1 |
Wilson J T. Evidence from Ocean Islands suggesting movement in the Earth [J]. Philosophical Transactions of the Royal Society of London, 1965, 258(1 088): 145-167.
|
2 |
Morgon W J. Deep mantle convection plumes and plate motions [J]. The American Association of Petroleum Geologists Bulletin, 1972, 56(2): 203-213.
|
3 |
Dietz R S. Continent and ocean basin evolution by spreading of the sea floor [J]. Nature, 1961, 190(7): 854-857.
|
4 |
Niu Yaoling, Shen Fangyu, Chen Yanhong, et al. The geologically testable hypothesis on subduction initiation and actions [J]. Earth Science Frontiers, 2018, 25(6): 51-66.
|
|
牛耀龄, 沈芳宇, 陈艳红, 等. 俯冲带形成机制的可检验假说和检验方案 [J]. 地学前缘, 2018, 25(6): 51-66.
|
5 |
Niu Yaoling, Green D H. The petrological control on the Lithosphere-Asthenosphere Boundary (LAB) beneath ocean basins [J]. Earth-Science Reviews, 2018, 185: 301-307.
|
6 |
Stern R J. Subduction zones [J]. Reviews of Geophysics, 2002, 40(4):1 012.
|
7 |
Niu Yaoling, O’Hara M J. Global correlations of ocean ridge basalt chemistry with axial depth: A new perspective [J]. Journal of Petrology, 2008, 49(4): 633-664.
|
8 |
Niu Yaoling. Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites [J]. Journal of Petrology, 1997, 38(8): 1 047-1 074.
|
9 |
Plank T, Langmuir C H. Tracing trace elements from sediment input to volcanic output at subduction zones [J]. Letters to Nature, 1993, 362 (6 422): 739-743.
|
10 |
Plank T. Subduction zone geochemistry [C]// Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth. Switzerland: Springer, 2018: 1 384-1 392.
|
11 |
Zhao Zhenhua, Wang Qiang, Xiong Xiaolin. Complex mantle-crust interaction in subduction zone [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 23(4): 277-284.
|
|
赵振华, 王强, 熊小林. 俯冲带复杂的壳幔相互作用 [J]. 矿物岩石地球化学通报, 2004, 23(4): 277-284.
|
12 |
Tatsumi Y, Kogiso T. The subduction factory: Its role in the evolution of the Earth's crust and mantle [J]. Geological Society London Special Publications, 2003, 219(1): 55-88.
|
13 |
Tatsumi Y. The subduction factory: How it operates in the evolving Earth [J]. GSA Today, 2005, 15(7): 4-10.
|
14 |
Saffer D M, Tobin H J. Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure [J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 157-186.
|
15 |
Schmidt M W, Poli S. Devolatilization during subduction [C]// Treatise on Geochemistry. Switzerland: Springer, 2014: 669-701.
|
16 |
Manning C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters, 2004, 223(1/2): 1-16.
|
17 |
Elliott T. Tracers of the slab [C]// Inside the Subduction Factory. Washington DC: American Geophysical Union, 2003: 23-45.
|
18 |
Spandler C, Pirard C. Element recycling from subducting slabs to arc crust: A review [J]. Lithos, 2013, 170/171: 208-223.
|
19 |
McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism [J]. Earth and Planetary Science Letters, 1991, 102(3/4): 358-374.
|
20 |
Hofmann A W, White W M. Mantle plumes from ancient oceanic crust [J]. Earth and Planetary Science Letters, 1982, 57(2): 421-436.
|
21 |
Hofmann A W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust [J]. Earth and Planetary Seience Letters, 1988, 90(3): 297-314.
|
22 |
Jackson M G, Dasgupta R. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts [J]. Earth and Planetary Science Letters, 2008, 276(1/2): 175-186.
|
23 |
Von Huene R, Scholl D W. Observations at convergent margins concerning sediment subduction,subduction erosion and the growth of continental crust [J]. Reviews of Geophysics, 1991, 29(3): 279-316.
