地球科学进展 ›› 2019, Vol. 34 ›› Issue (5): 451 -470. doi: 10.11867/j.issn.1001-8166.2019.05.0451

综述与评述    下一篇

从土壤腐殖质分组到分子有机质组学认识土壤有机质本质
潘根兴( ),丁元君,陈硕桐,孙景玲,冯潇,张晨,郑聚锋,张旭辉,程琨,刘晓雨,卞荣军,李恋卿   
  1. 南京农业大学资源环境科学学院土壤学系/农业资源与生态环境研究所,江苏 南京 210095
  • 收稿日期:2018-12-18 修回日期:2019-04-10 出版日期:2019-05-10
  • 基金资助:
    国家自然科学基金项目“秸秆生物质炭对农田土壤有机碳保持作用及其机制”(编号:41371298)和“稻田土壤有机碳固定与稳定化过程与机制”(编号:40830528)

Exploring the Nature of Soil Organic Matter from Humic Substances Isolation to SOMics of Molecular Assemblage

Genxing Pan( ),Yuanjun Ding,Shuotong Chen,Jingling Sun,Xiao Feng,Chen Zhang,Doross Marios,Jufeng Zheng,Xuhui Zhang,Kun Cheng,Xiaoyu Liu,Rongjun Bian,Lianqing Li   

  1. Department of Soil Science, and Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2018-12-18 Revised:2019-04-10 Online:2019-05-10 Published:2019-07-04
  • About author:Pan Genxing(1958-), male, Nanjing City, Jiangsu Province, Professor. Research areas include soil organic matter and carbon sequestration. E-mail: gxpan@njau.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Effect of straw biochar on organic carbon preservation of croplands and the mechanism (No.43171298) and “Processes and mechanisms of C sequestration and stabilization in rice paddies of China: A study of soil-crop-microbes interactions”(No. 40830528)

梳理了与土壤生态系统功能相联系的,特别是对固碳减排的土壤有机质本质认识的研究进展及路径,探讨了经典腐殖质学说存在的问题,概述了新近的有机质保护稳定学说及腐殖质组学学说,并追溯了生物标志物有机质分子研究,最后从土壤学的基本理念和理论出发讨论和重新认识土壤有机质的本质及其价值。从形成条件、分离条件和分子鉴定等多方面分析,土壤腐殖质形成和稳定学说越来越显示出局限性;而面向气候变化的碳固定研究可以深入探析土壤有机质的复杂存在状态。越来越认识到土壤有机质是投入土壤的有机物质经不同程度生物利用或降解的产物残留,只是被土壤不同程度地区隔和封闭,本质上仍是分子量变化极大的生命源有机物的集合。因此,可通过生物标志物分子作为靶标在土壤中提取和识别,该技术的发展将孕育萌生土壤有机质分子组学。后者可以用于判读土壤有机质的结构支撑、反应活性和促生功能等方面的本质差别,这些差别可能是由有机分子组成结构及存在状态所决定而不是由有机分子稳定性决定的。从这个概念出发,类似于土壤微生物分子生态,土壤有机质的丰度、组成、结构与功能间的联系可能是土壤有机质本质的核心问题。对这种关系的量化和参数化表征可用以探索土壤有机质永续固定,且可以保持生命活性的土壤有机质的管理策略及技术,并配合土壤的团聚体理论诠释土壤的本质和生态系统功能服务,这将是未来土壤学服务人类可持续发展的理论立足点。

In this review, the evolution of Soil Organic Matter (SOM) research was traced back to outline the main achievement of understanding SOM in relation to its ecological functioning, particularly of carbon sequestration against climate change. The short-coming of soil humus theory, knowledge of SOM protection and stabilization, framework of newly emerged Humeomics as well as the increasingly active study of molecular organics in soils were analyzed and discussed, highlighting the importance of re-visiting SOM in term of structure-property-functions for the main mission of modern soil science. There were limitations of soil forming conditions, fraction separation procedure and single molecule identification for understanding the huge complex humus of larger sized synthesized molecules. Thanks to the ever-active studies of soil (organic) carbon sequestration and stabilization focusing on the association status of SOM with soil components, SOM has been increasingly recognized as an assemblage of metabolites from life activities on or in soil, with different allocation or protected in mineral/organic complex phases, which could be traced by biomarker molecules. Using such biomarker molecules as a target (like primer in molecular microbiology), all the molecules of SOM could be digested and isolated for qualitative or quantitative identification with GC/MS high resolution technologies. Such development has emerged a new paradigm of molecular SOM study, finally as SOMics as a modern soil science frontier. The functioning of SOM for stabilizing soil structure, enhancing reactivity and promoting biological resistance could be correlated to the paradigm of abundance, composition, structure and functions rather than the content and recalcitrance of SOM. This may deserve urgent studies to quantify and parameterize the defined paradigm based on the molecular composition of SOM. Again, such theory and technology development could provide a tool to manage SOM in term of carbon sequestration but revalorizing bioactivity in ecosystems, especially in agroecosystems. We believe such studies could rather depict the nature of SOM and of soil in relation to its ecological services and functioning, which will be the focus of soil science in serving the sustainable development of human society.

中图分类号: 

图1 土壤有机质概念及组成认识(a)[ 62 ]和(b[ 63 ]的演变
Fig.1 Concept update of soil organic matter and the composition (a[ 62 ]和(b[ 63 ]
图2 土壤腐殖质组学的连续提取分离法程序框架(据参考文献[ 81 ]修改)
Fig.2 Procedure framework of sequential extraction and separation of soil humusmodified after reference [ 81 ])
图3 腐殖质组学分离鉴定法获得的某水稻土土壤有机质组分Van Krevelen
Fig.3 Van Krevelen plot of soil organic matter composition in a paddy soil obtained by Humeomics identification
表1 土壤有机质中可鉴定的生物标志物特征与源解析
Table 1 Characterization and source analysis of identifiable biomarkers
图4 土壤有机质组分及其结构—组成—功能联系的连续分布概念框架
Fig.4 Conceptual framework of continuous distribution of soil organic matter components and their structure-constitution-function relationships
1 Brantley S L . Geology: Understanding soil time[J]. Science, 2008, 321(5 895):1 454-1 455.
2 Tiessen H , Cuevas E , Chacon P . The role of soil organic matter in sustaining soil fertility[J]. Nature, 1994, 371(6 500): 783-785.
3 Pan G X , Smith P , Pan W N . The role of soil organic matter in maintaining the productivity and yield stability of cereals in China[J]. Agriculture Ecosystems & Environment, 2009, 129(1): 344-348.
4 Mueller L , Schindler U , Mirschel W , et al . Assessing the Productivity Function of Soils[M]. Dordrecht: Springer, 2011: 743-760.
5 Nziguheba G , Vargas R , Bationo A , et al . Soil carbon: A critical natural resource—Wide-scale goals, urgent actions[M] // Banwart S A , Noellemeyer E , Milne E , eds . Soil Carbon: Science, Management and Policy for Multiple Benefits.Boston, MA:CABⅠ, 2014: 10-26.
6 Smith P , Cotrufo M F , Rumpel C , et al . Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils[J]. Soil Discussions, 2015, 2(1): 537-586.
7 Victoria R L , Banwart S A , Black H , et al . The benefits of soil carbon[M]// The United National Environment Programme (UNEP) Yearbook 2012. UNEP, Nairobi, Kenya, 2012.
8 Robinson D A , Jackson B M , Clothier B E , et al . Advances in soil ecosystem services: Concepts, models, and applications for Earth system life support[J]. Vadose Zone Journal, 2013, 12(4): 4 949-4 960.
9 Stockmann U , Padarian J , Mcbratney A , et al . Global soil organic carbon assessment [J]. Global Food Security, 2015, 6: 9-16.
10 Batjes N H . Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks[J]. Geoderma, 2016, 269: 61-68.
11 Lal R . Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004, 304(5 677): 1 623-1 627.
12 Paustian K , Lehmann J , Ogle S , et al . Climate-smart soils[J]. Nature, 2016, 532(7 597): 49.
13 Smith P , Lutfalla S , Riley W J , et al . The changing faces of soil organic matter research[J]. European Journal of Soil Science, 2018, 69(1): 23-30.
14 Stockmann U , Adams M A , Crawford J W , et al . The knowns, known unknowns and unknowns of sequestration of soil organic carbon[J]. Agriculture, Ecosystems & Environment, 2013, 164:80-99.
15 Brady N C . The Nature and Properties of Soils(8th ed)[M]. New York: MacMillan Publishing Co., 1974.
16 Berg B , McClaugherty C . Plant Litter: Decomposition, Humus Formation, Carbon Sequestration (2nd ed)[M]. Berlin Heidelberg: Springer-Verlag, 2007:338.
17 Bunting B T , Lundberg J . The humus profile-concept, class and reality[J]. Geoderma, 1995, 40 (1/2): 17-36.
18 Brady N C , Weill R R . Elements of the Nature and Properties of Soils (2nd ed)[M]. New Jersey, USA: Pearson Prentice Hall, 2004.
19 Stevenson F J . Humus Chemistry: Genesis, Composition, Reactions (2nd ed)[M]. New York: John Wiley & Sons,1994.
20 Burdon J . Are the traditional concepts of the structures of humic substances realistic?[J]. Soil Science, 2001, 166(11): 752-769.
21 Newcomb C J . Humic matter in soil and the environment, principles and controversies[J]. Soil Science Society of America Journal, 2015, 79(5): 1 520.
22 Guggenberger G . Humification and mineralization in soils[M]//Varma A, Buscot F, eds. Microorganisms in Soils: Roles in Genesis and Functions. Soil Biology,vol 3. Berlin, Heidelberg: Springer, 2005.
23 K?gel-Knabner I . Analytical approaches for characterizing soil organic matter[J]. Organic Geochemistry, 2000, 31(7/8): 609-625.
24 Mclauchlan K K , Hobbie S E . Comparison of labile soil organic matter fractionation techniques[J]. Soil Science Society of America Journal, 2004, 68(5):1 616.
25 Lützow M V , Leifeld J , Kainz M , et al . Indications for soil organic matter quality in soils under different management[J]. Geoderma, 2002, 105(3):243-258.
26 Schulten H R , Schnitzer M . A state of the art structural concept for humic substances [J]. Naturwissenschaften, 1993, 80(1): 29-30.
27 Schulten H R , Leinweber P . New insights into organic-mineral particles: Composition, properties and models of molecular structure[J]. Biology & Fertility of Soils, 2000, 30(5/6): 399-432.
28 Hatcher P G , Breger I A , Dennis L W , et al . Solid-state 13C NMR of sedimentary humic substances: New revelations on their chemical composition[M]// Gjessing E T, Christman R F, eds. Aquatic and Terrestrial Humic Materials. Ann Arbor, USA: Ann Arbor Science Publishers, 1983: 37-82.
29 Shirshova L T , Ghabbour E A , Davies G . Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures [J]. Geoderma, 2006, 133(3/4): 204-216.
30 Wershaw R L , Pinckney D J , Llaguno E C , et al . NMR characterization of humic acid fractions from different Philippine soils and sediments [J]. Analytica Chimica Acta, 1990, 232(232): 31-42.
31 Saiz-Jimenez C , Hermosin B , Trubetskaya O E , et al . Thermochemolysis of genetically different soil humic acids and their fractions obtained by tandem size exclusion chromatography-polyacrylamide gel electrophoresis[J]. Geoderma, 2006,131(1/2): 22-32.
32 Saiz-Jimenez C , Deleeuw J W . Chemical characterization of soil organic-matter fractions by analytical pyrolysis -Gas Chromatography-Mass spectrometry[J]. Journal of Analytical and Applied Pyrolysis,1986,9(2): 99-119.
33 Malcolm R L , Maccarthy P . Quantitative evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water[J]. Environment International, 1992,18(6): 597-607.
34 Andersson S , Nilsson S I , Saetre P . Leaching of Dissolved Organic Carbon (DOC) and Dissolved Organic Nitrogen (DON) in mor humus as affected by temperature and pH[J]. Soil Biology & Biochemistry, 2000, 32(1): 1-10.
35 Manlay R J . Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems[J]. Agriculture Ecosystems & Environment, 2007, 119(3):217-233.
36 K?gel-Knabner I . The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter[J]. Soil Biology & Biochemistry, 2002,34(2):139-162.
37 Melillo J M , Aber J D , Muratore J F . Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J]. Ecology, 1982, 63(3): 621-626.
38 Aber J D , Melillo J M , McClaugherty C A . Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems[J]. Canadian Journal of Botany, 1990, 68(10): 2 201-2 208.
39 Hedges J I , Baldock J A , Gélinas Y , et al . Evidence for non-selective preservation of organic matter in sinking marine particles[J]. Nature, 2001, 409(6 822):801-804.
40 Sollins P , Homann P , Caldwell B A . Stabilization and destabilization of soil organic matter: Mechanisms and controls[J]. Geoderma, 1996, 74(1/2): 65-105.
41 Rasse D P , Rumpel C , Dignac M F . Is soil carbon mostly root carbon? Mechanisms for a specific stabilization [J]. Plant and soil, 2005, 269(1/2): 341-356.
42 Kiem R , Knicker H , K?gel-Knabner I . Refractory organic carbon in particle-size fractions of arable soils I: Distribution of refractory carbon between the size fractions[J]. Organic Geochemistry, 2002, 33(12): 1 683-1 697.
43 Kleber M . What is recalcitrant soil organic matter?[J]. Environmental Chemistry, 2010, 7(4): 320-332.
44 Kiem R , K?gel-Knabner I . Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils[J]. Soil Biology and Biochemistry, 2003, 35(1): 101-118.
45 Rovira P , Vallejo V R . Labile, recalcitrant, and inert organic matter in Mediterranean forest soils[J]. Soil Biology & Biochemistry, 2007, 39(1):202-215.
46 Paul E A , Morris S J , Conant R T , et al . Does the acid hydrolysis-incubation method measure meaningful soil organic carbon pools?[J]. Soil Science Society of America Journal, 2006, 70(3): 1 023-1 035.
47 Klotzbücher T , Kaiser K , Guggenberger G , et al . A new conceptual model for the fate of lignin in decomposing plant litter[J]. Ecology, 2011, 92(5): 1 052-1 062.
48 Kuzyakov Y , Friedel J K , Stahr K . Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry, 2000, 32(11/12): 1 485-1 498.
49 Gramss G , Voigt K D , Kirsche B . Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material[J]. Chemosphere, 1999, 38(7): 1 481-1 494.
50 Tatzber M , Stemmer M , Spiegel H , et al . Decomposition of carbon-14-labeled organic amendments and humic acids in a long-term field experiment[J]. Soil Science Society of America Journal, 2009, 73(3): 744-750.
51 Lützow M , K?gel-Knabner I , Ekschmitt K , et al . Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review[J]. European Journal of Soil Science, 2006, 57(4): 426-445.
52 Kemmitt S J , Lanyon C V , Waite I S , et al . Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass-a new perspective: The biology of the Regulatory Gate[J]. Soil Biology and Biochemistry, 2008, 40(1): 61-73.
53 Kuzyakov Y , Blagodatskaya E , Blagodatsky S ,et al . 'Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass — A new perspective' [Soil Biology & Biochemistry 40, 61-73] [J]. Soil Biology & Biochemistry, 2009, 41(2):435-439.
54 Lützow M V , K?gelknabner I , Ekschmitt K , et al . SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms [J]. Soil Biology & Biochemistry, 2007, 39(9):2 183-2 207.
55 Kleber M , Nico P S , Plante A , et al . Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity[J]. Global Change Biology, 2011, 17(2): 1 097-1 107.
56 Fang C , Smith P , Moncrieff J B , et al . Similar response of labile and resistant soil organic matter pools to changes in temperature[J]. Nature, 2005, 433(7 021): 57.
57 Kuzyakov Y , Subbotina I , Chen H , et al . Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling[J]. Soil Biology and Biochemistry, 2009, 41(2): 210-219.
58 Dungait J A J , Hopkins D W , Gregory A S , et al . Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 2012, 18(6): 1 781-1 796.
59 Kleber M , Johnson M G . Advances in understanding the molecular structure of soil organic matter: Implications for interactions in the environment [J]. Advances in Agronomy,2010, 106: 77-142.
60 Keiluweit M , Nico P S , Johnson M G , et al . Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1 247-1 253.
61 Marschner B , Brodowski S , Dreves A , et al . How relevant is recalcitrance for the stabilization of organic matter in soils?[J]. Journal of Plant Nutrition and Soil Science, 2010, 171(1):91-110.
62 Brady N C , Weil R R . The Nature and Properties of Soils (14th Edition)[M]. New Jersey, USA: Pearson Education Inc., Pearson Prentice Hall, Upper Saddle River, 2008.
63 Brady N C , Weil R R . The Nature and Properties of Soils (15th Edition)[M]. New Jersey, USA: Pearson Education Inc., Pearson Prentice Hall, Upper Saddle River, 2017.
64 Pan Genxing , Zhou Ping , Li Lianqing , et al . Core issues and research progresses of soil science of C sequestration[J]. Pedologica Sinica,2007, 44(2):327-337.
潘根兴, 周萍, 李恋卿,等 . 固碳土壤学的核心科学问题与研究进展[J]. 土壤学报, 2007, 44(2):327-337.
65 Qu Jiansheng , Xiao Xiantao , Zeng Jingjing . A profile of international climate change science in the past one hundred years[J]. Advances in Earth Science, 2018,33(11):1 193-1 202.
曲建升,肖仙桃,曾静静 .国际气候变化科学百年研究态势分析[J].地球科学进展,2018,33(11): 1 193-1 202.
66 Mikutta R , Kleber M , Torn M S , et al . Stabilization of soil organic matter: Association with minerals or chemical recalcitrance?[J]. Biogeochemistry, 2006, 77(1):25-56.
67 Six J , Elliott E T , Paustian K . Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology & Biochemistry, 2000, 32(14):2 099-2 103.
68 Hassink J , Whitmore A P . A model of the physical protection of organic matter in soils[J]. Soil Science Society of America Journal, 1997, 61(1):131.
69 Wattel-Koekkoek E J W , Van Genuchten P P L , Buurman P , et al . Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils[J]. Geoderma, 2001, 99(1/2): 27-49.
70 Vogel C , Heister K , Buegger F , et al . Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions[J]. Biology and Fertility of Soils, 2015, 51(4): 427-442.
71 Bellamy P H , Loveland P J , Bradley R I , et al . Carbon losses from all soils across England and Wales 1978-2003[J]. Nature, 2005, 437(7 056): 245.
72 Pettit R E . Organic Matter, Humus, Humate, Acid Humic , Fulvic Acid and Humin: Their Importance in Soil Fertility and Plant Health . [EB/OL].(2017-12-17).
URL    
73 Mikutta R , Schaumann G E , Gildemeister D , et al . Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3-4100 kyr), Hawaiian Islands[J]. Geochimica et Cosmochimica Acta, 2009, 73(7):2 034-2 060.
74 Kramer M G , Chadwick O A . Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii[J]. Ecology, 2016, 97(9):2 384.
75 Vogel C , Mueller C W , H?schen C , et al . Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils [J]. Nature Communications, 2014, 5: 2 947.
76 Reisser M , Purves R S , Schmidt M W I , et al . Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks[J]. Frontiers in Earth Science, 2016, 4: 80.
77 Güere?a D T , Lehmann J , Walter T , et al . Terrestrial pyrogenic carbon export to fluvial ecosystems: Lessons learned from the White Nile watershed of East Africa[J]. Global Biogeochemical Cycles, 2016, 29(11): 1 911-1 928.
78 Pan Genxin , Li Lianqing , Liu Xiaoyu , et al . Industrialization of biochar from biomass pyrolysis: A new option for straw burning ban and green agriculture of China [J]. Science & Technology Review, 2015, 33(13): 92-101.
潘根兴, 李恋卿, 刘晓雨, 等 . 热裂解生物质炭产业化: 秸秆禁烧与绿色农业新途径[J]. 科技导报, 2015, 33(13): 92-101.
79 Keiluweit M , Wanzek T , Kleber M , et al . Anaerobic microsites have an unaccounted role in soil carbon stabilization[J]. Nature communications, 2017, 8(1): 1 771.
80 Schmidt M W I , Torn M S , Abiven S , et al . Persistence of soil organic matter as an ecosystem property [J]. Nature, 2011, 478(7 367): 49.
81 Nebbioso A , Piccolo A . Basis of a humeomics science: Chemical fractionation and molecular characterization of humic biosuprastructures [J]. Biomacromolecules, 2011, 12(4): 1 187-1 199.
82 Drosos M , Nebbioso A , Mazzei P , et al . A molecular zoom into soil Humeome by a direct sequential chemical fractionation of soil[J]. Science of the Total Environment, 2017, 586: 807-816.
83 Drosos M , Nebbioso A , Piccolo A . Humeomics: A key to unravel the humusic pentagram[J]. Applied Soil Ecology, 2018, 123:513-516.
84 Nebbioso A , Vinci G , Drosos M , et al . Unveiling the molecular composition of the unextractable soil organic fraction (humin) by humeomics [J]. Biology and Fertility of Soils, 2015, 51(4): 443-451.
85 Sun J , Drosos M , Mazzei P , et al . The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination[J]. Science of the Total Environment, 2017, 576: 858-867.
86 Nebbioso A , Piccolo A . Advances in humeomics: Enhanced structural identification of humic molecules after size fractionation of a soil humic acid[J]. Analytica Chimica Acta, 2012, 720: 77-90.
87 Miltner A , Bombach P , Schmidtbrücken B , et al . SOM genesis: Microbial biomass as a significant source[J]. Biogeochemistry, 2012, 111(1/3):41-55.
88 Kallenbach C M , Frey S D , Grandy A S . Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls[J]. Nature Communications, 2016,7: 13 630.
89 Sarker T C , Incerti G , Spaccini R , et al . Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy [J]. Soil Biology and Biochemistry, 2018, 117:175-184.
90 Holloway P J . Plant Cuticles: Physicochemical Characteristics and Biosynthesis[M] // Percy K E , Cape J N , Jagels R , al et , eds . Air Pollutants and the Leaf Cuticle. Netherlands: Springer-Verlag,1994. DOI: 10.1007/978-3-642-79081-2_1 .
doi: 10.1007/978-3-642-79081-2_1    
91 Lichtfouse E , Leblond C , Silva M D , et al . Occurrence of biomarkers and straight-chain biopolymers in humin: Implication for the origin of soil organic matter [J]. Naturwissenschaften, 1998, 85(10): 497-501.
92 Hedges J I , Keil R G , Benner R . What happens to terrestrial organic matter in the ocean?[J]. Organic Geochemistry, 1997, 27(5/6): 195-212.
93 Amelung W , Brodowski S , Sandhage-Hofmann A , et al . Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter[J]. Advances in Agronomy, 2008, 100: 155-250.
94 Go?i M A , Hedges J I . Potential applications of cutin-derived CuO reaction products for discriminating vascular plant sources in natural environments[J]. Geochimica et Cosmochimica Acta, 1990, 54(11): 3 073-3 081.
95 Derenne S , Largeau C . A review of some important families of refractory macromolecules: Composition, origin, and fate in soils and sediments [J]. Soil Science, 2001, 166(11): 833-847.
96 Otto A , Shunthirasingham C , Simpson M J . A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada[J]. Organic Geochemistry, 2005, 36(3): 425-448.
97 Otto A , Simpson M J . Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada[J]. Organic Geochemistry, 2006, 37(4): 385-407.
98 Thevenot M , Dignac M F , Rumpel C . Fate of lignins in soils: A review[J]. Soil Biology and Biochemistry, 2010, 42(8): 1 200-1 211.
99 Ertel J R , Hedges J I . The lignin component of humic substances: Distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions[J]. Geochimica et Cosmochimica Acta, 1984, 48(10): 2 065-2 074.
100 Go?i M A , Ruttenberg K C , Eglinton T I . A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 1998, 62(18): 3 055-3 075.
101 Tareq S M , Tanaka N , Ohta K . Biomarker signature in tropical wetland: Lignin Phenol Vegetation Index (LPVI) and its implications for reconstructing the paleoenvironment[J]. Science of the Total Environment, 2004, 324(1/3): 91-103.
102 Amelung F , Galloway D L , Bell J W , et al . Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation[J]. Geology, 1999, 27(6): 483-486.
103 Lorenz K , Lal R , Preston C M , et al . Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio (macro) molecules[J]. Geoderma, 2007, 142(1/2): 1-10.
104 Kolattukudy P E , Espelie K E . Chemistry, biochemistry, and function of suberin and associated waxes[M]// Natural Products of Woody Plants. Berlin: Heidelberg Springer, 1989: 304-367.
105 Rederer M , Matzke K , Ziegler F , et al . Cutin and suberin in temperate forest soils[J]. