地球科学进展 ›› 2020, Vol. 35 ›› Issue (8): 789 -803. doi: 10.11867/j.issn.1001-8166.2020.068

综述与评述 上一篇    下一篇

全球俯冲沉积物组分及其地质意义
赵仁杰 1, 2( ),鄢全树 1, 2, 3( ),张海桃 1, 3,关义立 1, 3,葛振敏 1, 3,袁龙 1, 2,闫施帅 1, 3   
  1. 1.自然资源部第一海洋研究所 海洋地质与成矿作用重点实验室,山东 青岛 266061
    2.山东科技 大学 地球科学与工程学院,山东 青岛 266590
    3.青岛海洋科学与技术试点国家实验室 海洋地质过程与环境功能实验室,山东 青岛 266061
  • 收稿日期:2020-05-19 修回日期:2020-07-25 出版日期:2020-08-10
  • 通讯作者: 鄢全树 E-mail:zrj@fio.org.cn;yanquanshu@163.com
  • 基金资助:
    国家自然科学基金项目“科科斯脊俯冲组分及邻近大陆坡沉积物的地球化学研究及其对俯冲剥蚀机制的制约”(41776070);山东省泰山学者工程项目资助

The Chemical Composition of Global Subducting Sediments and Its Geological Significance

Renjie Zhao 1, 2( ),Quanshu Yan 1, 2, 3( ),Haitao Zhang 1, 3,Yili Guan 1, 3,Zhenmin Ge 1, 3,Long Yuan 1, 2,Shishuai Yan 1, 3   

  1. 1.Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
    2.College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
    3.Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
  • Received:2020-05-19 Revised:2020-07-25 Online:2020-08-10 Published:2020-09-15
  • Contact: Quanshu Yan E-mail:zrj@fio.org.cn;yanquanshu@163.com
  • About author:Zhao Renjie (1990-), male, Shawan County, Xinjiang Uygur Autonomous Region, Ph. D student. Research areas include subducted sediments. E-mail: zrj@fio.org.cn
  • Supported by:
    the National Natural Science Foundation of China “Geochemical study of subduction components of the Cocos Ridge and adjacent continental slope sediments and their constraints on the mechanism of subduction erosion”(41776070);The Taishan Scholarship from Shandong Province

俯冲沉积物在壳幔相互作用和深部地幔过程中扮演了重要角色,对汇聚板块边缘处的俯冲带岩浆成因与地幔地球化学过程也产生了重要影响。全球俯冲沉积物输入速率为0.5~0.7 km3/a,由陆源物质(76%)、钙质碳酸盐(7%)、蛋白石(10%)以及结合水(7%)组成,化学组分与上地壳相似,主要受陆源物质影响,同时海洋过程产生的组分(生物相、热液相和自生相)会稀释陆源物质。不同海沟处的俯冲沉积物组分存在一定的差异,在增生边缘,俯冲沉积物组分与上地壳相似,而在非增生边缘海洋过程产生的组分占比增加。在俯冲过程中,随着温度和压力的增加,俯冲沉积物发生一系列化学反应,以流体、熔体或者超临界流体的形式对弧下地幔与岛弧地壳产生影响,部分俯冲沉积物与其下伏洋壳或岩石圈(俯冲残余组分)一同进入地幔(甚至是下地幔),对地幔不均一性作出贡献。地球化学示踪剂显示俯冲沉积物影响着地球不同构造背景下的岩浆过程。因此,俯冲沉积物在板块构造与地幔柱两大动力学系统中具有重要作用,通过准确计算俯冲沉积物组分,并综合运用各类地球化学指标,计算各元素或同位素的输入与输出通量,可得到更准确的俯冲残余组分,为研究地球动力学过程提供重要的基础性资料。

Subducted sediments play an important role in crust-mantle interaction and deep mantle processes, especially for subduction zone magmatism and mantle geochemistry. The current rate of Global Subducting Sediments (GLOSS) is 0.5~0.7 km3/a. The GLOSS are composed of terrigenous material(76 wt.%), calcium carbonate(7 wt.%), opal(10 wt.%) and mineral-bound H2O+(7 wt.%). The chemical compositions of GLOSS are similar to those of upper continental crust which is mainly controlled by the terrigenous materials, and yet the materials formed by marine processes will dilute the terrigenous materials. The components of subducted sediments are different among trenches. In the accretionary margin, the components of subducted sediments are similar to those of the upper crust, while in the non-accretionary margin the components are terrigenous materials plus those produced by marine processes. During subduction, subducted sediments will released fluids, melt or supercritical fluid to affect island arc/back-arc basin magmatism by means of aqueous fluid or sediment melt. In addition, a part of subducted sediments, together with underlying altered oceanic crust/lithosphere, recycle into the mantle and contribute to the mantle heterogeneity. Geochemical tracers indicate that subducted sediments play variable contributions to the magmatic processes in different tectonic setting. Thus, subducted sediments play an important role in two relatively independent dynamics systems (plate tectonics and mantle plume), as well as related mantle evolution models. As a result, by accurately calculating the compositions of subduction sediments and using various geochemical indicators, we can further limit the input and output fluxes of various elements or isotopes, and then obtain more accurately residual subducted components, which can provide us some important clues for geodynamic process.

中图分类号: 

图1 俯冲带示意图[ 6 ]
Fig.1 Schematic section of subduction zone[ 6 ]
图2 两种俯冲带类型[ 14 ]
Fig.2 Two types of subduction zones[ 14 ]
图3 全球各海沟俯冲沉积物厚度及岩性图[ 33 ]
红色字体代表增生边缘;黑色字体代表非增生边缘
Fig.3 Summary of sedimentary thickness and lithology of each global subduction trenches[ 33 ]
Accretionary margin are shown in red font, and nonaccretionary margin is shown in black font
图4 上地壳标准化的全球俯冲沉积物、增生边缘俯冲沉积物和非增生俯冲沉积物化学组分对比图
全球俯冲沉积物数据来自参考文献[ 33 ];上地壳组分数据来自参考文献[ 41 ]
Fig.4 The elemental composition of global subducting sediment, accretion margin subducting sediment and nonaccretion margin subducting sediment that are normalized to the average Upper Crustal Composition(UCC)
The data of global subducting sediment from reference[ 33 ]; The data of upper crustal compositon from reference[ 41 ]
1 Wilson J T. Evidence from Ocean Islands suggesting movement in the Earth [J]. Philosophical Transactions of the Royal Society of London, 1965, 258(1 088): 145-167.
2 Morgon W J. Deep mantle convection plumes and plate motions [J]. The American Association of Petroleum Geologists Bulletin, 1972, 56(2): 203-213.
3 Dietz R S. Continent and ocean basin evolution by spreading of the sea floor [J]. Nature, 1961, 190(7): 854-857.
4 Niu Yaoling, Shen Fangyu, Chen Yanhong, et al. The geologically testable hypothesis on subduction initiation and actions [J]. Earth Science Frontiers, 2018, 25(6): 51-66.
牛耀龄, 沈芳宇, 陈艳红, 等. 俯冲带形成机制的可检验假说和检验方案 [J]. 地学前缘, 2018, 25(6): 51-66.
5 Niu Yaoling, Green D H. The petrological control on the Lithosphere-Asthenosphere Boundary (LAB) beneath ocean basins [J]. Earth-Science Reviews, 2018, 185: 301-307.
6 Stern R J. Subduction zones [J]. Reviews of Geophysics, 2002, 40(4):1 012.
7 Niu Yaoling, O’Hara M J. Global correlations of ocean ridge basalt chemistry with axial depth: A new perspective [J]. Journal of Petrology, 2008, 49(4): 633-664.
8 Niu Yaoling. Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites [J]. Journal of Petrology, 1997, 38(8): 1 047-1 074.
9 Plank T, Langmuir C H. Tracing trace elements from sediment input to volcanic output at subduction zones [J]. Letters to Nature, 1993, 362 (6 422): 739-743.
10 Plank T. Subduction zone geochemistry [C]// Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth. Switzerland: Springer, 2018: 1 384-1 392.
