1 |
Brantley S L . Geology: Understanding soil time[J]. Science, 2008, 321(5 895):1 454-1 455.
|
2 |
Tiessen H , Cuevas E , Chacon P . The role of soil organic matter in sustaining soil fertility[J]. Nature, 1994, 371(6 500): 783-785.
|
3 |
Pan G X , Smith P , Pan W N . The role of soil organic matter in maintaining the productivity and yield stability of cereals in China[J]. Agriculture Ecosystems & Environment, 2009, 129(1): 344-348.
|
4 |
Mueller L , Schindler U , Mirschel W , et al . Assessing the Productivity Function of Soils[M]. Dordrecht: Springer, 2011: 743-760.
|
5 |
Nziguheba G , Vargas R , Bationo A , et al . Soil carbon: A critical natural resource—Wide-scale goals, urgent actions[M] // Banwart S A , Noellemeyer E , Milne E , eds . Soil Carbon: Science, Management and Policy for Multiple Benefits.Boston, MA:CABⅠ, 2014: 10-26.
|
6 |
Smith P , Cotrufo M F , Rumpel C , et al . Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils[J]. Soil Discussions, 2015, 2(1): 537-586.
|
7 |
Victoria R L , Banwart S A , Black H , et al . The benefits of soil carbon[M]// The United National Environment Programme (UNEP) Yearbook 2012. UNEP, Nairobi, Kenya, 2012.
|
8 |
Robinson D A , Jackson B M , Clothier B E , et al . Advances in soil ecosystem services: Concepts, models, and applications for Earth system life support[J]. Vadose Zone Journal, 2013, 12(4): 4 949-4 960.
|
9 |
Stockmann U , Padarian J , Mcbratney A , et al . Global soil organic carbon assessment [J]. Global Food Security, 2015, 6: 9-16.
|
10 |
Batjes N H . Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks[J]. Geoderma, 2016, 269: 61-68.
|
11 |
Lal R . Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004, 304(5 677): 1 623-1 627.
|
12 |
Paustian K , Lehmann J , Ogle S , et al . Climate-smart soils[J]. Nature, 2016, 532(7 597): 49.
|
13 |
Smith P , Lutfalla S , Riley W J , et al . The changing faces of soil organic matter research[J]. European Journal of Soil Science, 2018, 69(1): 23-30.
|
14 |
Stockmann U , Adams M A , Crawford J W , et al . The knowns, known unknowns and unknowns of sequestration of soil organic carbon[J]. Agriculture, Ecosystems & Environment, 2013, 164:80-99.
|
15 |
Brady N C . The Nature and Properties of Soils(8th ed)[M]. New York: MacMillan Publishing Co., 1974.
|
16 |
Berg B , McClaugherty C . Plant Litter: Decomposition, Humus Formation, Carbon Sequestration (2nd ed)[M]. Berlin Heidelberg: Springer-Verlag, 2007:338.
|
17 |
Bunting B T , Lundberg J . The humus profile-concept, class and reality[J]. Geoderma, 1995, 40 (1/2): 17-36.
|
18 |
Brady N C , Weill R R . Elements of the Nature and Properties of Soils (2nd ed)[M]. New Jersey, USA: Pearson Prentice Hall, 2004.
|
19 |
Stevenson F J . Humus Chemistry: Genesis, Composition, Reactions (2nd ed)[M]. New York: John Wiley & Sons,1994.
|
20 |
Burdon J . Are the traditional concepts of the structures of humic substances realistic?[J]. Soil Science, 2001, 166(11): 752-769.
|
21 |
Newcomb C J . Humic matter in soil and the environment, principles and controversies[J]. Soil Science Society of America Journal, 2015, 79(5): 1 520.
|
22 |
Guggenberger G . Humification and mineralization in soils[M]//Varma A, Buscot F, eds. Microorganisms in Soils: Roles in Genesis and Functions. Soil Biology,vol 3. Berlin, Heidelberg: Springer, 2005.
|
23 |
K?gel-Knabner I . Analytical approaches for characterizing soil organic matter[J]. Organic Geochemistry, 2000, 31(7/8): 609-625.
|
24 |
Mclauchlan K K , Hobbie S E . Comparison of labile soil organic matter fractionation techniques[J]. Soil Science Society of America Journal, 2004, 68(5):1 616.
|
25 |
Lützow M V , Leifeld J , Kainz M , et al . Indications for soil organic matter quality in soils under different management[J]. Geoderma, 2002, 105(3):243-258.
|
26 |
Schulten H R , Schnitzer M . A state of the art structural concept for humic substances [J]. Naturwissenschaften, 1993, 80(1): 29-30.
