地球科学进展 ›› 2014, Vol. 29 ›› Issue (8): 875 -889. doi: 10.11867/j.issn.1001-8166.2014.08.0875

   下一篇

土壤风蚀模型中的影响因子分类与表达
邹学勇 1, 2( ), 张春来 1, 2, 程宏 1, 2, 亢力强 1, 2, 吴晓旭 3, 常春平 4, 王周龙 5, 张峰 1, 李继峰 1, 刘辰琛 1, 刘博 1, 田金鹭 1   
  1. 1.北京师范大学地表过程与资源生态国家重点实验室, 北京100875
    2.北京师范大学防沙治沙教育部工程研究中心, 北京100875
    3.北京师范大学全球变化与地球系统科学研究院, 北京100875
    4.河北师范大学资源与环境科学学院, 河北石家庄050016
    5.鲁东大学地理与规划学院, 山东烟台264025
  • 收稿日期:2014-05-16 修回日期:2014-07-21 出版日期:2014-09-16
  • 基金资助:
    国家自然科学基金重点项目“土壤风蚀影响因子参数化”(编号:41330746)资助

Classification and Representation of Factors Affecting Soil Wind Erosion in a Model

Xueyong Zou 1, 2( ), Chunlai Zhang 1, 2, Hong Cheng 1, 2, LIqiang Kang 1, 2, Xiaoxu Wu 3, Chunping Chang 4, Zhoulong Wang 5, Feng Zhang 1, Jifeng Li 1, Chengchen Liu 1, Bo Liu 1, Jinlu Tian 1   

  1. 1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    2. MOE Engineering Research Center of Desertification and Blown-sand Control, Beijing Normal University, Beijing 100875, China
    3.College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
    4. College of Resources and Environmental Sciences, Hebei Normal University, Shijiazhuang 050016, China
    5. College of Geography and Planning, Ludong University, Yantai 264025, China
  • Received:2014-05-16 Revised:2014-07-21 Online:2014-09-16 Published:2014-09-17

土壤风蚀是包括风、植被、土壤特性、土地利用方式、降水、微地形等多要素交互作用, 发生在特定地理空间, 具有独特的气流—土壤界面相互作用机制的连续动力学过程。基于统计学理论的土壤风蚀经验模型, 不仅难以避免子模型之间有多个风蚀影响要素的交叉出现, 使子模型之间不能严格地相互独立, 导致建模理论基础存在不足, 而且不能客观反映土壤风蚀的动力学过程。在厘清土壤风蚀基本概念, 分析国际土壤风蚀影响因子和土壤风蚀模型研究历史与存在不足的基础上, 提出一个新的基于风蚀动力学理论的土壤风蚀模型理论框架, 以及在此模型框架下土壤风蚀影响因子的分类与表达。阐述了该模型框架和影响因子分类与表达的合理性, 并对土壤风蚀影响因子分类与表达的研究途径进行了探讨。

Soil erosion is an interaction of multi factors including wind, vegetation, soil characteristics, land use, precipitation, micro-geomorphology and so on. It is a continuous dynamic process occurring on airflow-soil interface in the specific geographical locations. Soil erosion empirical model, based on statistic theory, is difficult to avoid overlap of some factors affecting soil wind erosion between sub-models and not enable sub-models to be strictly independent from each other, thereby leading to lack of theoretical basis for modeling. Such empirical model is also not able to objectively reflect dynamic process of soil erosion. On the basis of clarifying basic concepts of soil erosion and analyzing the global research background and inadequacy, we proposed a new theoretical framework for soil erosion models based on wind erosion dynamics theory and the classification as well as representation of factors affecting soil wind erosion under the framework. We also elaborated the rationality of both the framework and the classification as well as the representation of factors affecting soil wind erosion, and further explored the research approaches on the latter.