11 Zhao Zhenhua, Wang Qiang, Xiong Xiaolin. Complex mantle-crust interaction in subduction zone [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 23(4): 277-284.
赵振华, 王强, 熊小林. 俯冲带复杂的壳幔相互作用 [J]. 矿物岩石地球化学通报, 2004, 23(4): 277-284.
12 Tatsumi Y, Kogiso T. The subduction factory: Its role in the evolution of the Earth's crust and mantle [J]. Geological Society London Special Publications, 2003, 219(1): 55-88.
13 Tatsumi Y. The subduction factory: How it operates in the evolving Earth [J]. GSA Today, 2005, 15(7): 4-10.
14 Saffer D M, Tobin H J. Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure [J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 157-186.
15 Schmidt M W, Poli S. Devolatilization during subduction [C]// Treatise on Geochemistry. Switzerland: Springer, 2014: 669-701.
16 Manning C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters, 2004, 223(1/2): 1-16.
17 Elliott T. Tracers of the slab [C]// Inside the Subduction Factory. Washington DC: American Geophysical Union, 2003: 23-45.
18 Spandler C, Pirard C. Element recycling from subducting slabs to arc crust: A review [J]. Lithos, 2013, 170/171: 208-223.
19 McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism [J]. Earth and Planetary Science Letters, 1991, 102(3/4): 358-374.
20 Hofmann A W, White W M. Mantle plumes from ancient oceanic crust [J]. Earth and Planetary Science Letters, 1982, 57(2): 421-436.
21 Hofmann A W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust [J]. Earth and Planetary Seience Letters, 1988, 90(3): 297-314.
22 Jackson M G, Dasgupta R. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts [J]. Earth and Planetary Science Letters, 2008, 276(1/2): 175-186.
23 Von Huene R, Scholl D W. Observations at convergent margins concerning sediment subduction,subduction erosion and the growth of continental crust [J]. Reviews of Geophysics, 1991, 29(3): 279-316.
24 Jin Xingchun, Yu Kaiping. Subduction factory and subduction recycling of continental material [J]. Advances in Earth Science, 2003, 18(5): 737-744.
金性春, 于开平. 俯冲工厂和大陆物质的俯冲再循环研究 [J]. 地球科学进展, 2003, 18(5): 737-744.
25 Scholl D W, Von Huene R. Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens [J]. Geological Society London Special Publications, 2009, 318(1): 105-125.
26 Vannucchi P, Morgan J P, Balestrieri M L. Subduction erosion, and the de-construction of continental crust: The Central America case and its global implications [J]. Gondwana Research, 2016, 40: 184-198.
27 Han Shuoshuo, Bangs N L, Carbotte S M, et al. Links between sediment consolidation and Cascadia megathrust slip behaviour [J]. Nature Geoscience, 2017, 10(12): 954-959.
28 Ikari M J, Niemeijer A R, Spiers C J, et al. Experimental evidence linking slip instability with seafloor lithology and topography at the Costa Rica convergent margin [J]. Geology, 2013, 41(8): 891-894.
29 Barry P H, Moor J M D, Giovannelli D, et al. Forearc carbon sink reduces long-term volatile recycling into the mantle [J]. Nature, 2019, 568(7 753): 487-492.
30 Plank T, Manning C E. Subducting carbon [J]. Nature, 2019, 574(7 778): 343-352.
31 Zhang Yonghua, Wu Zijun. Sedimentary organic carbon mineralization and its contribution to the marine carbon cycle in the marginal seas [J]. Advances in Earth Science, 2019, 34(2): 202-209.
张咏华, 吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
32 Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle [J]. Chemical Geology, 1998, 145(3/4): 325-394.
33 Plank T. The chemical composition of subducting sediments [C]// Treatise on Geochemistry. Switzerland: Springer, 2014: 607-629.
34 Huene V R, Ranero C R, Vannucchi P. Generic model of subduction erosion [J]. Geology, 2004, 32(10): 913-916.
35 Chen Ping, Zheng Yanpeng, Liu Baohua. Geophysical features of the NANKAI trough subduction zone and their dynamic signficance [J]. Marine Geology and Quaternary Geology, 2014, 34(6): 153-160.