|
24 |
Jin Xingchun, Yu Kaiping. Subduction factory and subduction recycling of continental material [J]. Advances in Earth Science, 2003, 18(5): 737-744.
|
|
金性春, 于开平. 俯冲工厂和大陆物质的俯冲再循环研究 [J]. 地球科学进展, 2003, 18(5): 737-744.
|
25 |
Scholl D W, Von Huene R. Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens [J]. Geological Society London Special Publications, 2009, 318(1): 105-125.
|
26 |
Vannucchi P, Morgan J P, Balestrieri M L. Subduction erosion, and the de-construction of continental crust: The Central America case and its global implications [J]. Gondwana Research, 2016, 40: 184-198.
|
27 |
Han Shuoshuo, Bangs N L, Carbotte S M, et al. Links between sediment consolidation and Cascadia megathrust slip behaviour [J]. Nature Geoscience, 2017, 10(12): 954-959.
|
28 |
Ikari M J, Niemeijer A R, Spiers C J, et al. Experimental evidence linking slip instability with seafloor lithology and topography at the Costa Rica convergent margin [J]. Geology, 2013, 41(8): 891-894.
|
29 |
Barry P H, Moor J M D, Giovannelli D, et al. Forearc carbon sink reduces long-term volatile recycling into the mantle [J]. Nature, 2019, 568(7 753): 487-492.
|
30 |
Plank T, Manning C E. Subducting carbon [J]. Nature, 2019, 574(7 778): 343-352.
|
31 |
Zhang Yonghua, Wu Zijun. Sedimentary organic carbon mineralization and its contribution to the marine carbon cycle in the marginal seas [J]. Advances in Earth Science, 2019, 34(2): 202-209.
|
|
张咏华, 吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
|
32 |
Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle [J]. Chemical Geology, 1998, 145(3/4): 325-394.
|
33 |
Plank T. The chemical composition of subducting sediments [C]// Treatise on Geochemistry. Switzerland: Springer, 2014: 607-629.
|
34 |
Huene V R, Ranero C R, Vannucchi P. Generic model of subduction erosion [J]. Geology, 2004, 32(10): 913-916.
|
35 |
Chen Ping, Zheng Yanpeng, Liu Baohua. Geophysical features of the NANKAI trough subduction zone and their dynamic signficance [J]. Marine Geology and Quaternary Geology, 2014, 34(6): 153-160.
|
|
陈萍, 郑彦鹏, 刘保华. 日本南海海槽俯冲带的地球物理特征及其动力学意义[J]. 海洋地质与第四纪地质, 2014, 34(6): 153-160.
|
36 |
Stern C R. Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle [J]. Gondwana Research, 2011, 20(2/3): 284-308.
|
37 |
Vannucchi P, Sak P B, Morgan J P, et al. Rapid pulses of uplift, subsidence, and subduction erosion offshore Central America: Implications for building the rock record of convergent margins [J]. Geology, 2013, 41(9): 995-998.
|
38 |
Rea D K, Ruff L J. Composition and mass flux of sediment entering the world ssubduction zones Implications for global sediment budgets, greatearthquakes, and volcanism [J]. Earth and Planetary Science Letters, 1996, 140(4): 1-12.
|
39 |
Lin Pingnan. Trace element and isotopic characteristics of western Pacific pelagic sediments: Implications for the petrogenesis of Mariana Arc magmas [J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1 641-1 654.
|
40 |
Wang Yuhang, Zhu Yuanyuan, Huang Jiandong, et al. Application of rare earth elements of the marine carbonate rocks in paleoenvironmental researches[J]. Advances in Earth Science, 2018, 33(9): 922-932.
|
|
王宇航, 朱园园, 黄建东, 等. 海相碳酸盐岩稀土元素在古环境研究中的应用[J].地球科学进展, 2018, 33(9): 922-932.