|
27 |
Schulten H R , Leinweber P . New insights into organic-mineral particles: Composition, properties and models of molecular structure[J]. Biology & Fertility of Soils, 2000, 30(5/6): 399-432.
|
28 |
Hatcher P G , Breger I A , Dennis L W , et al . Solid-state 13C NMR of sedimentary humic substances: New revelations on their chemical composition[M]// Gjessing E T, Christman R F, eds. Aquatic and Terrestrial Humic Materials. Ann Arbor, USA: Ann Arbor Science Publishers, 1983: 37-82.
|
29 |
Shirshova L T , Ghabbour E A , Davies G . Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures [J]. Geoderma, 2006, 133(3/4): 204-216.
|
30 |
Wershaw R L , Pinckney D J , Llaguno E C , et al . NMR characterization of humic acid fractions from different Philippine soils and sediments [J]. Analytica Chimica Acta, 1990, 232(232): 31-42.
|
31 |
Saiz-Jimenez C , Hermosin B , Trubetskaya O E , et al . Thermochemolysis of genetically different soil humic acids and their fractions obtained by tandem size exclusion chromatography-polyacrylamide gel electrophoresis[J]. Geoderma, 2006,131(1/2): 22-32.
|
32 |
Saiz-Jimenez C , Deleeuw J W . Chemical characterization of soil organic-matter fractions by analytical pyrolysis -Gas Chromatography-Mass spectrometry[J]. Journal of Analytical and Applied Pyrolysis,1986,9(2): 99-119.
|
33 |
Malcolm R L , Maccarthy P . Quantitative evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water[J]. Environment International, 1992,18(6): 597-607.
|
34 |
Andersson S , Nilsson S I , Saetre P . Leaching of Dissolved Organic Carbon (DOC) and Dissolved Organic Nitrogen (DON) in mor humus as affected by temperature and pH[J]. Soil Biology & Biochemistry, 2000, 32(1): 1-10.
|
35 |
Manlay R J . Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems[J]. Agriculture Ecosystems & Environment, 2007, 119(3):217-233.
|
36 |
K?gel-Knabner I . The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter[J]. Soil Biology & Biochemistry, 2002,34(2):139-162.
|
37 |
Melillo J M , Aber J D , Muratore J F . Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J]. Ecology, 1982, 63(3): 621-626.
|
38 |
Aber J D , Melillo J M , McClaugherty C A . Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems[J]. Canadian Journal of Botany, 1990, 68(10): 2 201-2 208.
|
39 |
Hedges J I , Baldock J A , Gélinas Y , et al . Evidence for non-selective preservation of organic matter in sinking marine particles[J]. Nature, 2001, 409(6 822):801-804.
|
40 |
Sollins P , Homann P , Caldwell B A . Stabilization and destabilization of soil organic matter: Mechanisms and controls[J]. Geoderma, 1996, 74(1/2): 65-105.
|
41 |
Rasse D P , Rumpel C , Dignac M F . Is soil carbon mostly root carbon? Mechanisms for a specific stabilization [J]. Plant and soil, 2005, 269(1/2): 341-356.
|
42 |
Kiem R , Knicker H , K?gel-Knabner I . Refractory organic carbon in particle-size fractions of arable soils I: Distribution of refractory carbon between the size fractions[J]. Organic Geochemistry, 2002, 33(12): 1 683-1 697.
|
43 |
Kleber M . What is recalcitrant soil organic matter?[J]. Environmental Chemistry, 2010, 7(4): 320-332.
|
44 |
Kiem R , K?gel-Knabner I . Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils[J]. Soil Biology and Biochemistry, 2003, 35(1): 101-118.
|
45 |
Rovira P , Vallejo V R . Labile, recalcitrant, and inert organic matter in Mediterranean forest soils[J]. Soil Biology & Biochemistry, 2007, 39(1):202-215.
|
46 |
Paul E A , Morris S J , Conant R T , et al . Does the acid hydrolysis-incubation method measure meaningful soil organic carbon pools?[J]. Soil Science Society of America Journal, 2006, 70(3): 1 023-1 035.
|
47 |
Klotzbücher T , Kaiser K , Guggenberger G , et al . A new conceptual model for the fate of lignin in decomposing plant litter[J]. Ecology, 2011, 92(5): 1 052-1 062.
|
48 |
Kuzyakov Y , Friedel J K , Stahr K . Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry, 2000, 32(11/12): 1 485-1 498.
|
49 |
Gramss G , Voigt K D , Kirsche B . Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material[J]. Chemosphere, 1999, 38(7): 1 481-1 494.