陈萍, 郑彦鹏, 刘保华. 日本南海海槽俯冲带的地球物理特征及其动力学意义[J]. 海洋地质与第四纪地质, 2014, 34(6): 153-160.
36 Stern C R. Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle [J]. Gondwana Research, 2011, 20(2/3): 284-308.
37 Vannucchi P, Sak P B, Morgan J P, et al. Rapid pulses of uplift, subsidence, and subduction erosion offshore Central America: Implications for building the rock record of convergent margins [J]. Geology, 2013, 41(9): 995-998.
38 Rea D K, Ruff L J. Composition and mass flux of sediment entering the world ssubduction zones Implications for global sediment budgets, greatearthquakes, and volcanism [J]. Earth and Planetary Science Letters, 1996, 140(4): 1-12.
39 Lin Pingnan. Trace element and isotopic characteristics of western Pacific pelagic sediments: Implications for the petrogenesis of Mariana Arc magmas [J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1 641-1 654.
40 Wang Yuhang, Zhu Yuanyuan, Huang Jiandong, et al. Application of rare earth elements of the marine carbonate rocks in paleoenvironmental researches[J]. Advances in Earth Science, 2018, 33(9): 922-932.
王宇航, 朱园园, 黄建东, 等. 海相碳酸盐岩稀土元素在古环境研究中的应用[J].地球科学进展, 2018, 33(9): 922-932.
41 Rudnick R L, Gao Shan. Composition of the continental crust [C]// Treatise on Geochemistry. Switzerland: Springer, 2014: 1-51.
42 Zindler A, Jagoutz E, Goldstein S. Nd, Sr and Pb isotopic systematics in a three-component mantle: A new perspective [J]. Nature, 1982, 298(5 874): 519-523.
43 Allègre C J. Isotope geodynamics [J]. Earth and Planetary Science Letters, 1987, 86(2/4): 175-203.
44 Vervoort J D, Patchett P J, Blichert T J, et al. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system [J]. Earth and Planetary Science Letters, 1999, 168(1/2): 79-99.
45 Vervoort J D, Plank T, Prytulak J. The Hf-Nd isotopic composition of marine sediments [J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 5 903-5 926.
46 Chen Tianyu, Ling Hongfei, Frank M, et al. Zircon effect alone insufficient to generate seawater Nd-Hf isotope relationships [J]. Geochemistry Geophysics Geosystems, 2011, 12(5): 1-9.
47 Chauvel C, Lewin E, Carpentier M, et al. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array [J]. Nature Geoscience, 2008, 1(1): 64-67.
48 Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation [J]. Marine Geology, 2003, 198(3): 331-351.
49 Barrett T J, Taylor P N, Lugoqski J. Metalliferous sediments from DSDP Leg 92: The East Pacific Rise transect [J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2 241-2 253.
50 Briqueu L, Lancelot J R. Sr isotopes and K, Rb, Sr balance in sediments and igneous rocks from the subducted plate of the Vanuatu (New Hebrides) active margin [J]. Geochimica et Cosmochimica Acta, 1983, 47(2): 191-200.
51 Hauff F, Hoernle K, Schmidt A. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system [J]. Geochemistry Geophysics Geosystems, 2003, 4(8): 1-30.
52 Tomascak P B, Tera F, Helz R T, et al. The absence of lithium isotope fractionation during basalt differentiation: New measurements by multicollector sector ICP-MS [J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 907-910.
53 Tang Yanjie, Zhang Hongfu, Ying Jifeng. Review of the Lithium isotope system as a geochemical tracer [J]. International Geology Review, 2007, 49(4): 374-388.
54 Zhang Xia, Zhai Shikui, Yu Zenghui, et al. Subduction contribution to the magma source of the Okinawa Trough—Evidence from boron isotopes [J]. Geological Journal, 2019, 54(1): 605-613.
55 Tonarini S, Leeman W P, Leat P T. Subduction erosion of forearc mantle wedge implicated inthe genesis of the Sout Sandwich Island arc: Evidence from boron isotope systematics [J]. Earth and Planetary Science Letters, 2011, 301(1/2): 275-284.