中图分类号: 

图1 RWEQ模型结构(根据参考文献[18]总结)
Fig. 1 The structure of RWEQ (Summarized from literature [18])
图2 WEPS模型结构 [ 19 ]
Fig. 2 The structure of WEPS [ 19 ]
图3 DMSWE模型的层次
Fig. 3 The hierarchies of DMSWE
图4 DMSWE模型结构
Fig. 4 The structure of DMSWE
表1 土壤风蚀影响因子分类
Table 1 Classification of factors affecting soil wind erosion
风蚀影响因子 因子特性 风蚀影响要素 要素属性和力学特性
风力侵蚀因子 地表以上空间的气流特性, 反映风对表土产生的侵蚀力, 是土壤风蚀的原动力, 用剪切力表达。 风速(m/s)、风向(°)、湍流(%)、空气密度(kg/m3)、空气黏度(N·s/m2)。 描述风力侵蚀因子特性, 决定风力侵蚀力强弱的关键要素。
粗糙干扰因子 介于气流与表土之间的粗糙元对风力侵蚀力的干扰特性, 反映地表粗糙元对风力侵蚀力的削弱程度, 是阻碍土壤风蚀的重要因子, 用粗糙元分担的剪应力表达。 植被/留茬覆盖(%)、植被/留茬平均高度(m)、平铺残余物覆盖(%)、平铺残余物质量(kg/m2)、土垄高度和间距(m)、地形起度(%)、砾石覆盖(%)、土块覆盖(%)、土块尺寸(m)、空气动力学粗糙度(m)。 描述粗糙元形态及其与气流相互作用, 决定粗糙干扰因子削弱风力侵蚀力作用能力的关键要素。
土壤抗蚀因子 表土理化性质决定的风蚀难易程度特性, 反映表土抵抗风蚀的能力, 是阻碍土壤风蚀的关键因子, 用土壤表面分担的剪应力表达。 土壤比重(kg/m3)、土壤颗粒尺寸分布(m)、盐分质量含量(%)、有机质质量含量(%)、土壤水分质量含量(%)、土块密度(kg/m3)、植物根系密度(m/m3)、pH值(无量纲)、结皮覆盖(%)。 描述表土理化特性和植物根系对土壤颗粒的固结作用, 决定表土抵抗风力侵蚀力能力的关键要素。
图5 地表粗糙元造成的近地层风速廓线变化
Fig. 5 Wind profile changed by roughness elements
图6 ττsa的差异
Fig. 6 The difference between τ and τsa
[91] Wilson G R, Gregory J M. Soil erodibility: Understanding and prediction[C]\\American Society of Agricultural Engineers Meeting, 1992: 1-15.
[92] Shen Xiangdong, Wang Xiaofei, Ji Baolin, et al. Preliminary study on characters of soil resistivity to wand erosion in dry and cold aeras[C]\\Proceedings of the 13th Conference on Structural Engineering (Volume II). Beijing: Engineering Mechanics Press, 2004: 299-302.
[申向东, 王晓飞, 姬宝霖, 等. 干寒区土壤抗风蚀能力的特征研究[C]\\第十三届全国结构工程学术会议论文集(第II册). 北京: 工程力学杂志社, 2004: 299-302.]
[93] Lu Haiye. Research on the Influencing Factors of Surface Soil Sheer Strength[D]. Hohhot: Inner Mongolia Agricultural University, 2005.
[逯海叶. 地表土壤抗剪强度影响因素的研究[D]. 呼和浩特: 内蒙古农业大学, 2005.]
[94] Kok H, McCool D K. Quantifying freeze/thaw-induced variability of soil strength[J]. Transactions of the ASAE, 1990, 33: 501-506.
[95] Finnigan J J. Turbulence in plant canopies[J]. Annual Review of Fluid Mechanics, 2000, 32: 519-571.
[96] De Langre E. Effect of wind on plants[J]. Annual Review of Fluid Mechanics, 2008, 40: 141-168.
[97] Fredlund D G, Morgenstern N R, Widger R A. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1978, 15(3): 313-321.
[98] Fredlund D G, Rahardjo H. Soil Mechanics for Unsaturated Soils[M]. New York: John Wiley & Sons, 1993: 64-106.
[1] Penck A. Morphologie Der Erdoberfl-che (in German)[M]. Stuttgart: Verlag Von J Engelhor, 1894: 254-259.
[2] Lyles L, Cole G W, Hagen L J. Wind erosion: Processes and prediction[M]\\Follett R F, Stewart B A, eds. Soil Erosion and Crop Productivity. Madison: Soil Science Society of America, 1985:163.