|
50 |
Tatzber M , Stemmer M , Spiegel H , et al . Decomposition of carbon-14-labeled organic amendments and humic acids in a long-term field experiment[J]. Soil Science Society of America Journal, 2009, 73(3): 744-750.
|
51 |
Lützow M , K?gel-Knabner I , Ekschmitt K , et al . Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review[J]. European Journal of Soil Science, 2006, 57(4): 426-445.
|
52 |
Kemmitt S J , Lanyon C V , Waite I S , et al . Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass-a new perspective: The biology of the Regulatory Gate[J]. Soil Biology and Biochemistry, 2008, 40(1): 61-73.
|
53 |
Kuzyakov Y , Blagodatskaya E , Blagodatsky S ,et al . 'Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass — A new perspective' [Soil Biology & Biochemistry 40, 61-73] [J]. Soil Biology & Biochemistry, 2009, 41(2):435-439.
|
54 |
Lützow M V , K?gelknabner I , Ekschmitt K , et al . SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms [J]. Soil Biology & Biochemistry, 2007, 39(9):2 183-2 207.
|
55 |
Kleber M , Nico P S , Plante A , et al . Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity[J]. Global Change Biology, 2011, 17(2): 1 097-1 107.
|
56 |
Fang C , Smith P , Moncrieff J B , et al . Similar response of labile and resistant soil organic matter pools to changes in temperature[J]. Nature, 2005, 433(7 021): 57.
|
57 |
Kuzyakov Y , Subbotina I , Chen H , et al . Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling[J]. Soil Biology and Biochemistry, 2009, 41(2): 210-219.
|
58 |
Dungait J A J , Hopkins D W , Gregory A S , et al . Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 2012, 18(6): 1 781-1 796.
|
59 |
Kleber M , Johnson M G . Advances in understanding the molecular structure of soil organic matter: Implications for interactions in the environment [J]. Advances in Agronomy,2010, 106: 77-142.
|
60 |
Keiluweit M , Nico P S , Johnson M G , et al . Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1 247-1 253.
|
61 |
Marschner B , Brodowski S , Dreves A , et al . How relevant is recalcitrance for the stabilization of organic matter in soils?[J]. Journal of Plant Nutrition and Soil Science, 2010, 171(1):91-110.
|
62 |
Brady N C , Weil R R . The Nature and Properties of Soils (14th Edition)[M]. New Jersey, USA: Pearson Education Inc., Pearson Prentice Hall, Upper Saddle River, 2008.
|
63 |
Brady N C , Weil R R . The Nature and Properties of Soils (15th Edition)[M]. New Jersey, USA: Pearson Education Inc., Pearson Prentice Hall, Upper Saddle River, 2017.
|
64 |
Pan Genxing , Zhou Ping , Li Lianqing , et al . Core issues and research progresses of soil science of C sequestration[J]. Pedologica Sinica,2007, 44(2):327-337.
|
|
潘根兴, 周萍, 李恋卿,等 . 固碳土壤学的核心科学问题与研究进展[J]. 土壤学报, 2007, 44(2):327-337.
|
65 |
Qu Jiansheng , Xiao Xiantao , Zeng Jingjing . A profile of international climate change science in the past one hundred years[J]. Advances in Earth Science, 2018,33(11):1 193-1 202.
|
|
曲建升,肖仙桃,曾静静 .国际气候变化科学百年研究态势分析[J].地球科学进展,2018,33(11): 1 193-1 202.
|
66 |
Mikutta R , Kleber M , Torn M S , et al . Stabilization of soil organic matter: Association with minerals or chemical recalcitrance?[J]. Biogeochemistry, 2006, 77(1):25-56.
|
67 |
Six J , Elliott E T , Paustian K . Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology & Biochemistry, 2000, 32(14):2 099-2 103.
|
68 |
Hassink J , Whitmore A P . A model of the physical protection of organic matter in soils[J]. Soil Science Society of America Journal, 1997, 61(1):131.
|
69 |
Wattel-Koekkoek E J W , Van Genuchten P P L , Buurman P , et al . Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils[J]. Geoderma, 2001, 99(1/2): 27-49.
|
70 |
Vogel C , Heister K , Buegger F , et al . Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions[J]. Biology and Fertility of Soils, 2015, 51(4): 427-442.
|
71 |
Bellamy P H , Loveland P J , Bradley R I , et al . Carbon losses from all soils across England and Wales 1978-2003[J]. Nature, 2005, 437(7 056): 245.
|
72 |
Pettit R E . Organic Matter, Humus, Humate, Acid Humic , Fulvic Acid and Humin: Their Importance in Soil Fertility and Plant Health . [EB/OL].(2017-12-17).