56 Teng Fangzhen, Yan Hu, Chauvel C. Magnesium isotope geochemistry in arc volcanism [J]. Proceedings of the National Academy of Sciences, 2016, 113(26): 7 082-7 087.
57 Chan L H, Leeman W P, Plank T. Lithium isotopic composition of marine sediments [J]. Geochemistry Geophysics Geosystems, 2006, 7(6): 1-25.
58 Chan L H, Hein J R. Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11/13): 1 147-1 162.
59 Wan Hongqiong, Sun He, Liu Haiyang, el at. Lithium isotopic geochenistry in subduction zones: Retrospects and prospects earth science frontiers [J]. Earth Science Frontiers, 2015, 22(5): 29-34.
万红琼, 孙贺, 刘海洋, 等. 俯冲带Li同位素地球化学回顾与展望 [J]. 地学前缘, 2015, 22(5): 29-43.
60 Marschall H R. Boron isotopes in the ocean floor realm and the mantle[C]// Advances in Isotope Geochemistry. Switzerland: Springer, 2018: 189-215.
61 Ishikawa T, Nakamura E. Boron isotope systematics of marine sediments [J]. Earth and Planetary Science Letters, 1993, 117(3/4): 567-580.
62 Foster G L, Pogge von Strandmann P A E, Rae J W B. Boron and magnesium isotopic composition of seawater [J]. Geochemistry Geophysics Geosystems, 2010, 11(8): 1-10.
63 Zhang Xia, Yu Zenghui, Zhai Shikui, et al. Systematic differences in boron isotope compositions between mid-ocean ridge and back-arc basin hydrothermal fluids [J]. Acta Oceanologica Sinica, 2019, 41(11): 64-74.
张侠, 于增慧, 翟世奎, 等. 洋中脊和弧后盆地热液区热液流体B同位素组成的系统性差异 [J]. 海洋学报, 2019, 41(11): 64-74.
64 Hoog J D, Savov I P. Boron isotopes as a tracer of subduction zone processes [C]// Advances in Isotope Geochemistry. Switzerland: Springer, 2018: 217-247.
65 Hu Yan, Teng Fangzhen, Plank T, et al. Magnesium isotopic composition of subducting marine sediments [J]. Chemical Geology, 2017, 466: 15-31.
66 Teng Fangzhen. Magnesium isotope geochemistry [J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 219-287.
67 Li Wangye, Teng Fangzhen, Ke Shan, et al. Heterogeneous magnesium isotopic composition of the upper continental crust [J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6 867-6 884.
68 Kolodny Y, Epstein S. Stable isotope geochemistry of deep sea cherts [J]. Geochimica et Cosmochimica Acta, 1976, 40(10): 1 195-1 209.
69 Li Yue, Wang Rujian, Li Wenbao. Review on research on paleo-sea level reconstruction based on foraminiferal oxygen isotope in deep sea sediments [J]. Advances in Earth Science, 2016, 31(3): 310-319.
李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展 [J]. 地球科学进展, 2016, 31(3): 310-319.
70 Bindeman I N, Eiler J M, Yogodzinski G M, et al. Oxygen isotope evidence for slab melting in modern and ancient subduction zones [J]. Earth and Planetary Science Letters, 2005, 235(3/4): 480-496.
71 Eiler J M, Carr M J, Reagan M, et al. Oxygen isotope constraints on the sources of Central American arc lavas [J]. Geochemistry Geophysics Geosystems, 2005, 6(7): 1-28.
72 Nielsen S G, Horner T J, Pryer H V, et al. Barium isotope evidence for pervasive sediment recycling in the upper mantle [J]. Science Advances, 2018, 4(7): 1-8.
73 Nielsen S G, Yogodzinski G, Prytulak J, et al. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes [J]. Geochimica et Cosmochimica Acta, 2016, 181: 217-237.
74 Shi Xuefa, Yan Quanshu. Magmatism of typical marginal basins (or Back-Arc Basins) in the West Pacific [J]. Advances in Earth Science, 2013, 28(7): 737-750.
