019-08-24 修回日期:2019-09-29 出版日期:2019-10-10
  • 通讯作者: 董玉祥 E-mail:yunshan0901@foxmail.com;eesdyx@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目“中国海岸风蚀地貌的发育与演变”(41871006)

Research Progress on Morphodynamics of Coastal Sandy Blowout

Shaoyun Zhang 1( ),Yuxiang Dong 1, 2( )   

  1. 1. Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
    2. Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
  • Received:2019-08-24 Revised:2019-09-29 Online:2019-10-10 Published:2019-12-05
  • Contact: Yuxiang Dong E-mail:yunshan0901@foxmail.com;eesdyx@mail.sysu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Formation and evolution of coastal wind-eroded landforms in China” (No. 41871006). First author: Zhang Shaoyun(1992-)

风蚀坑作为一种沙地负地形一直是风沙地貌学的主要研究对象之一,尤其是国际上对海岸沙地风蚀坑进行了基本形态、发育过程、动力机制的多方位长期研究。基于对海岸沙地风蚀坑研究的系统回顾,概括了海岸沙地风蚀坑在形态发育演化、形态—动力学过程、研究方法等方面的主要进展,并针对海岸沙地风蚀坑研究之不足,提出目前我国海岸沙地风蚀坑研究中应加强在不同类型风蚀坑形态演化机制、形态—物质—动力过程以及数值模拟方面开展深入研究,并重视风蚀坑对海滩—沙丘动态环境系统及前丘治理的影响。

As a type of negative topography in sand land, blowout has always been one of the main research object of aeolian geomorphology. Especially, multi-directions and long-term research has been conducted internationally on basic morphology, development process and dynamic mechanism of coastal sandy blowout. Based on the systematic review of research on coastal sandy blowout, the main progress of research on coastal sandy blowout in morphological evolution, morpho-dynamic process, and research methods was summarized. In consideration of the disadvantages of research on coastal sandy blowout, it was proposed that, at present, the research on coastal sandy blowout in China should strengthen the further research on the evolution mechanism, morphology-material-dynamic process and numerical simulation of different types of blowouts, and attach importance to the influence of blowout on the beach-dune dynamic environment and foredune restoration.

中图分类号: 

表1 不同类型风蚀坑形态特征
Table 1 Morphological characteristics of different types of blowouts
图1 海岸风蚀坑动力概念模型(据参考文献[ 72 ]修改)
Fig.1 Dynamic conceptual model of coastal blowoutmodified after reference [ 72 ])
1 Cowles H C . The ecological relations of the vegetation on the sand dunes of Lake Michigan. Part I.-Geographical relations of the dune floras[J]. Botanical Gazette, 1899, 27(2): 95-117.
2 Melton F A . A tentative classification of sand dunes its application to dune history in the southern High Plains[J]. The Journal of Geology, 1940, 48(2): 113-174.
3 Bagnold R A . The Physics of Blown Sand and Desert Dunes[M]. Methuen, Chapman and London:Dorer Pubications,1941.
4 Hesp P A , Hyde R . Flow dynamics and geomorphology of a trough blowout[J]. Sedimentology, 1996, 43(3): 505-525.
5 Hesp P A . Foredunes and blowouts: Initiation, geomorphology and dynamics[J]. Geomorphology, 2002, 48(1/3): 245-268.
6 Walker I , Hesp P A . Fundamentals of aeolian sediment transport:Airflow over dunes[M]//Treatise on Geomorphology. Elsevier Inc., 2013: 109-133.
7 Hesp P A , Smyth T A G , Walker I J , et al . Flow within a trough blowout at Cape Cod[J]. Journal of Coastal Research, 2016, 75(Suppl.1): 288-293.
8 Sun Yu , Du Huishi , Liu Meiping , et al . A review on morphodynamic processes of blowouts[J]. Scientia Geographica Sinica, 2015, 35(7): 898-904.
孙禹, 杜会石, 刘美萍, 等 . 风蚀坑形态—动力学研究进展[J]. 地理科学, 2015, 35(7): 898-904.
9 Cooper W S . Coastal dunes of California[J]. Geological Society of America, 1967, 104(1/4): 131.
10 Landsberg H , Riley N A . Wind influences on transportation of sand over a Michigan sand dune[C]//Proceeding of Second Hydraulics Conference, Iowa: Bulletin of the University of Iowa Studies in Engineering. 1943, 27: 342-352.