[3] Zobeck T M, Van Pelt R S. Wind erosion[M]\\Soil Management: Building A Stable Base for Agriculture. Madison: Soil Science Society of America, 2011:209.
[4] Wu Zheng. Geomorphology of Wind-drift Sand and Their Controlled Engineering[M]. Beijing: Science Press, 2010: 91.
[吴正. 风沙地貌与治沙工程学[M]. 北京: 科学出版社, 2010:91.]
[5] Liu Xianwan. Experimental Blown Sand Physics and Blown Sand Control[M]. Beijing: Science Press, 1995.
[刘贤万. 实验风沙物理与风沙工程学[M]. 北京: 科学出版社, 1995.]
[6] Committee of Earth Science Dictionary. Earth Science Dictionary—Basic Science[M]. Beijing: Geological Publishing House, 2006:333.[《地球科学大辞典》编委会. 地球科学大辞典——基础学科卷[M]. 北京: 地质出版社, 2006:333.]
[7] Helms D. The early soil survey: Engine for the soil conservation movement[C]\\Stott D E, Mohtar R H, Steinhardt G C, eds. Sustaining the Global Farm-Selected Papers from the 10th International Soil Conservation Organization Meeting. West Lafayette: International Soil Conservation Organization, 2001: 1 029-1 033.
[8] Sporcic M A, Skidmore E L. 75 years of wind erosion control: The history of wind erosion prediction[C]\\Flanagan D C, Ascough J C, Nieber J L, eds. International Symposium on Erosion and Landscape Evolution (Paper No. 11031). St. Joseph, Mich: American Society of Agricultural and Biological Engineers, 2011.
[9] Duley F L, Russell J C. EC171 Stubble Mulch Farming[R]. Historical Materials from University of Nebraska-Lincoln Extension, 1947.
[99] Lancaster N, Nickling W G, Gillies J A. Sand transport by wind on complex surfaces: Field studies in the McMurdo Dry Valleys, Antarctica[J]. Journal of Geophysical Research, 2010, 115, doi:10.1029/2009JF001408.
[100] Lmmel M, Rings D, Kroy K. A two-species continuum model for aeolian sand transport[J]. New Journal of Physics, 2012, 14, doi:10.1088/1367-2630/14/9/093037.
[101] Phtz1 T, Kok J F, Herrmann H J. The apparent roughness of a sand surface blown by wind from an analytical model of saltation[J]. New Journal of Physics, 2012, 14, doi:10.1088/1367-2630/14/4/043035.
[102] Marticorena B, Bergametti G, Aumont B. Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources[J]. Journal of Geophysical Research, 1997, 102: 4 387-4 404.
[103] Shao Y. A model for mineral dust emission[J]. Journal of Geophysical Research, 2001, 106: 20 239-20 254.
[104] Zobeck T M. Soil properties affecting wind erosion[J]. Journal of Soil and Water Conservation, 1991, 46: 112-118.
[105] Skidmore E L, Powers D H. Dry soil aggregate stability: Energy-based index[J]. Soil Science Society America Journal, 1982, 46: 1 274-1 279.
[106] Lu Qi, Cui Xianghui, Wang Xuequan, et al. Observation Technical Regulations for Desert Ecosystem[M]. Beijing: China Standards Press, 2008: 1-16.
[卢琦, 崔向慧, 王学全, 等. 荒漠生态系统定位观测技术规范(LY/T 1752-2008)[M]. 北京: 中国标准出版社, 2008:1-16.]
[107] Liu Xiaoping, Dong Zhibao. Wind threshold shear velocities of sands at moistened state[J]. Bulletin of Soil and Water Conservation, 2002, 22(2): 1-4.
[刘小平, 董治宝. 湿沙的风蚀起动风速实验研究[J]. 水土保持通报, 2002, 22(2): 1-4.]
[10] Chepil W S, Milne R A. Comparative study of soil drifting in the field and in a wind tunnel[J]. Scientific Agriculture, 1939, 19: 249-257.
[11] Chepil W S. Relation of wind erosion to water-stable and dry clod structure of soil[J]. Soil Science, 1942, 55: 275-287.
[12] Chepil W S. Dynamics of wind erosion: I. Nature of movement of soil by wind[J]. Soil Science, 1945, 60: 305-320.
[13] Chepil W S. Dynamics of wind erosion: II. Initiation of soil movement[J]. Soil Science, 1945, 60: 397-411.