|
41 |
Rudnick R L, Gao Shan. Composition of the continental crust [C]// Treatise on Geochemistry. Switzerland: Springer, 2014: 1-51.
|
42 |
Zindler A, Jagoutz E, Goldstein S. Nd, Sr and Pb isotopic systematics in a three-component mantle: A new perspective [J]. Nature, 1982, 298(5 874): 519-523.
|
43 |
Allègre C J. Isotope geodynamics [J]. Earth and Planetary Science Letters, 1987, 86(2/4): 175-203.
|
44 |
Vervoort J D, Patchett P J, Blichert T J, et al. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system [J]. Earth and Planetary Science Letters, 1999, 168(1/2): 79-99.
|
45 |
Vervoort J D, Plank T, Prytulak J. The Hf-Nd isotopic composition of marine sediments [J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 5 903-5 926.
|
46 |
Chen Tianyu, Ling Hongfei, Frank M, et al. Zircon effect alone insufficient to generate seawater Nd-Hf isotope relationships [J]. Geochemistry Geophysics Geosystems, 2011, 12(5): 1-9.
|
47 |
Chauvel C, Lewin E, Carpentier M, et al. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array [J]. Nature Geoscience, 2008, 1(1): 64-67.
|
48 |
Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation [J]. Marine Geology, 2003, 198(3): 331-351.
|
49 |
Barrett T J, Taylor P N, Lugoqski J. Metalliferous sediments from DSDP Leg 92: The East Pacific Rise transect [J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2 241-2 253.
|
50 |
Briqueu L, Lancelot J R. Sr isotopes and K, Rb, Sr balance in sediments and igneous rocks from the subducted plate of the Vanuatu (New Hebrides) active margin [J]. Geochimica et Cosmochimica Acta, 1983, 47(2): 191-200.
|
51 |
Hauff F, Hoernle K, Schmidt A. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system [J]. Geochemistry Geophysics Geosystems, 2003, 4(8): 1-30.
|
52 |
Tomascak P B, Tera F, Helz R T, et al. The absence of lithium isotope fractionation during basalt differentiation: New measurements by multicollector sector ICP-MS [J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 907-910.
|
53 |
Tang Yanjie, Zhang Hongfu, Ying Jifeng. Review of the Lithium isotope system as a geochemical tracer [J]. International Geology Review, 2007, 49(4): 374-388.
|
54 |
Zhang Xia, Zhai Shikui, Yu Zenghui, et al. Subduction contribution to the magma source of the Okinawa Trough—Evidence from boron isotopes [J]. Geological Journal, 2019, 54(1): 605-613.
|
55 |
Tonarini S, Leeman W P, Leat P T. Subduction erosion of forearc mantle wedge implicated inthe genesis of the Sout Sandwich Island arc: Evidence from boron isotope systematics [J]. Earth and Planetary Science Letters, 2011, 301(1/2): 275-284.
|
56 |
Teng Fangzhen, Yan Hu, Chauvel C. Magnesium isotope geochemistry in arc volcanism [J]. Proceedings of the National Academy of Sciences, 2016, 113(26): 7 082-7 087.
|
57 |
Chan L H, Leeman W P, Plank T. Lithium isotopic composition of marine sediments [J]. Geochemistry Geophysics Geosystems, 2006, 7(6): 1-25.
|
58 |
Chan L H, Hein J R. Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11/13): 1 147-1 162.
|
59 |
Wan Hongqiong, Sun He, Liu Haiyang, el at. Lithium isotopic geochenistry in subduction zones: Retrospects and prospects earth science frontiers [J]. Earth Science Frontiers, 2015, 22(5): 29-34.
|
|
万红琼, 孙贺, 刘海洋, 等. 俯冲带Li同位素地球化学回顾与展望 [J]. 地学前缘, 2015, 22(5): 29-43.
|
60 |
Marschall H R. Boron isotopes in the ocean floor realm and the mantle[C]// Advances in Isotope Geochemistry. Switzerland: Springer, 2018: 189-215.
