地球科学进展 ›› 2019, Vol. 34 ›› Issue (1): 11 -19. doi: 10.11867/j.issn.1001-8166.2019.01.0011

上一篇    下一篇

土壤调配氮素迁移转化的机理
张金波 1, 2, 3, 4( ),程谊 1, 2, 3, 4,蔡祖聪 1, 2, 3, 4, *( )   
  1. 1. 南京师范大学地理科学学院,江苏 南京 210023
    2. 江苏省地理环境演化国家重点实验室培育建设点,江苏 南京 210023
    3. 江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023
    4. 南京师范大学虚拟地理环境教育部重点实验室,江苏 南京 210023
  • 收稿日期:2018-11-06 修回日期:2018-12-21 出版日期:2019-01-10
  • 通讯作者: 蔡祖聪 E-mail:zhangjinbo@njnu.edu.cn;zccai@njnu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目“植物对土壤氮转化的反馈作用及其机理研究”(编号:41830642)

The Mechanisms of Soil Regulating Nitrogen Dynamics

Jinbo Zhang 1, 2, 3, 4( ),Yi Cheng 1, 2, 3, 4,Zucong Cai 1, 2, 3, 4, *( )   

  1. 1. School of Geography Science, Nanjing Normal University, Nanjing 210023, China
    2. State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing 210023, China
    3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
    4. Key Laboratory of Virtual Geographic Environment Nanjing Normal University, Ministry of Education, Nanjing 210023, China
  • Received:2018-11-06 Revised:2018-12-21 Online:2019-01-10 Published:2019-03-05
  • Contact: Zucong Cai E-mail:zhangjinbo@njnu.edu.cn;zccai@njnu.edu.cn
  • About author:Zhang Jinbo (1979-), male, Zibo City, Shandong Province, Professor. Research areas include soil nitrogen cycle.|Cai Zucong (1958-), male, Yuyao City, Zhejiang Province, Professor. Research areas include soil carbon and nitrogen cycle and their environmental effect. E-mail: zccai@njnu.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “The mechanisms of crop feedbacks on soil N transformations in soil-plant systems”(No.41830642)

近几十年来,人为活性氮数量急剧增加,在满足人类生产、生活的同时,也引发了诸多环境问题,现在我们面临着协调粮食安全、生态环境安全和气候变化的巨大挑战。绝大部分活性氮首先进入到土壤,在经过各种转化过程后,进入生物、水体和大气等系统。土壤氮转化过程及其速率的组合对土壤氮去向具有“调配器”的作用,对其进行深入研究是因地制宜地制订氮素管理措施的基础。从土壤氮转化速率角度着手,综述了土壤氮转化速率的研究方法,阐述了氮初级转化速率研究对深入认识土壤氮动态的作用,明确了土壤氮转化过程影响土壤氮去向的作用机理,阐明了土壤氮转化特点、植物氮形态喜好和气候三者间的契合程度对提高作物氮利用率的重要作用。同时,指出了现有的土壤氮转化速率研究方法的不足之处,急需建立一套能够同时定量土壤—植物系统中土壤氮初级转化速率和植物氮吸收速率的方法,实现定量化分析土壤氮转化过程与植物间的反馈作用关系,以深入认识更接近于自然状态的土壤—植物系统中氮动态特征,为制订合理的氮肥管理方案提供理论依据。

In recent decades, the amount of reactive nitrogen (N) has rapidly increased. While the reactive N, mainly chemical N fertilizers, meet food and economic development demands, it has also caused many environmental problems. Now, there are the triple challenges of food security, environmental degradation and climate change for the world due to the rapid increase of reactive N. Most of reactive N has been input to soil firstly, which would export to hydrosphere, atmosphere, and biosphere after transformed as different N forms through various N transformation processes. Thus, soil N transformations play very important role in regulating the fate of soil N. In this article, we review the methods determining the rates of soil N transformations, and clarify the role of soil gross N transformations to regulating soil N dynamics and its mechanisms. Our results suggest that the coupling of soil N transformation with climate and plant species-specific N preferences play important role in optimize N use efficiencies in agricultural production. However, scientists usually just qualitatively discuss the feedbacks and its mechanisms between plants and soil N transformations, due to the limitation of research methods. The quantitative investigation on the effects of these feedbacks on soil gross N transformations is of important significances to understand the feedback and its mechanisms between plants and soil N transformations, to optimize N fertilization, and to make N pollution control countermeasures and so on.