URL
|
73 |
Mikutta R , Schaumann G E , Gildemeister D , et al . Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3-4100 kyr), Hawaiian Islands[J]. Geochimica et Cosmochimica Acta, 2009, 73(7):2 034-2 060.
|
74 |
Kramer M G , Chadwick O A . Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii[J]. Ecology, 2016, 97(9):2 384.
|
75 |
Vogel C , Mueller C W , H?schen C , et al . Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils [J]. Nature Communications, 2014, 5: 2 947.
|
76 |
Reisser M , Purves R S , Schmidt M W I , et al . Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks[J]. Frontiers in Earth Science, 2016, 4: 80.
|
77 |
Güere?a D T , Lehmann J , Walter T , et al . Terrestrial pyrogenic carbon export to fluvial ecosystems: Lessons learned from the White Nile watershed of East Africa[J]. Global Biogeochemical Cycles, 2016, 29(11): 1 911-1 928.
|
78 |
Pan Genxin , Li Lianqing , Liu Xiaoyu , et al . Industrialization of biochar from biomass pyrolysis: A new option for straw burning ban and green agriculture of China [J]. Science & Technology Review, 2015, 33(13): 92-101.
|
|
潘根兴, 李恋卿, 刘晓雨, 等 . 热裂解生物质炭产业化: 秸秆禁烧与绿色农业新途径[J]. 科技导报, 2015, 33(13): 92-101.
|
79 |
Keiluweit M , Wanzek T , Kleber M , et al . Anaerobic microsites have an unaccounted role in soil carbon stabilization[J]. Nature communications, 2017, 8(1): 1 771.
|
80 |
Schmidt M W I , Torn M S , Abiven S , et al . Persistence of soil organic matter as an ecosystem property [J]. Nature, 2011, 478(7 367): 49.
|
81 |
Nebbioso A , Piccolo A . Basis of a humeomics science: Chemical fractionation and molecular characterization of humic biosuprastructures [J]. Biomacromolecules, 2011, 12(4): 1 187-1 199.
|
82 |
Drosos M , Nebbioso A , Mazzei P , et al . A molecular zoom into soil Humeome by a direct sequential chemical fractionation of soil[J]. Science of the Total Environment, 2017, 586: 807-816.
|
83 |
Drosos M , Nebbioso A , Piccolo A . Humeomics: A key to unravel the humusic pentagram[J]. Applied Soil Ecology, 2018, 123:513-516.
|
84 |
Nebbioso A , Vinci G , Drosos M , et al . Unveiling the molecular composition of the unextractable soil organic fraction (humin) by humeomics [J]. Biology and Fertility of Soils, 2015, 51(4): 443-451.
|
85 |
Sun J , Drosos M , Mazzei P , et al . The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination[J]. Science of the Total Environment, 2017, 576: 858-867.
|
86 |
Nebbioso A , Piccolo A . Advances in humeomics: Enhanced structural identification of humic molecules after size fractionation of a soil humic acid[J]. Analytica Chimica Acta, 2012, 720: 77-90.
|
87 |
Miltner A , Bombach P , Schmidtbrücken B , et al . SOM genesis: Microbial biomass as a significant source[J]. Biogeochemistry, 2012, 111(1/3):41-55.
|
88 |
Kallenbach C M , Frey S D , Grandy A S . Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls[J]. Nature Communications, 2016,7: 13 630.
|
89 |
Sarker T C , Incerti G , Spaccini R , et al . Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy [J]. Soil Biology and Biochemistry, 2018, 117:175-184.
|
90 |
Holloway P J . Plant Cuticles: Physicochemical Characteristics and Biosynthesis[M] // Percy K E , Cape J N , Jagels R , al et , eds . Air Pollutants and the Leaf Cuticle. Netherlands: Springer-Verlag,1994. DOI: 10.1007/978-3-642-79081-2_1 .
doi: 10.1007/978-3-642-79081-2_1
|
91 |
Lichtfouse E , Leblond C , Silva M D , et al . Occurrence of biomarkers and straight-chain biopolymers in humin: Implication for the origin of soil organic matter [J]. Naturwissenschaften, 1998, 85(10): 497-501.
|
92 |
Hedges J I , Keil R G , Benner R . What happens to terrestrial organic matter in the ocean?[J]. Organic Geochemistry, 1997, 27(5/6): 195-212.
|
93 |
Amelung W , Brodowski S , Sandhage-Hofmann A , et al . Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter[J]. Advances in Agronomy, 2008, 100: 155-250.