|
61 |
Ishikawa T, Nakamura E. Boron isotope systematics of marine sediments [J]. Earth and Planetary Science Letters, 1993, 117(3/4): 567-580.
|
62 |
Foster G L, Pogge von Strandmann P A E, Rae J W B. Boron and magnesium isotopic composition of seawater [J]. Geochemistry Geophysics Geosystems, 2010, 11(8): 1-10.
|
63 |
Zhang Xia, Yu Zenghui, Zhai Shikui, et al. Systematic differences in boron isotope compositions between mid-ocean ridge and back-arc basin hydrothermal fluids [J]. Acta Oceanologica Sinica, 2019, 41(11): 64-74.
|
|
张侠, 于增慧, 翟世奎, 等. 洋中脊和弧后盆地热液区热液流体B同位素组成的系统性差异 [J]. 海洋学报, 2019, 41(11): 64-74.
|
64 |
Hoog J D, Savov I P. Boron isotopes as a tracer of subduction zone processes [C]// Advances in Isotope Geochemistry. Switzerland: Springer, 2018: 217-247.
|
65 |
Hu Yan, Teng Fangzhen, Plank T, et al. Magnesium isotopic composition of subducting marine sediments [J]. Chemical Geology, 2017, 466: 15-31.
|
66 |
Teng Fangzhen. Magnesium isotope geochemistry [J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 219-287.
|
67 |
Li Wangye, Teng Fangzhen, Ke Shan, et al. Heterogeneous magnesium isotopic composition of the upper continental crust [J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6 867-6 884.
|
68 |
Kolodny Y, Epstein S. Stable isotope geochemistry of deep sea cherts [J]. Geochimica et Cosmochimica Acta, 1976, 40(10): 1 195-1 209.
|
69 |
Li Yue, Wang Rujian, Li Wenbao. Review on research on paleo-sea level reconstruction based on foraminiferal oxygen isotope in deep sea sediments [J]. Advances in Earth Science, 2016, 31(3): 310-319.
|
|
李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展 [J]. 地球科学进展, 2016, 31(3): 310-319.
|
70 |
Bindeman I N, Eiler J M, Yogodzinski G M, et al. Oxygen isotope evidence for slab melting in modern and ancient subduction zones [J]. Earth and Planetary Science Letters, 2005, 235(3/4): 480-496.
|
71 |
Eiler J M, Carr M J, Reagan M, et al. Oxygen isotope constraints on the sources of Central American arc lavas [J]. Geochemistry Geophysics Geosystems, 2005, 6(7): 1-28.
|
72 |
Nielsen S G, Horner T J, Pryer H V, et al. Barium isotope evidence for pervasive sediment recycling in the upper mantle [J]. Science Advances, 2018, 4(7): 1-8.
|
73 |
Nielsen S G, Yogodzinski G, Prytulak J, et al. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes [J]. Geochimica et Cosmochimica Acta, 2016, 181: 217-237.
|
74 |
Shi Xuefa, Yan Quanshu. Magmatism of typical marginal basins (or Back-Arc Basins) in the West Pacific [J]. Advances in Earth Science, 2013, 28(7): 737-750.
|
|
石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动 [J]. 地球科学进展, 2013, 28(7): 737-750.
|
75 |
Wang Lu, Kusky T M, Polat A, et al. Partial melting of deeply subducted eclogite from the Sulu orogen in China [J]. Nature Communications, 2014, 5(1): 5 604.
|
76 |
Castillo P R. Adakite petrogenesis [J]. Lithos, 2012, 134/135: 304-316.
|
77 |
Hernández-Uribe D, Hernández-Montenegro J D, Cone K A, et al. Oceanic slab-top melting during subduction: Implications for trace-element recycling and adakite petrogenesis [J]. Geology, 2020, 48. DOI:10.1130/G46835.1.