11 Cooper W S . Coastal Sand Dunes of Oregon and Washington[M]. Boulder, Colorado: Ceological Society of America, 1958.
12 Hails J R , Bennett J M . Wind and sediment movement in coastal dune areas[J]. Coastal Engineering Proceedings, 1980, 1(17): 1 565-1 575.
13 Malakouti M J , Lewis D T , Stubbendieck J . Effect of grasses and soil properties on wind erosion in sand blowouts[J]. Journal of Range Management, 1978, 31(6): 417-420.
14 Van Ancker J A M D , Jungerius P D , Mur L R . The role of algae in the stabilization of coastal dune blowouts[J]. Earth Surface Processes and Landforms, 1985, 10(2): 189-192.
15 Stubbendieck J , Flessner T R , Weedon R . Blowouts in the Nebraska Sandhills: The habitat of Penstemon haydenii[C]//Proceedings of the North American Prairie Conferences. 1989: 223-225.
16 Hugenholtz C H , Wolfe S A . Morphodynamics and climate controls of two aeolian blowouts on the northern Great Plains, Canada[J]. Earth Surface Processes and Landforms, 2006, 31(12): 1 540-1 557.
17 Abhar K C , Walker I J , Hesp P A , et al . Spatial-temporal evolution of aeolian blowout dunes at Cape Cod[J]. Geomorphology, 2015, 236: 148-162.
18 Hesp P A , Walker I J . Three-dimensional aeolian dynamics within a bowl blowout during offshore winds: Greenwich dunes, Prince Edward Island, Canada[J]. Aeolian Research, 2012, 3(4): 389-399.
19 Smyth T A G , Jackson D W T , Cooper A . Three dimensional airflow patterns within a coastal trough-bowl blowout during fresh breeze to hurricane force winds[J]. Aeolian Research, 2013, 9(147): 111-123.
20 Hesp P A . Flow dynamics in a trough blowout[J]. Boundary-Layer Meteorology, 1996, 77(3/4): 305-330.
21 Smyth T A G , Jackson D W T , Cooper A . Computational fluid dynamic modelling of three-dimensional airflow over dune blowouts[J]. Journal of Coastal Research, 2011, 64(8): 314-318.
22 Smyth T A G , Jackson D W T , Cooper A . High resolution measured and modelled three-dimensional airflow over a coastal bowl blowout[J]. Geomorphology, 2012, 177/178(12): 62-73.
23 Smyth T A G , Hesp P A . Numerical modelling of turbulent flow structures in a trough blowout[J]. Journal of Coastal Research, 2016, 75(Suppl.1): 328-333.
24 Hesp P A , Hilton M , Konlecher T . Flow and sediment transport dynamics in a slot and cauldron blowout and over a foredune, Mason Bay, Stewart Island (Rakiura), NZ[J]. Geomorphology, 2017, 295: 598-610.
25 Smyth T A G , Jackson D , Cooper A . Airflow and aeolian sediment transport patterns within a coastal trough blowout during lateral wind conditions[J]. Earth Surface Processes and Landforms, 2014, 39(14): 1 847-1 854.
26 O'Keeffe N , Delgado-Fernandez I , Aplin P , et al. The use of time-series LIDAR to understand the role of foredune blowouts in coastal dune dynamics, Sefton , NW England[C]//EGU General Assembly Conference Abstracts. 2017, 19: 17 795.
27 Smith A , Gares P A , Wasklewicz T , et al . Three years of morphologic changes at a bowl blowout, Cape Cod, USA[J]. Geomorphology, 2017, 295: 452-466.
28 Gares P A , Nordstrom K F . A cyclic model of foredune blowout evolution for a leeward coast: Island Beach, New Jersey[J]. Annals of the Association of American Geographers, 1995, 85(1): 1-20.
29 Hugenholtz C H , Levin N , Barchyn T E , et al . Remote sensing and spatial analysis of aeolian sand dunes: A review and outlook[J]. Earth-Science Reviews, 2012, 111(3/4): 319-334.
30 Sun Y , Hasi E , Liu M , et al . Airflow and sediment movement within an inland blowout in Hulun Buir sandy grassland, Inner Mongolia, China[J]. Aeolian Research, 2016, 22: 13-22.
31 Wang Shuai , Eer-dun Hasi , Zhang Jun , et al . Geomorphological significance of air flow over saucer blowout of the Hulun Buir sandy grassland[J]. Journal of Desert Research, 2007, 27(5): 745-749.