[14] Chepil W S. Dynamics of wind erosion: III. The transport capacity of the wind[J]. Soil Science, 1945, 60: 475-480.
[15] Chepil W S. Dynamics of wind erosion: IV. The translocation and abrasive action of the wind[J]. Soil Science, 1946, 61: 167-178.
[16] Armbrust D V. Fifty years of wind erosion research by the USDA agricultural research service at Kansas State University[C]\\Skidmore E L, Tatarko J, eds. Wind Erosion—An International Symposium. Manhattan, KS: Wind Erosion Research Unit, 1999.
[17] Woodruff N P, Siddoway F H. A wind erosion equation[J]. Soil Science Society of America Proceedings, 1965, 29: 602-608.
[18] Fryrear D W, Saleh A, Bilbro J D, et al. Revised Wind Erosion Equation[R]. Wind Erosion and Water Conservation Research Unit, USDA-ARS, Southern Plains Area Cropping Systems Research Laboratory. Technical Bulletin No. 1, 1998.
[19] Hagen L J, Wagner L E, Tatarko J. Wind Erosion Prediction System (WEPS)[R]. Wind Erosion Research Unit, USDA-ARS, Technical Documentation, 1996.
[20] Dong Zhibao, Gao Shangyu, Dong Guangrong. A review of wind erosion prediction research[J]. Journal of Desert Research, 1999, 19(4): 312-317.
[董治宝, 高尚玉, 董光荣. 土壤风蚀预报研究述评[J]. 中国沙漠, 1999, 19(4): 312-317.]
[21] Wagner L E. A history of wind erosion prediction models in the United States Department of agriculture: The Wind Erosion Prediction System (WEPS)[J]. Aeolian Research, 2013, 10: 9-24.
[22] Pasak V. Wind Erosion of Soil (in Czech with English summary)[M]. Zbraslav: Vyskumny Ustav Melioraci, 1970.
[23] Bocharov A P. Pribory i ikh primenenie v issledovanii vetrovoi e’rozii (in Russian)[M]. Alma-Ata: Kainar, 1972.
[24] Singh U B, Gregory J M, Wilson G R. Texas erosion analysis model: Theory and validation[C]\\Proceedings of Wind Erosion: An International Symposium/Workshop (Computer File). Manhattan, KS: USDA-ARS Wind Erosion Research Unit, 1997.
[25] Udden J A. Dust and sand storms in the west[J]. Popular Science Monthly, 1896, 49: 953-954.
[26] Free E E, Westgaste J M. The control of blowing soils[J]. US Department of Agriculture, Farmers’ Bulletin, 1910, 421: 1-23.
[27] Free E E. The Movement of Soil Material by the Wind[M]. Washington: Government Printing Office, 1911.
[28] McGee W J. Soil erosion[J]. US Department of Agriculture, Bureau of Soils Bulletin, 1911, 71: 1-60.
[29] Bennett H H. The Soils and Agriculture of the Southern States[M]. New York: The Macmillan Company, 1921.
[30] Chepil W S, Milne R A. Comparative study of soil drifting in the field and in a wind tunnel[J]. Scientific Agriculture, 1939, 19: 249-257.
[31] Chepil W S. Relation of wind erosion to water-stable and dry clod structure of soil[J]. Soil Science, 1942, 55: 275-287.
[32] Chepil W S. Properties of soil which influence wind erosion: I. The governing principle of surface roughness[J]. Soil Science, 1950, 69: 149-162.
[33] Chepil W S. Properties of soil which influence wind erosion: II. Dry aggregate structure as an index of erodibility[J]. Soil Science, 1950, 69: 403-414.
[34] Chepil W S. Properties of soil which influence wind erosion: III. The effect of apparent density and erodibility[J]. Soil Science, 1951, 71: 141-153.
[35] Chepil W S. Properties of soil which influence wind erosion: IV. State of dry aggregate structure[J]. Soil Science, 1951, 72: 387-401.
[36] Chepil W S. Properties of soil which influence wind erosion: V. Mechanical stability of structure[J]. Soil Science, 1951, 72: 465-478.
[37] Chepil W S. Factors that influence clod structure and erodibility of soil by wind: I. Soil structure[J]. Soil Science, 1953, 75: 473-483.
[38] Chepil W S. Factors that influence clod structure and erodibility of soil by wind: II. Water-stable structure[J]. Soil Science, 1953, 76: 389-399.
[39] Chepil W S. Factors that influence clod structure and erodibility of soil by wind: III. Calcium carbonate and decomposed organic material[J]. Soil Science, 1954, 77: 473-480.
[40] Chepil W S. Factors that influence clod structure and erodibility of soil by wind: IV. Sand, silt, and clay[J]. Soil Science, 1955, 80: 155-162.
[41] Chepil W S. Factors that influence clod structure and erodibility of soil by wind: V. Organic matter at various stages of decomposition[J]. Soil Science, 1955, 80: 413-421.
[42] Chepil W S. Influence of moisture on erodibility of soil by wind[J]. Soil Science Society of America Proceedings, 1956, 20: 288-292.
[43] Chepil W S, Woodruff N P. Estimations of wind erodibility of field surfaces[J]. Journal of Soil and Water Conservation, 1954, 9: 257-265.
[108] The Office of the First National Water Resources Census Leading Group of the State Council. The Sixth Volume of Training Hand Book of the First National Census for Water—The Survey of Soil and Water Conservation[M]. Beijing: China Water & Power Press, 2010: 94-118.
[国务院第一次全国水利普查领导小组办公室. 第一次全国水利普查培训教材之六——水土保持情况普查[M]. 北京: 中国水利水电出版社, 2010: 94-118.]
[44] Skidmore E L, Nossaman N L, Woodruff N P. Wind erosion as influenced by row spacing, row direction, and grain sorghum population[J]. Soil Science Society of America Proceedings, 1966, 30: 505-509.
[45] Siddoway F H, Chepil W S, Armbrust D V. Effect of kind, amount, and placement of residue on wind erosion control[J]. Transactions of the American Society of Agricultural Engineers, 1965, 8: 327-331.
[46] Lyles L, Schmeidler N F, Woodruff N P. Stubble requirements in field strips to trap windblown soil[J]. Kansas Agriculture Experimental Station Research Publication, 1973, 164: 1-22.
[47] Skidmore E L, Siddoway F H. Crop residue requirements to control wind erosion[C]\\Oschwald W R, ed. Crop Residue Management Systems. Madison: American Society of Agronomy, 1978:17-33.
[48] Lyles L, Allison B E. Range grasses and their small grain equivalents for wind erosion control[J]. Journal of Range Management, 1980, 33: 143-146.
[49] Armbrust D V, Chepil W S, Siddoway F H. Effects of ridges on erosion of soil by wind[J]. Soil Science Society of America Proceedings, 1964, 28: 557-560.
[50] Fryrear D W. Soil ridges-clods and wind erosion[J]. Transactions of the American Society of Agricultural Engineers, 1984, 27: 445-448.
[51] Hagen L J, Armbrust D V. Aerodynamic roughness and saltation trapping efficiency of tillage ridges[J]. Transactions of the American Society of Agricultural Engineers, 1992, 35: 1 179-1 184.
[52] Hagen L J. Windbreak design for optimum wind erosion control[M]\\Shelterbelts on the Great Plains: Proceedings of the Symposium. Denver: Great Plains Agricultural Publication, 1976: 31-36.
[53] Skidmore E L, Hagen L J. Reducing wind erosion with barriers[J]. Transactions of the American Society of Agricultural Engineers, 1977, 20: 911-915.
[54] Earl B, Lyles L, Hayes W A. Computing soil erosion by periods using wind energy distribution[J]. Journal of Soil and Water Conservation, 1980, 35: 173-176.
[55] Lyles L. Erosive wind energy distributions and climatic factors for the West[J]. Journal of Soil and Water Conservation, 1983, 38: 106-109.
[56] FAO. A Provisional Methodology for Soil Degradation Assessment[M]. Rome: Food and Agriculture Organization of the United Nations, 1979.
[57] Skidmore E L. Wind erosion climatic erosivity[J]. Climatic Change, 1986, 9: 195-208.
[58] Apt K E. Applicability of the Weibull distribution to atmospheric radiaoctivity data[J]. Atmospheric Environment, 1976, 10: 777-782.
[59] Justus C G, Hargraves W R, Mikhail A. Reference Wind Speed Distributions and Height Profiles for Wind Turbine Design and Performance Evaluation Applications (Technical Report for ERDA Division of Solar Energy)[R]. Atlanta: Georgia Institute of Technology, 1976: E(40-1)-5108.
[60] Dong G R, Li C Z, Jin J, et al. Some results of the simulant experiment on wind erosion soil in wind tunnel[J]. Chinese Science Bulletin, 1987, 32(24): 1 703-1 709.
[61] Dong Zhibao. Research achievements in aeolian physics in China for last five decades (I)[J]. Journal of Desert Research, 2005, 25(3): 293-305.
[董治宝. 中国风沙物理研究五十年(I)[J]. 中国沙漠, 2005, 25(3): 293-305.]
[62] Dong Zhibao, Zheng Xiaojing. Research achievements in aeolian physics in China for last five decades (Ⅱ)[J]. Journal of Desert Research, 2005, 25(6): 795-815.
[董治宝, 郑晓静. 中国风沙物理研究50a(Ⅱ)[J]. 中国沙漠, 2005, 25(6): 795-815.]
[63] Wagner L E. A history of wind erosion prediction models in the United States department of agriculture: The Wind Erosion Prediction System (WEPS)[J]. Aeolian Research, 2013, 10: 9-24.
[64] Tatarko J, Sporcic M A, Skidmore E L. A history of wind erosion prediction models in the United States department of agriculture prior to the Wind Erosion Prediction System[J]. Aeolian Research, 2013, 10: 3-8.
[65] Zobeck T M, Baddock M, Pelt R S V, et al. Soil property effects on wind erosion of organic soils[J]. Aeolian Research, 2013, 10: 43-51.
[66] Retta A, Armbrust D V. Estimation of leaf and stem area in the Wind Erosion Prediction System (WEPS)[J]. Agronomy Journal, 1995, 87: 93-98.
[67] Retta A, Armbrust D V, Hagen L J. Partitioning biomass in the crop submodel of WEPS (Wind Erosion Prediction System)[J]. Transactions of the American Society of Agricultural Engineers, 1996, 39: 145-151.
[68] van Donk S J, Skidmore E L. Measurement and simulation of wind erosion, roughness degradation and residue decomposition on an agricultural field[J]. Earth Surface Processes and Landforms, 2003, 28:1 243-1 258.
[69] Hagen L J, Armbrust D V. Aerodynamic roughness and saltation trapping efficiency of tillage ridges[J]. Transactions of the American Society of Agricultural Engineers, 1992, 35: 1 179-1 184.
[70] Skidmore E L, Tatarko J. Wind in the Great Plains: Speeddirection distributions by month[C]\\Hanson J D, Shaffer M J, Ball D A, et al, eds. Sustainable Agriculture for the Great Plains: Proceedings of the Symposium. Springfield: US National Technical Information, 1991: 245-263.
[71] van Donk S J, Wagner L E, Skidmore E L, et al. Comparison of the Weibull Model with measured wind speed distributions for stochastic wind generation[J]. Transactions of the American Society of Agricultural Engineers, 2005, 48: 503-510.
[72] Liu B, Qu J, Wagner L E. Building Chinese wind data for Wind Erosion Prediction System using surrogate US data[J]. Journal of Soil and Water Conservation, 2013, 68: 104-107.
[73] Guo Zhongling. Improvement and Application of RWEQ Model in North China[D]. Beijing: Beijing Normal University, 2012.
[郭中领. RWEQ模型参数修订及其在中国北方应用研究[D]. 北京:北京师范大学, 2012.]
[74] Zou Xueyong, Cheng Hong, Wang Zhoulong, et al. Investigation of Soil Wind Erosion in China[R]. Beijing: Monitoring Center of Soil and Water Conservation, The Ministry of Water Resources of the People’s Republic of China, 2013: 61-88.
[邹学勇, 程宏, 王周龙, 等. 全国风力侵蚀普查[R]. 北京:中华人民共和国水利部水土保持监测中心, 2013: 61-88.]
[75] Zou X, Zhang Chunlai, Cheng H, et al. Cogitation on developing a dynamic model of soil wind erosion[J]. Science in China (Series D), 2014, in press.
[76] Shao Y. Physics and Modelling of Wind Erosion (2th revised and expanded edition)[M]. New York: Springer Publishing Company, 2008: 303-358.
[77] Marticorena B, Bergametti G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme[J]. Journal of Geophysical Research, 1995, 100: 16 415-16 430.
[78] Bagnold R A. The Physics of Blown Sand and Desert Dunes[M]. London: Methuen, 1941: 64-70.
[79] Greeley R, Iversen J D. Wind as A Geological Process[M]. New York: Cambridge University Press, 1985.
[80] Oke T R. Boundary Layer Climates (2nd revised)[M]. London: Routledge, 1988.
[81] Liu Xiaoping, Dong Zhibao. Estimating of displacement height using Marquardt method[J]. Journal of Desert Research, 2002, 22: 233-236.
[刘小平, 董治宝. 零平面位移高度的Marquardt算法[J]. 中国沙漠, 2002, 22: 233-236.]
[82] Zhong Shi, Yang Xiuqun, Guo Weidong. Influence of local zero-plane displacement on effective aerodynamic parameters over heterogeneous terrain[J]. Acta Physics Sinica, 2013, doi:10.7498/aps.62.144212.
[钟时, 杨修群, 郭维栋. 局地零平面位移对非均匀地表有效空气动力学参数的影响[J]. 物理学报, 2013, doi: 10.7498/aps.62.144212.]
[83] Raupach M R. Drag and drag partition on rough surfaces[J]. Boundary-Layer Meteorology, 1992, 60: 375-395.
[84] Hagishima A, Tanimoto J, Nagayama K, et al. Aerodynamic parameters of regular arrays of rectangular blocks with various geometries[J]. Boundary-Layer Meteorology, 2009, 132: 315-337.
[85] Gillies J A, Nickling W G, King J. Shear stress partitioning in large patches of roughness in the atmospheric inertial sublayer[J]. Boundary-Layer Meteorology, 2007, 122: 367-396.
[86] Walter B, Gromke C, Leonard K C, et al. Spatio-temporal surface shear-stress variability in live plant canopies and cube arrays[J]. Boundary-Layer Meteorology, 2012, 143: 337-356.
[87] Liu Guobin. Soil anti-scourability research and its perspectives in Loess Plateau[J]. Research of Soil and Water Conservation, 1997, 4(5): 91-101.
[刘国彬. 黄土高原土壤抗冲性研究及有关问题[J]. 水土保持研究, 1997, 4(5): 91-101.]
[88] Rauws G, Covers G. Hydraulic and soil mechanical aspects of rill generation on agricultural soils[J]. Soil Science, 1988, 39: 111-124.
[89] Brunori F, Penzo M C, Torri D. Soil shear strength: Its measurement and soil detachability[J]. Catena, 1989, 16: 59-71.
[90] Watson D A, Laflen J M. Soil strength, slope, and rainfall intensity effects on interrill erosion[J]. Transactions of the ASAE, 1986, 29: 98-102.
[1] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[2] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[3] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[4] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[5] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[6] 许海超,张建辉,戴佳栋,王勇. 耕作侵蚀研究回顾和展望[J]. 地球科学进展, 2019, 34(12): 1288-1300.
[7] 邹学勇,张梦翠,张春来,程宏,李慧茹,张峰. 输沙率对土壤颗粒特性和气流湍流脉动的响应[J]. 地球科学进展, 2019, 34(8): 787-800.
[8] 王全九,孙燕,宁松瑞,张继红,周蓓蓓,苏李君,单鱼洋. 活化灌溉水对土壤理化性质和作物生长影响途径剖析[J]. 地球科学进展, 2019, 34(6): 660-670.
[9] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[10] 张金波,程谊,蔡祖聪. 土壤调配氮素迁移转化的机理[J]. 地球科学进展, 2019, 34(1): 11-19.
[11] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望 *[J]. 地球科学进展, 2018, 33(11): 1130-1141.
[12] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望[J]. 地球科学进展, 0, (): 54-.
[13] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[14] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[15] 张春来, 宋长青, 王振亭, 邹学勇, 王雪松. 土壤风蚀过程研究回顾与展望[J]. 地球科学进展, 2018, 33(1): 27-41.
阅读次数
全文


摘要