doi: 10.1130/G46835.1
|
78 |
Zheng Yongfei, Chen Renxu, Xu Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 46(3): 253-286.
|
|
郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移 [J]. 中国科学:地球科学, 2016, 46(3): 253-286.
|
79 |
Fryer P, Lockwood J P, Becker N, et al. Significance of Serpentine Mud Volcanism in convergent margins [J]. Geological Society of America Special Paper 349, 2000,349: 35-51.
|
80 |
Fryer P. Serpentinite mud volcanism: Observations, processes, and implicationsn [J]. Annual Review of Marine Science, 2012, 4(1): 345-373.
|
81 |
Wang Xiaomei, Zeng Zhigang, Chen Junbing. Serpentinization of peridotite in the south of Mariana front arc [J]. Progress in Natural Science, 2009, 19(8): 859-867.
|
|
汪小妹, 曾志刚, 陈俊兵. 马里亚纳前弧南部橄榄岩的蛇纹石化 [J]. 自然科学进展, 2009, 19(8): 859-867.
|
82 |
Tryon M D, Wheat C G, Hilton D R. Fluid sources and pathways of the Costa Rica erosional convergent margin [J]. Geochemistry Geophysics Geosystems, 2010, 11(4):1-15.
|
83 |
Johnson M C, Plank T. Dehydration and melting experiments constrain the fate of subducted sediments [J]. Geochemistry Geophysics Geosystems, 1999, 1(1): 1-26.
|
84 |
Plank T, Kelley K A, Murray R W, et al. Chemical composition of sediments subducting at the Izu-Bonin trench [J]. Geochemistry Geophysics Geosystems, 2007, 8(4): 1-16.
|
85 |
Tera F, Brown L, Morris J, et al. Sediment incorporation in island-arc magmas: Inferences from 10Be [J]. Geochimica et Cosmochimica Acta, 1986, 50(4): 535-550.
|
86 |
Tang Ming, Rudnick R L, Chauvel C. Sedimentary input to the source of Lesser Antilles lavas: A Li perspective [J]. Geochimica et Cosmochimica Acta, 2014, 144: 43-58.
|
87 |
Haase K M, Worthington T J, Stoffers P, et al. Mantle dynamics, element recycling, and magma genesis beneath the Kermadec Arc-Havre Trough [J]. Geochemistry Geophysics Geosystems, 2002, 3(11): 1-22.
|
88 |
Zhang Haitao, Yan Quanshu, Li Chuanshun, et al. Geochemistry of diverse lava types from the Lau Basin (South West Pacific): Implications for complex back-arc mantle dynamics [J]. Geological Journal, 2018, 54(6): 1-17.
|
89 |
Yan Quanshu, Shi Xuefa, Li Naisheng. Geology of Lau Basin in the southwest pacific ocean [J]. Marine Geology and Quaternary Geology, 2010, 30(1):131-140.
|
|
鄢全树, 石学法, 李乃胜. 西南太平洋劳海盆地质学研究进展 [J]. 海洋地质与第四纪地质, 2010, 30(1):131-140.
|
90 |
Yan Quanshu, Castillo P R, Shi Xuefa. Geochemistry of basaltic lavas from the southern Lau Basin: Input of compositionally variable subduction components [J]. International Geology Review, 2012, 54(12): 1 456-1 474.
|
91 |
Yan Quanshu, Zhang Pingyang, Metcalfe I, et al. Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes [J]. Mineralogy and Petrology, 2019, 113(6):803-820.
|
92 |
Patino L C, Carr M J, Feigenson M D. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input [J]. Contributions to Mineralogy and Petrology, 2000, 138(3): 265-283.
|
93 |
Feigenson M D, Carr M J. The source of Central American lavas: Inferences from geochemical inverse modeling [J]. Contributions to Mineralogy and Petrology, 1993, 113(2): 226-235.
|
94 |
Plank T, Balzer V, Carr M. Nicaraguan volcanoes record paleoceanographic changes accompanying closure of the Panama gateway [J]. Geology, 2002, 30(12): 1 087-1 090.