王帅, 哈斯额尔敦, 张军, 等 . 呼伦贝尔沙质草原碟形风蚀坑表面气流及其意义[J]. 中国沙漠, 2007, 27(5): 745-749.
32 Liu Jianhui , Guo Zhanrong , Lei Huaiyan , et al . A study on coastal dune blowouts in east coast of Changle[J]. Journal of Oceanography in Taiwan Strait, 2008, 27(2): 230-236.
刘建辉, 郭占荣, 雷怀彦, 等 . 福建长乐东部海岸沙丘风蚀坑研究[J]. 台湾海峡, 2008, 27(2): 230-236.
33 Ritchie W . The evolution of coastal sand dunes[J]. Scottish Geographical Magazine, 1972, 88(1): 19-35.
34 Smyth T A G , Hesp P A , Walker I J , et al . Topographic change and numerically modelled near surface wind flow in a bowl blowout[J]. Earth Surface Processes and Landforms, 2019. DOI:10.1002/esp.4625 .
doi: 10.1002/esp.4625    
35 Hesp P A , Pringle A . Wind flow and topographic steering within a trough blowout[J]. Journal of Coastal Research, 2001, 34(Suppl.1): 597-601.
36 Smyth T A G , Hesp P A , Walker I J , et al . Topographic change and numerically modelled near surface wind flow in a bowl blowout[J]. Earth Surface Processes and Landforms, 2019, 44: 1 988-1 999.
37 Dong Yuxiang , Zhang Qingnian , Huang Dequan . Progress and prospect of research on coastal wind-eroded landform[J]. Advances in Earth Science, 2019, 34(1): 1-10.
董玉祥, 张青年, 黄德全 . 海岸风蚀地貌研究进展与展望[J]. 地球科学进展, 2019, 34(1): 1-10.
38 Mir-Gual M , Pons G X , á Martín-Prieto J , et al . Geomorphological and ecological features of blowouts in a western Mediterranean coastal dune complex: A case study of the Es Comú de Muro beach-dune system on the island of Mallorca, Spain[J]. Geo-Marine Letters, 2013, 33(2/3): 129-141.
39 Schwarz C , Brinkkemper J , Ruessink G . Feedbacks between biotic and abiotic processes governing the development of foredune blowouts: A review[J]. Journal of Marine Science and Engineering, 2019, 7(1): 1-20.
40 Jewell M , Houser C , Trimble S . Initiation and evolution of blowouts within Padre Island National Seashore, Texas[J]. Ocean & Coastal Management, 2014, 95: 156-164.
41 Hesp, P A, Walker I J . “Coastal Dunes”[M]. Treatise on Geomorphology. San Diego: Academic Press, 2013, 11: 328-355.
42 Hesp P A . Morphology and Dynamics of Foredunes in SE Australia[D]. Sydney: Department of Geography, University of Sydney, 1982.
43 Yang Lin , Dong Yuxiang , Du Jianhui . Research progress of coastal dunes response to storm[J]. Advances in Earth Science, 2017, 32(7): 716-722.
杨林, 董玉祥, 杜建会 . 海岸沙丘对风暴响应研究进展[J]. 地球科学进展, 2017, 32(7): 716-722.
44 De Winter R C , Gongriep F , Ruessink B G . Observations and modeling of alongshore variability in dune erosion at Egmond aan Zee, the Netherlands[J]. Coastal Engineering, 2015, 99: 167-175.
45 Splinter K D , Kearney E T , Turner I L . Drivers of alongshore variable dune erosion during a storm event: Observations and modelling[J]. Coastal Engineering, 2018, 131: 31-41.
46 Garès P A , Pease P . Influence of topography on wind speed over a coastal dune and blowout system at Jockey's Ridge, NC, USA[J]. Earth Surface Processes and Landforms, 2015, 40(7): 853-863.
47 González-Villanueva R , Costas S , Pérez-Arlucea M , et al . Impact of atmospheric circulation patterns on coastal dune dynamics, NW Spain[J]. Geomorphology, 2013, 185: 96-109.
48 Arens S M , Van Kaam‐Peters H M E , Van Boxel J H . Air flow over foredunes and implications for sand transport[J]. Earth Surface Processes and Landforms, 1995, 20(4): 315-332.
49 Neal A , Roberts C L . Internal structure of a trough blowout, determined from migrated ground‐penetrating radar profiles[J]. Sedimentology, 2001, 48(4): 791-810.
50 De Muro S , Ibba A , Kalb C . Morpho-sedimentology of a Mediterranean microtidal embayed wave dominated beach system and related inner shelf with Posidonia oceanica meadows: The SE Sardinian coast[J]. Journal of maps, 2016, 12(3): 558-572.
51 Mathewson C C , Cole W F . Geomorphic processes and land use planning , South Texas barrier islands[C]// Applied Geomophology, London: G. Allen and Unwin, 1980: 131-147.
52 Levin N . Climate-driven changes in tropical cyclone intensity shape dune activity on Earth's largest sand island[J]. Geomorphology, 2011, 125(1): 239-252.
53 Mathewson C C . Aeolian processes—A long-term coastal sediment transport mechanism[C]//Coastal Sediments. ASCE, 1987, 87(1): 222-235.
54 Fraser G S , Bennett S W , Olyphant G A , et al . Windflow circulation patterns in a coastal dune blowout, south coast of Lake Michigan[J]. Journal of Coastal Research, 1998, 14: 451-460.
55 Hugenholtz C H , Wolfe S A . Form-flow interactions of an aeolian saucer blowout[J]. Earth Surface Processes and Landforms, 2009, 34(7): 919-928.
56 Jungerius P D , Verheggen A J T , Wiggers A J . The development of blowouts in ‘De Blink’, a coastal dune area near Noordwijkerhout, The Netherlands[J]. Earth Surface Processes and Landforms, 1981, 6(3/4): 375-396.
57 Byrne M L . Seasonal sand transport through a trough blowout at Pinery Provincial Park, Ontario[J]. Canadian Journal of Earth Sciences, 1997, 34(11): 1 460-1 466.
58 Bate G , Ferguson M . Blowouts in coastal foredunes[J]. Landscape and Urban Planning, 1996, 34(3/4): 215-224.
59 Jungerius P D , Van der Meulen F . The development of dune blowouts, as measured with erosion pins and sequential air photos[J]. Catena, 1989, 16(4/5): 369-376.
60 Pease P , Gares P . The influence of topography and approach angles on local deflections of airflow within a coastal blowout[J]. Earth Surface Processes and Landforms, 2013, 38(10): 1 160-1 169.
61 Huggett R J . Fundamentals of Geomorphology(2nd Edition)[M]. London, UK and New York, NY: Routledge, 2007.
62 Arens S M , Mulder J P M , Slings Q L , et al . Dynamic dune management, integrating objectives of nature development and coastal safety:Examples from the Netherlands[J]. Geomorphology, 2013, 199: 205-213.
63 Van Boxel J H , Jungerius P D , Kieffer N , et al . Ecological effects of reactivation of artificially stabilized blowouts in coastal dunes[J]. Journal of Coastal Conservation, 1997, 3(1): 57.
64 Barchyn T E , Hugenholtz C H . Reactivation of supply-limited dune fields from blowouts: A conceptual framework for state characterization[J]. Geomorphology, 2013, 201: 172-182.
65 Fox T A , Hugenholtz C H , Bender D , et al . Can bison play a role in conserving habitat for endangered sandhills species in Canada?[J]. Biodiversity and Conservation, 2012, 21(6): 1 441-1 455.
66 Jungerius P D . A simulation model of blowout development[J]. Earth Surface Processes and Landforms, 1984, 9(6): 509-512.
67 Miyanishi K , Johnson E A . Coastal dune succession and the reality of dune processes. [M]// Johnson E A, Miyanishi K. Plant Disturbance Ecology: The Process and the Response, San Diego CA: Academic Press, 2007: 249-282.
68 Pye K . Morphological development of coastal dunes in a humid tropical environment, Cape Bedford and Cape Flattery, North Queensland[J]. Geografiska Annaler: Series A, Physical Geography, 1982, 64(3/4): 213-227.
69 Ruessink B G , Arens S M , Kuipers M , et al . Coastal dune dynamics in response to excavated foredune notches[J]. Aeolian Research, 2018, 31: 3-17.
70 Delgado‐Fernandez I , Smyth T A G , Jackson D W T , et al . Event‐scale dynamics of a parabolic dune and its relevance for mesoscale evolution[J].Journal of Geophysical Research: Earth Surface, 2018, 123(11): 3 084-3 100.
71 Thomas D S G , Knight M , Wiggs G F S . Remobilization of southern African desert dune systems by twenty-first century global warming[J]. Nature, 2005, 435(7 046): 1 218.
72 Wang Shuai , Ha Si . Advances in the study of geomorphology and process of wind erosion landforms[J]. Journal of Earth Sciences and Environment, 2009, 31(1): 100-105.
王帅, 哈斯 . 风蚀地貌形态与过程研究进展[J]. 地球科学与环境学报, 2009, 31(1): 100-105.
73 Pluis J L A . Relationships between deflation and near surface wind velocity in a coastal dune blowout[J]. Earth surface Processes and Landforms, 1992, 17(7): 663-673.
74 Hails J R . An introduction to coastal geomorphology[J]. Earth-Science Reviews, 1984, 22(3): 244-245.
75 Sun Yu , Du Huishi , Eerdun Hasi , et al . Aeolian dynamical process of blowout on the fixed dune[J]. Acta Geographica Sinica, 2016, 71(9): 1 562-1 570.
孙禹, 杜会石, 哈斯额尔敦, 等 . 固定沙丘风蚀坑风沙动力学观测研究[J]. 地理学报, 2016, 71(9): 1 562-1 570.
76 Gares P A . Topographic changes associated with coastal dune blowouts at Island Beach State Park, New Jersey[J]. Earth Surface Processes and Landforms, 1992, 17(6): 589-604.
77 Fryberger S G , Dean G . Dune forms and wind regime[M]//A Study of global Sand Seas. US Government Printing Office Washington, 1979, 1052: 137-169.
78 Gares P A , Nordstrom K F . Dynamics of a coastal foredune blowout at Island Beach State Park ,NJ[C]// Nicholas C K. Coastal Sediments. New York: American Society of Civil Engineers, 1987: 213-221.
79 Dech J P , Maun M A , Pazner M I . Blowout dynamics on Lake Huron sand dunes: Analysis of digital multispectral data from colour air photos[J]. Catena, 2005, 60(2): 165-180.
80 Robertson C , Nelson T A , Boots B , et al . STAMP: Spatial-temporal analysis of moving polygons[J]. Journal of Geographical Systems, 2007, 9(3): 207-227.
[1] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[2] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[3] 车雪华, 罗万银, 邵梅, 王中原. 青海共和盆地不同发育阶段风蚀坑表面气流场与形态反馈研究[J]. 地球科学进展, 2021, 36(1): 95-109.
[4] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[5] 张佳伟,李汉敖,张会平,徐心悦. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 2020, 35(8): 848-862.
[6] 董治宝,吕萍,李超,胡光印. 火星独特风沙地貌之横向沙脊[J]. 地球科学进展, 2020, 35(7): 661-677.
[7] 董治宝,吕萍,李超,胡光印. 火星大沙波纹特征及其形成机制[J]. 地球科学进展, 2020, 35(10): 1006-1015.
[8] 李岩瑛,蔡英,张春燕,曾婷,杨吉萍. 西北东部季风过渡区夹卷率与夏季风的动力学关系[J]. 地球科学进展, 2019, 34(12): 1316-1327.
[9] 潘敖然, 单慧媚, 彭三曦, 赵超然, 黄健, 闫志为. 基于热力学模拟河套平原高砷地下水中硫代砷形态分布特征 *[J]. 地球科学进展, 2018, 33(11): 1169-1180.
[10] 杨林, 董玉祥, 杜建会. 海岸沙丘对风暴响应研究进展[J]. 地球科学进展, 2017, 32(7): 716-722.
[11] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[12] 李建平, 赵 森, 李艳杰, 汪 雷, 孙 诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[13] 陆志翔, 肖洪浪, 邹松兵, 任娟, 张志强. 黑河流域近两千年人—水—生态演变研究进展[J]. 地球科学进展, 2015, 30(3): 396-406.
[14] 邹学勇, 张春来, 程宏, 亢力强, 吴晓旭, 常春平, 王周龙, 张峰, 李继峰, 刘辰琛, 刘博, 田金鹭. 土壤风蚀模型中的影响因子分类与表达[J]. 地球科学进展, 2014, 29(8): 875-889.
[15] 张正偲, 董治宝. 风沙地貌形态动力学研究进展[J]. 地球科学进展, 2014, 29(6): 734-747.
阅读次数
全文


摘要