|
94 |
Go?i M A , Hedges J I . Potential applications of cutin-derived CuO reaction products for discriminating vascular plant sources in natural environments[J]. Geochimica et Cosmochimica Acta, 1990, 54(11): 3 073-3 081.
|
95 |
Derenne S , Largeau C . A review of some important families of refractory macromolecules: Composition, origin, and fate in soils and sediments [J]. Soil Science, 2001, 166(11): 833-847.
|
96 |
Otto A , Shunthirasingham C , Simpson M J . A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada[J]. Organic Geochemistry, 2005, 36(3): 425-448.
|
97 |
Otto A , Simpson M J . Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada[J]. Organic Geochemistry, 2006, 37(4): 385-407.
|
98 |
Thevenot M , Dignac M F , Rumpel C . Fate of lignins in soils: A review[J]. Soil Biology and Biochemistry, 2010, 42(8): 1 200-1 211.
|
99 |
Ertel J R , Hedges J I . The lignin component of humic substances: Distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions[J]. Geochimica et Cosmochimica Acta, 1984, 48(10): 2 065-2 074.
|
100 |
Go?i M A , Ruttenberg K C , Eglinton T I . A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 1998, 62(18): 3 055-3 075.
|
101 |
Tareq S M , Tanaka N , Ohta K . Biomarker signature in tropical wetland: Lignin Phenol Vegetation Index (LPVI) and its implications for reconstructing the paleoenvironment[J]. Science of the Total Environment, 2004, 324(1/3): 91-103.
|
102 |
Amelung F , Galloway D L , Bell J W , et al . Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation[J]. Geology, 1999, 27(6): 483-486.
|
103 |
Lorenz K , Lal R , Preston C M , et al . Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio (macro) molecules[J]. Geoderma, 2007, 142(1/2): 1-10.
|
104 |
Kolattukudy P E , Espelie K E . Chemistry, biochemistry, and function of suberin and associated waxes[M]// Natural Products of Woody Plants. Berlin: Heidelberg Springer, 1989: 304-367.
|
105 |
Rederer M , Matzke K , Ziegler F , et al . Cutin and suberin in temperate forest soils[J]. Organic Geochemistry, 1993, 20(7): 1 063-1 076.
|
106 |
Bernards M A , Razem F A . The poly (phenolic) domain of potato suberin: A non-lignin cell wall bio-polymer[J]. Phytochemistry, 2001, 57(7): 1 115-1 122.
|
107 |
Ranathunge K , Schreiber L , Franke R . Suberin research in the genomics era—New interest for an old polymer[J]. Plant Science, 2011, 180(3): 399-413.
|
108 |
Wiesenberg G L B , Schwarzbauer J , Schmidt M W I , et al . Source and turnover of organic matter in agricultural soils derived from n-alkane/n-carboxylic acid compositions and C-isotope signatures[J]. Organic Geochemistry, 2004, 35(11/12): 1 371-1 393.
|
109 |
Spielvogel S , Prietzel J , K?gelknabner I , et al . Lignin phenols and cutin-and suberin-derived aliphatic monomers as biomarkers for stand history, SOM source, and turnover[J]. Geochimica et Cosmochimica Acta, 2010, 74(11): 983.
|
110 |
Franke R , Briesen I , Wojciechowski T , et al . Apoplastic polyesters in Arabidopsis surface tissues—A typical suberin and a particular cutin [J]. Phytochemistry, 2005, 66(22):2 643-2 658.
|
111 |
Gandini A , Neto C P , Silvestre A J D . Suberin: A promising renewable resource for novel macromolecular materials[J]. Progress in Polymer Science, 2006, 31(10): 878-892.
|
112 |
Mendez-Millan M , Dignac M F , Rumpel C , et al . Can cutin and suberin biomarkers be used to trace shoot and root-derived organic matter?A molecular and isotopic approach[J]. Biogeochemistry, 2011, 106(1): 23-38.
|
113 |
Mendez-Millan M , Dignac M F , Rumpel C , et al . Molecular dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural abundance 13C labelling[J]. Soil Biology and Biochemistry, 2010, 42(2): 169-177.
|
114 |
K?gel-Knabner I , Ziegler F , Riederer M , et al . Distribution and decomposition pattern of cutin and suberin in forest soils[J]. Zeitschrift für Pflanzenern?hrung und Bodenkunde, 1989, 152(5): 409-413.
|
115 |
Jung K H , Han M J , Lee D Y , et al . Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development[J]. Plant Cell, 2006, 18(11):3 015-3 032.
|
116 |
Ji H , Ding Y , Liu X , et al . Root-derived short-chain suberin diacids from rice and rape seed in a paddy soil under rice cultivar treatments[J]. PLoS ONE, 2015, 10(5): e0127474.
|
117 |
Filley T R , Boutton T W , Liao J D , et al . Chemical changes to nonaggregated particulate soil organic matter following grassland‐to‐woodland transition in a subtropical savanna[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G3). DOI:10.1029/2007JG000564 .
doi: 10.1029/2007JG000564
|
118 |
Crow S E , Lajtha K , Filley T R , et al . Sources of plant‐derived carbon and stability of organic matter in soil: Implications for global change [J]. Global Change Biology, 2009, 15(8): 2 003-2 019.
|
119 |
Crow S E , Lajtha K , Bowden R D , et al . Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest[J]. Forest Ecology and Management, 2009, 258(10): 2 224-2 232.
|
120 |
Nguyen B T , Lehmann J , Hockaday W C , et al . Temperature sensitivity of black carbon decomposition and oxidation[J]. Environmental Science & Technology, 2010, 44(9): 3 324-3 331.
|
121 |
Zhou Ping , Piccolo Alessandro , Pan Genxing , et al . SOC enhancement in three major types of paddy soils in a long term agro-ecosystem experiment in South China. III, Structural variation of two paddy soils of particular organic matter of two paddy soils[J]. Pedologica Sinica, 2009, 46(3):398-405.
|
|
周萍, Piccolo Alessandro , 潘根兴,等 . 三种南方典型水稻土长期试验下有机碳积累机制研究Ⅲ.两种水稻土颗粒有机质结构特征的变化[J]. 土壤学报, 2009, 46(3):398-405.
|
122 |
Lou Y M , Joseph S , Li L Q , et al . Water extract from straw biochar used for plant growth promotion: An initial test[J]. Bioresources, 2016, 11(1):249-266.
|
123 |
Zubarev R A , Demirev P A , Haakansson P , et al . Approaches and limits for accurate Mass characterization of large biomolecules[J]. Analytical Chemistry, 2008, 67(20):3 793-3 798.
|
124 |
Rogovska N , Laird D , Cruse R M , et al . Germination tests for assessing biochar quality[J]. Journal of Environmental Quality, 2012, 41(4): 1 014-1 022.
|
125 |
Podgorski D C , Hamdan R , McKenna A M , et al . Characterization of pyrogenic black carbon by desorption atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 2012, 84(3): 1 281-1 287.
|
126 |
Mosher J J , Kaplan L A , Podgorski D C , et al . Longitudinal shifts in dissolved organic matter chemogeography and chemodiversity within headwater streams: A river continuum reprise[J]. Biogeochemistry,2015,124: 371. DOI:10.1007/s10533-015-0103-6 .
doi: 10.1007/s10533-015-0103-6
|
127 |
Mazzei P , Piccolo A . HRMAS NMR spectroscopy applications in agriculture[J]. Chemical & Biological Technologies in Agriculture, 2017, 4(1): 11.
|
128 |
Uchimiya M , Ohno T , He Z . Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 84-94.
|
129 |
Jamieson T , Sager E , Céline G . Characterization of biochar-derived dissolved organic matter using UV-visible absorption and excitation-emission fluorescence spectroscopies [J]. Chemosphere, 2014, 103:197-204.
|
130 |
Berhe A A , Harden J W , Torn M S , et al . Persistence of soil organic matter in eroding versus depositional landform positions[J]. Journal of Geophysics Research, 2012,117: G02019.
|
131 |
Incerti G , Bonanomi G , Giannino F , et al . OMDY: A new model of organic matter decomposition based on biomolecular content as assessed by 13C-CPMAS-NMR[J]. Plant & Soil, 2016, 411(1): 1-18.
|
132 |
Masoom H , Courtier-Murias D , Farooq H , et al . Soil organic matter in its native state: Unravelling the most complex biomaterial on earth[J]. Environmental Science & Technology, 2016, 50(4): 1 670-1 680.
|
133 |
Spaccini R , Piccolo A , Conte P , et al . Increased soil organic carbon sequestration through hydrophobic protection by humic substances [J]. Soil Biology and Biochemistry, 2002, 34(12):1 839-1 851.
|
134 |
Zanella A , Ponge J F , Gobat J M , et al . Humusica 1, article 1: Essential bases-Vocabulary[J]. Applied Soil Ecology, 2017,122:10-21.
|
135 |
Birk J J , Dippold M , Wiesenberg G L , et al . Combined quantification of faecal sterols, stanols, stanones and bile acids in soils and terrestrial sediments by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2012,1 242(2): 1-10.