|
95 |
Yan Quanshu, Shi Xuefa. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone [J]. Acta Oceanologica Sinica, 2014, 35(5): 107-123.
|
|
鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应 [J]. 海洋学报, 2014, 36(5): 107-123.
|
96 |
Li Yongxiang, Yan Quanshu, Zhao Xixi, et al. Research on seismogenesis at erosive convergent margins: Report from IODP expedition 344 [J]. Advances in Earth Science, 2013, 28(6): 728-736.
|
|
李永祥, 鄢全树, 赵西西, 等. 剥蚀型汇聚板块边缘大地震成因机理研究: 来自国际综合大洋钻探344航次的报告[J]. 地球科学进展, 2013, 28(6): 728-736.
|
97 |
Harris R, Sakaguchi A, Petronotis K, et al. Costa Rica Seismogenesis Project, Program A Stage 2 (CRISP-A2): Sampling and quantifying lithologic inputs and fluid inputs and outputs of the seismogenic zone[C]//Proceedings of the Integrated Ocean Drilling Program. 2012: 344.
|
98 |
Li Yongxiang, Zhao Xixi, Jovane L, et al. Paleomagnetic constraints on the tectonic evolution of the Costa Rican subduction zone: New results from sedimentary successions of IODP drill sites from the Cocos Ridge [J]. Geochemistry Geophysics Geosystems, 2015, 16(12): 4 479-4 493.
|
99 |
Zindler A, Hart S. Chemical geodynamics [J]. Earth and Planetary Science Letters, 1986, 14(1): 93-571.
|
100 |
Stracke A, Hofmann A W, Hart S R. FOZO, HIMU, and the rest of the mantle zoo [J]. Geochemistry Geophysics Geosystems, 2005, 6(5): 1-20.
|
101 |
Weaver B L. The origin of ocean island basalt end-member composition trace element and isotopic constraints [J]. Earth and Planetary Science Letters, 1991, 104(2/4): 381-397.
|
102 |
Eisele J, Sharma M, Galer S J G, et al. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot [J]. Earth and Planetary Science Letters, 2002, 196(3/4): 197-212.
|
103 |
Niu Yaoling, O'Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 1-19.
|
104 |
Workman R K, Hart S R, Jackson M, et al. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain [J]. Geochemistry Geophysics Geosystems, 2004, 5(4): 1-44.
|
105 |
Willbold M, Stracke A. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust [J]. Geochemistry Geophysics Geosystems, 2006, 7(4): 1-30.
|
106 |
Jackson M G, Hart S R, Koppers A A P, et al. The return of subducted continental crust in Samoan lavas [J]. Nature, 2007, 448(7 154): 684-687.
|
107 |
McKenzie D, O’Nions R K. Mantle reservoirs and ocean island basalts [J]. Nature, 1983, 301(5 897): 229-231.
|
108 |
Wang Xiaojun, Chen Lihui, Alrecht W H, et al. Recycled ancient ghost carbonate in the Pitcarin mantle plume [J]. Proceedings of the National Academy of Sciences, 2018, 115(35): 8 682-8 687.
|
109 |
Meibom A, Anderson D L. The statistical upper mantle assemblage [J]. Earth and Planetary Science Letters, 2003, 217(1/2): 123-139.
|
110 |
Helffrich G R, Wood B J. The Earth's mantle [J]. Nature, 2001, 412(6 846): 501-507.
|
111 |
Eiler J M, Schiano P, Kitchen N, et al. Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts [J]. Nature, 2000, 403(6 769): 530-534.
|
112 |
Schilling J. Iceland mantle plume: Geochemical study of Reykjanes Ridge [J]. Nature, 1973, 242(5 400): 565-571.
|
113 |
Hofmann A W. Mantle geochemistry, the message from oceanic volcanism [J]. Nature, 1997, 385(6 613): 219-229.
|