石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动 [J]. 地球科学进展, 2013, 28(7): 737-750.
75 Wang Lu, Kusky T M, Polat A, et al. Partial melting of deeply subducted eclogite from the Sulu orogen in China [J]. Nature Communications, 2014, 5(1): 5 604.
76 Castillo P R. Adakite petrogenesis [J]. Lithos, 2012, 134/135: 304-316.
77 Hernández-Uribe D, Hernández-Montenegro J D, Cone K A, et al. Oceanic slab-top melting during subduction: Implications for trace-element recycling and adakite petrogenesis [J]. Geology, 2020, 48. DOI:10.1130/G46835.1.
doi: 10.1130/G46835.1    
78 Zheng Yongfei, Chen Renxu, Xu Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 46(3): 253-286.
郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移 [J]. 中国科学:地球科学, 2016, 46(3): 253-286.
79 Fryer P, Lockwood J P, Becker N, et al. Significance of Serpentine Mud Volcanism in convergent margins [J]. Geological Society of America Special Paper 349, 2000,349: 35-51.
80 Fryer P. Serpentinite mud volcanism: Observations, processes, and implicationsn [J]. Annual Review of Marine Science, 2012, 4(1): 345-373.
81 Wang Xiaomei, Zeng Zhigang, Chen Junbing. Serpentinization of peridotite in the south of Mariana front arc [J]. Progress in Natural Science, 2009, 19(8): 859-867.
汪小妹, 曾志刚, 陈俊兵. 马里亚纳前弧南部橄榄岩的蛇纹石化 [J]. 自然科学进展, 2009, 19(8): 859-867.
82 Tryon M D, Wheat C G, Hilton D R. Fluid sources and pathways of the Costa Rica erosional convergent margin [J]. Geochemistry Geophysics Geosystems, 2010, 11(4):1-15.
83 Johnson M C, Plank T. Dehydration and melting experiments constrain the fate of subducted sediments [J]. Geochemistry Geophysics Geosystems, 1999, 1(1): 1-26.
84 Plank T, Kelley K A, Murray R W, et al. Chemical composition of sediments subducting at the Izu-Bonin trench [J]. Geochemistry Geophysics Geosystems, 2007, 8(4): 1-16.
85 Tera F, Brown L, Morris J, et al. Sediment incorporation in island-arc magmas: Inferences from 10Be [J]. Geochimica et Cosmochimica Acta, 1986, 50(4): 535-550.
86 Tang Ming, Rudnick R L, Chauvel C. Sedimentary input to the source of Lesser Antilles lavas: A Li perspective [J]. Geochimica et Cosmochimica Acta, 2014, 144: 43-58.
87 Haase K M, Worthington T J, Stoffers P, et al. Mantle dynamics, element recycling, and magma genesis beneath the Kermadec Arc-Havre Trough [J]. Geochemistry Geophysics Geosystems, 2002, 3(11): 1-22.
88 Zhang Haitao, Yan Quanshu, Li Chuanshun, et al. Geochemistry of diverse lava types from the Lau Basin (South West Pacific): Implications for complex back-arc mantle dynamics [J]. Geological Journal, 2018, 54(6): 1-17.
89 Yan Quanshu, Shi Xuefa, Li Naisheng. Geology of Lau Basin in the southwest pacific ocean [J]. Marine Geology and Quaternary Geology, 2010, 30(1):131-140.
鄢全树, 石学法, 李乃胜. 西南太平洋劳海盆地质学研究进展 [J]. 海洋地质与第四纪地质, 2010, 30(1):131-140.
90 Yan Quanshu, Castillo P R, Shi Xuefa. Geochemistry of basaltic lavas from the southern Lau Basin: Input of compositionally variable subduction components [J]. International Geology Review, 2012, 54(12): 1 456-1 474.
91 Yan Quanshu, Zhang Pingyang, Metcalfe I, et al. Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes [J]. Mineralogy and Petrology, 2019, 113(6):803-820.
92 Patino L C, Carr M J, Feigenson M D. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input [J]. Contributions to Mineralogy and Petrology, 2000, 138(3): 265-283.
93 Feigenson M D, Carr M J. The source of Central American lavas: Inferences from geochemical inverse modeling [J]. Contributions to Mineralogy and Petrology, 1993, 113(2): 226-235.
94 Plank T, Balzer V, Carr M. Nicaraguan volcanoes record paleoceanographic changes accompanying closure of the Panama gateway [J]. Geology, 2002, 30(12): 1 087-1 090.
95 Yan Quanshu, Shi Xuefa. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone [J]. Acta Oceanologica Sinica, 2014, 35(5): 107-123.
鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应 [J]. 海洋学报, 2014, 36(5): 107-123.
96 Li Yongxiang, Yan Quanshu, Zhao Xixi, et al. Research on seismogenesis at erosive convergent margins: Report from IODP expedition 344 [J]. Advances in Earth Science, 2013, 28(6): 728-736.
李永祥, 鄢全树, 赵西西, 等. 剥蚀型汇聚板块边缘大地震成因机理研究: 来自国际综合大洋钻探344航次的报告[J]. 地球科学进展, 2013, 28(6): 728-736.
97 Harris R, Sakaguchi A, Petronotis K, et al. Costa Rica Seismogenesis Project, Program A Stage 2 (CRISP-A2): Sampling and quantifying lithologic inputs and fluid inputs and outputs of the seismogenic zone[C]//Proceedings of the Integrated Ocean Drilling Program. 2012: 344.
98 Li Yongxiang, Zhao Xixi, Jovane L, et al. Paleomagnetic constraints on the tectonic evolution of the Costa Rican subduction zone: New results from sedimentary successions of IODP drill sites from the Cocos Ridge [J]. Geochemistry Geophysics Geosystems, 2015, 16(12): 4 479-4 493.
99 Zindler A, Hart S. Chemical geodynamics [J]. Earth and Planetary Science Letters, 1986, 14(1): 93-571.
100 Stracke A, Hofmann A W, Hart S R. FOZO, HIMU, and the rest of the mantle zoo [J]. Geochemistry Geophysics Geosystems, 2005, 6(5): 1-20.
101 Weaver B L. The origin of ocean island basalt end-member composition trace element and isotopic constraints [J]. Earth and Planetary Science Letters, 1991, 104(2/4): 381-397.
102 Eisele J, Sharma M, Galer S J G, et al. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot [J]. Earth and Planetary Science Letters, 2002, 196(3/4): 197-212.
103 Niu Yaoling, O'Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 1-19.
104 Workman R K, Hart S R, Jackson M, et al. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain [J]. Geochemistry Geophysics Geosystems, 2004, 5(4): 1-44.
105 Willbold M, Stracke A. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust [J]. Geochemistry Geophysics Geosystems, 2006, 7(4): 1-30.
106 Jackson M G, Hart S R, Koppers A A P, et al. The return of subducted continental crust in Samoan lavas [J]. Nature, 2007, 448(7 154): 684-687.
107 McKenzie D, O’Nions R K. Mantle reservoirs and ocean island basalts [J]. Nature, 1983, 301(5 897): 229-231.
108 Wang Xiaojun, Chen Lihui, Alrecht W H, et al. Recycled ancient ghost carbonate in the Pitcarin mantle plume [J]. Proceedings of the National Academy of Sciences, 2018, 115(35): 8 682-8 687.
109 Meibom A, Anderson D L. The statistical upper mantle assemblage [J]. Earth and Planetary Science Letters, 2003, 217(1/2): 123-139.
110 Helffrich G R, Wood B J. The Earth's mantle [J]. Nature, 2001, 412(6 846): 501-507.
111 Eiler J M, Schiano P, Kitchen N, et al. Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts [J]. Nature, 2000, 403(6 769): 530-534.
112 Schilling J. Iceland mantle plume: Geochemical study of Reykjanes Ridge [J]. Nature, 1973, 242(5 400): 565-571.
113 Hofmann A W. Mantle geochemistry, the message from oceanic volcanism [J]. Nature, 1997, 385(6 613): 219-229.
No related articles found!
阅读次数
全文


摘要