|
136 |
Bollag J M , Loll M J . Incorporation of xenobiotics into soil humus[J]. Experientia, 1983, 39(11): 1 221-1 231.
|
137 |
Sarker J R , Singh B P , Dougherty W J , et al . Impact of agricultural management practices on the nutrient supply potential of soil organic matter under long-term farming systems[J]. Soil and Tillage Research, 2018, 175: 71-81.
|
138 |
Piccolo A , Spiteller M . Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions[J]. Analytical and Bioanalytical Chemistry, 2003, 377(6): 1 047-1 059.
|
139 |
Smith A P , Marín-Spiotta E , de Graaff M A , et al . Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change[J]. Soil Biology and Biochemistry, 2014, 77: 292-303.
|
140 |
Buurman P , Roscoe R . Different chemical composition of free light, occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields, Minas Gerais, Brazil: A pyrolysis‐GC/MS study[J]. European Journal of Soil Science, 2011, 62(2): 253-266.
|
141 |
Zhou P , Pan G X , Spaccini R , et al . Molecular changes in Particulate Organic Matter (POM) in a typical Chinese paddy soil under different long‐term fertilizer treatments[J]. European Journal of Soil Science, 2010, 61(2): 231-242.
|
142 |
Li Y , Li Y , Chang S X , et al . Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical bamboo forests[J]. Soil Biology and Biochemistry, 2017, 107: 19-31
|
143 |
Grasset L , Amblès A . Aliphatic lipids released from a soil humin after enzymatic degradation of cellulose[J]. Organic Geochemistry, 1998, 29(4): 893-897.
|
144 |
Six J , Bossuyt H , Degryze S , et al . A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31.
|
145 |
Six J , Paustian K . Aggregate-associated soil organic matter as an ecosystem property and a measurement tool[J]. Soil Biology and Biochemistry, 2014, 68: A4-A9.
|
146 |
Lehmann J , Kleber M . The contentious nature of soil organic matter[J]. Nature, 2015, 528(7 580): 60.
|
147 |
Ma Chong , Feng Xiao , Ding Yuanjun , et al . Nano-pore distribution of biochar and soil aggregates revealed with the technology of nuclear magnetic resonance cryoporometry [J]. Chinese Journal of Soil Science, 2018, 49(3): 582-587.
|
|
马冲, 冯潇, 丁元君, 等 . 核磁冻融微孔度技术应用于测定生物质炭及土壤团聚体纳米孔隙[J]. 土壤通报, 2018, 49(3): 582-587.
|
148 |
Six J , Conant R T , Paul E A , et al . Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2): 155-176.
|
149 |
Jenkinson D S , Rayner J H . The turnover of soil organic matter in some of the Rothamsted classical experiments[J]. Soil Science, 1977, 123(5): 298-305.
|
150 |
Hedges J I , Keil R G , Benner R . What happens to terrestrial organic matter in the ocean?[J] Organic Geochemistry, 1997, 27:195-212.
|
151 |
Essington M E , Foss J E , Roh Y . The soil mineralogy of lead at Horace's villa [J]. Soil Science Society of America Journal, 2004, 68(3): 979-993.
|
152 |
Bosatta E , Agren G I . Soil organic matter quality interpreted thermodynamically[J]. Soil Biology & Biochemistry, 1999, 31(13):1 889-1 891.
|
153 |
Wang R , Yu G , He N , et al . Latitudinal variation of leaf stomatal traits from species to community level in forests: Linkage with ecosystem productivity[J]. Scientific Reports, 2015, 5(5): 14 454.
|
154 |
Liu Y , Wang P , Ding Y , et al . Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation[J]. Biogeosciences, 2016, 13(24): 6 565-6 586.
|
155 |
Pan Genxing , Lu Haifei , Li Lianqing , et al . Soil carbon sequestration with bioactivity: A new emerging frontier for sustainable soil management[J]. Advances in Earth Science, 2015, 30(8): 940-951.
|
|
潘根兴, 陆海飞, 李恋卿, 等 . 土壤碳固定与生物活性: 面向可持续土壤管理的新前沿[J]. 地球科学进展, 2015, 30(8): 940-951.
|
156 |
Paul E A . The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization [J]. Soil Biology and Biochemistry, 2016, 98: 109-126.
|
157 |
Pan G , Cheng K , Zheng J F , et al . Organic carbon sequestration and its co-benefits in China’s croplands[M]//Lal R, Stewart B A, eds. Principles of Sustainable Soil Management in Agroecosystems. Boca Raton: CRC Press, 2013.
|
158 |
Monreal C M , Schulten H R , H. Age Kodama , turnover and molecular diversity of soil organic matter in aggregates of a Gleysol [J]. Canadian Journal of Soil Science, 1997, 77(3): 379-388.
|
159 |
Haynes R J . Labile organic matter fractions as central components of the quality of agricultural soils: An overview[J]. Advances in Agronomy, 2005, 85(4):221-268.
|
160 |
Graham M H , Haynes R J , Meyer J H . Soil organic matter content and quality: Effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa [J]. Soil Biology & Biochemistry, 2002, 34(1): 93-102.
|
161 |
Leifeld J . Soil organic matter fractions as early indicators for carbon stock changes under different land-use?[J]. Geoderma, 2005, 124(1):143-155.
|
162 |
Kwiatkowska-Malina J . Qualitative and quantitative soil organic matter estimation for sustainable soil management[J]. Journal of Soils & Sediments, 2018, 18(8): 2 801-2 812.
|
163 |
Liu Xiaoyu , Bian Rongjun , Lu Haifei , et al . Biochar for sustainable soil management: Biomass technology and industry from soil perspectives[J]. Bulletin of Chinese Academy of Sciences, 2018,(2): 10.
|
|
刘晓雨, 卞荣军, 陆海飞, 等 . 生物质炭与土壤可持续管理: 从土壤问题到生物质产业[J]. 中国科学院院刊, 2018,(2): 10.
|
164 |
Zheng J , Han J , Liu Z , et al . Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production[J]. Agriculture, Ecosystems & Environment, 2017, 241: 70-78.
|
165 |
Wang Pan , Zheng Tingqian , Bian Rongjun , et al . Yield, quality and nutrient uptake of chinese cabbage under organ/mineral water soluble fertilizer based on biochar extracts derived from pyrolyzed biomass [J]. Chinese Journal of Soil Science, 2018,49(6):1 377-1 382.
|
|
王盼,郑庭茜,卞荣军,等 .基于生物质裂解活性有机物的有机—无机水溶肥对空心菜产量、品质及养分的影响[J].土壤通报, 2018,49(6):1 377-1 382.
|
166 |
Kramer R W , Kujawinski E B , Hatcher P G .Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry [J]. Environmental Science & Technology, 2004, 38 (12): 3 387-3 395.
|
167 |
Graber E R , Tsechansky L , Lew B , et al . Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe[J]. European Journal of Soil Science, 2014, 65(1): 162-172.
|
168 |
Kwiatkowska-Malina J . Functions of organic matter in polluted soils: The effect of organic amendments on phytoavailability of heavy metals[J]. Applied Soil Ecology, 2018, 123: 542-545.
|
169 |
Mehari Z H , Elad Y , Rav-David D , et al . Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling[J]. Plant and Soil, 2015, 395(1/2): 31-44.
|
170 |
Nardi S , Concheri G , Pizzeghello D , et al . Soil organic matter mobilization by root exudates. [J]. Chemosphere, 2000, 41(5): 653-658.
|
171 |
Elad Y , David D R , Harel Y M , et al . Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent[J]. Phytopathology, 2010, 100(9): 913-921
|
172 |
Huang Ruicai . Soil Micromorphology: Development and Application[M]. Beijing: Higher Education Press, 1991.
|
|
黄瑞采 .土壤微形态学——发展及应用[M].北京:高等教育出版社,1991.
|
173 |
Gershuny G . Compost, vermicompost, and compost tea: Feeding the soil on the organic farm[J]. Animal Behaviour, 2011, 61(2):465-476.
|
174 |
Blair G J , Lefroy R , Lisle L . Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 393-406.
|
175 |
Córdova S , Carolina Olk D C , Dietzel R N , et al . Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter[J]. Soil Biology and Biochemistry, 2018, 125: 115-124.
|
176 |
Cyle K T , Hill N , Young K , et al . Substrate quality influences organic matter accumulation in the soil silt and clay fraction[J]. Soil Biology & Biochemistry, 2016, 103: 138-148.
|
177 |
Schulze W X , Gleixner G , Kaiser K , et al . A proteomic fingerprint of dissolved organic carbon and of soil particles [J]. Oecologia, 2005, 142(3):335-343.
|
178 |
Heitk?tter J , Marschner B . Soil zymography as a powerful tool for exploring hotspots and substrate limitation in undisturbed subsoil[J]. Soil Biology and Biochemistry, 2018, 124: 210-217.
|
179 |
Newcomb C J . Humic matter in soil and the environment, principles and controversies[J]. Soil Science Society of America Journal, 2015, 79(5):1 520.
|