中图分类号: 

图1 亚热带和温带森林土壤氮初级转化特点比较
Fig. 1 The comparison of soil gross nitrogen transformations between subtropical and temperate forest
图2 土壤氮转化过程调控径流中氮形态组成的原理
Fig. 2 The mechanisms of soil N transformations regulating the nitrogen composition in runoff
1 Galloway J , Dentener F , Capone D G . et al . Nitrogen cycles: Past, present, and future[J].Biogeochemistry, 2004, 70(2): 153-226.
2 Zhang X , Davidson E A , Mauzerall D L , et al . Managing nitrogen for sustainable development [J]. Nature,2015,528(7 580):51-59.
3 Cui S , Shi Y , Groffman P M , et al . Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910-2010) [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6):2 052-2 057.
4 Zhu Zhaoliang , Wen Qixiao . Nitrogen Soils of China [M]. Nanjing: Phoenix Science Press, 1992.
朱兆良, 文启孝 .中国土壤氮素 [M]. 南京: 江苏科学技术出版社, 1992.
5 Gable J , Fox P . Measurement of anaerobic ammonium oxidation activity in soil systems and identification of Planctomycetes [J]. Proceedings of the Water Environment Federation, 2003, 10(7): 636-645.
6 Kuypers M , Sliekers A O , Lavik G , et al . Anaerobic ammonium oxidation by anammox bacteria in the Black Sea [J]. Nature, 2003, 422(6 932): 608-611.
7 Trimmer M , Nicholls J C , Deflandre B , et al . Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom [J]. Applied and Environmental Microbiology, 2003, 69(11): 6 447-6 454.
8 Zhang J , Zhu T , Cai Z , et al . Nitrogen cycling in forest soils across climate gradients in Eastern China [J]. Plant and Soil, 2011, 342(1/2): 419-432.
9 Cheng Yi , Cai Zucong , Zhang Jinbo . On progress in gross nitrogen transformation using 15N isotopic pool dilution[J]. Soils, 2009, 41(2): 165-171.
程谊,蔡祖聪,张金波,15N同位素稀释法测定土壤氮素总转化速率研究进展[J].土壤, 2009, 41(2):165-171.
10 Di H , Cameron K C , McLaren R G . Isotopic dilution methods to determine the gross transformation rates of nitrogen, phosphorus, and sulfur in soil: A review of the theory, methodologies, and limitations [J]. Australian Journal of Soil Research, 2000, 38(1): 213-230.
11 Kirkham D , Bartholomew W V . Equations for following nutrient transformations in soil utilizing tracer data [J]. Soil Science Society of America Proceedings, 1954, 18(1): 33-34.
12 Müller C , Rütting T , Kattge J ,et al . Estimation of parameters in complex 15N tracing models by Monte Carlo sampling [J]. Soil Biology and Biochemistry, 2007, 39(3): 715-726.
13 Myrold D D , Tiedje J M . Simultaneous estimation of several nitrogen cycle rates using 15N: Theory and application [J]. Soil Biology & Biochemistry, 1986, 18(6): 559-568.
14 Wessel W W , Tietema A . Calculating gross N transformation rates of 15N pool dilution experiments with acid forest litter: Analytical and numerical approaches [J]. Soil Biology & Biochemistry, 1992, 24(10): 931-942.
15 Nishio T . Estimating nitrogen transformations rates in surface aerobic soil of a paddy field [J]. Soil Biology & Biochemistry, 1994, 26(9): 1 273-1 280.
16 Müller C , Stevens R J , Laughlin R J . A 15N tracing model to analyse N transformations in old grassland soil [J]. Soil Biology & Biochemistry, 2004, 36(4): 619-632.
17 Mary B , Recous S , Robin D . A model for calculating nitrogen fluxes in soil using 15N tracing [J]. Soil Biology & Biochemistry, 1998, 30(14): 1 963-1 979.
18 Rütting T , Müller C . 15N tracing models with a Monte Carlo optimization procedure provide new insights on gross N transformations in soils [J]. Soil Biology & Biochemistry, 2007, 39(9): 2 351-2 361.
19 Corre M D , Schnabel R R , Stout W L . Spatial and seasonal variations of gross nitrogen transformations and microbial biomass in a Northeastern US grassland [J]. Soil Biology & Biochemistry, 2002, 34(4): 445-457.
20 Burton J , Chen C , Xu Z , et al . Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia [J]. Soil Biology & Biochemistry, 2007, 39(2): 426-433.
21 Wang J , Zhu B , Zhang J , et al . Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China [J]. Soil Biology & Biochemistry, 2015, 91: 222-231.
22 Huygens D , Rütting T , Boeckx P , et al . Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem [J]. Soil Biology & Biochemistry, 2007, 39(10): 2 448-2 458.
23 Burger M , Jackson L E . Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems [J]. Soil Biology & Biochemistry, 2003, 35(1): 29-36.
24 Accoe F , Boeckx P , Videla X , et al . Estimation of gross nitrogen transformations and nitrogen retention in grassland soils using FLUAZ[J]. Soil Science Society of America Journal, 2005, 69(6): 1 967-1 976.
25 Zhang J , Cai Z , Zhu T , et al . Mechanisms for the retention of inorganic N in acidic forest soils of southern China [J]. Scientific Reports, 2013, 3: 2 342.
26 Zhang J , Zhu T , Meng T , et al . Agricultural land use affects nitrate production and conservation in humid subtropical soils in China [J]. Soil Biology & Biochemistry, 2013, 62: 107-114.
27 Zhang J , Zhu T , Cai Z , et al . Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations [J]. European Journal of Soil Science, 2012, 63(1): 75-85.
28 Zhao Lin , Li Shiqing , Li Shengxiu ,et al . Accumulation of soil nitrate nitrogen in the process of ecological and its effcts in plant nitrogen nutrition in semiarid areas [J]. Agricultural Research in the Arid Areas, 2004, 22(4): 15-20.
赵琳, 李世清, 李生秀,等 . 半干旱区生态过程变化中土壤硝态氮累积及其在植物氮素营养中的作用[J].干旱地区农业研究, 2004, 22(4) : 15-20.
29 Zhou J , Gu B , Schlesinger W H , et al . Significant accumulation of nitrate in Chinese semi-humid croplands [J]. Scientific Reports, 2016, 6: 25 088.
30 Zhang J , Cai Z , Müller C . Terrestrial N cycling associated with climate and plant specific N preferences: A review [J]. European Journal of Soil Science, 2018, 69(3): 488-501.
31 Slessarev E , Lin Y , Bingham N , et al . Water balance creates a threshold in soil pH at the global scale [J]. Nature, 2016, 540(7 634): 567-569.
32 Zhang J , Tian P , Tang J , et al . The characteristics of soil N transformations regulate the composition of hydrologic N export from terrestrial ecosystem [J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(6): 1 409-1 419.
33 Han Jiangang , Li Zhanbin . Process characteristics of nitrogen loss by runoff in different land use watersheds in purple soil hilly region [J]. Journal of Hydraulic Engineering, 2011, 42(2): 160-165.
韩建刚,李占斌 .紫色土丘陵区不同土地利用类型小流域氮素流失规律初探[J].水利学报, 2011, 42(2):160-165.
34 Zhu B , Wang T , Kuang F , et al . Measurements of nitrate leaching from a hillslope cropland in the central Sichuan Basin, China [J]. Soil Science Society of America Journal, 2009, 73(4): 1 419-1 426.
35 Lee J A . The calcicole-calcifuge problem revisited [J]. Advances in Botanical Research, 1999, 29: 1-30.
36 Li S , Wang Z , Stewart B A . Responses of crop plants to ammonium and nitrate N [J]. Advances in Agronomy, 2013, 118: 205-393.
37 Andrews M , Raven J A , Lea P J . Do plants need nitrate?The mechanisms by which nitrogen form affects plants [J]. Annals of Applied Biology, 2013,163(2): 174-199.
38 Bartelheimer M , Poschlod P . The response of grassland species to nitrate versus ammonium coincides with their pH optima [J]. Journal of Vegetation Science, 2014, 25(3): 760-770.
39 Zhang J , Wang J , Müller C , et al . Ecological and practical significances of crop species preferential N uptake matching with soil N dynamics [J]. Soil Biology & Biochemistry, 2016, 103: 63-70.
40 Kronzucker H J , Siddiqi M Y , Glass Anthony D M . Conifer root discrimination against soil nitrate and the ecology of forest succession [J]. Nature, 1997, 385(6 611):59-61.
41 Bengtsson G J , Bengtson P , M?nsson K F . Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity [J]. Soil Biology and Biochemistry, 2003, 35(11): 143-154.
42 Accoe F , Boeckx P , Busschaert J , et al . Gross N transformation rates and net N mineralisation rates related to the C and N contents of soil organic matter fractions in grassland soils of different age [J]. Soil Biology and Biochemistry, 2004, 36(12): 2 075-2 087.
43 Erich Inselsbacher , Umana Nina Hinko-Najera, Stange Florian C , et al . Short-term competition between crop plants and soil microbes for inorganic N fertilizer[J]. Soil Biology and Biochemistry, 2010, 42(2): 360-372.
44 Jackson L E , Burger M , Cavagnaro T R . Roots, nitrogen transformations, and ecosystem services[J]. Annual Review of Plant Biology, 2008, 59:341-63.
45 Ehrenfeld Joan G , Beth Ravit , Kenneth Elgersma . Feedback in the plant-soil system [J]. Annual Review of Environment and Resources, 2005, 30:75-115.
46 Shahzad T , Chenu C , Genet P , et al . Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species [J]. Soil Biology and Biochemistry, 2015, 80: 146-155
47 Olsson M O , Falkengren-Grerup U . Potential nitrification as an indicator of preferential uptake of ammonium or nitrate [J]. Annals of Botany, 2000, 85(3): 299-305.
48 O’Sullivan C A , Duncan E G , Whisson K , et al . A colourimetric microplate assay for simple, high throughput assessment of synthetic and biological nitrification inhibitors [J]. Plant and Soil, 2017, 413(1/2): 275-287.
49 Chen Fang , Zhang Guoshi . Research progress of ‘4R’ nutrient stewardship in sustainable agricultural development [J]. Chinese Agricultural Science Bulletin, 2015, 31(23): 245-250.
陈防, 张过师 .农业可持续发展中的“4R”养分管理研究进展[J].中国农学通报,2015, 31(23):245-250.
[1] 叶黎明,罗鹏,杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5): 565-574.
[2] 董光荣 王贵勇 金炯 申建友. 要重视全球变化对我国北方沙区可能影响的研究[J]. 地球科学进展, 1992, 7(5): 31-.
阅读次数
全文


摘要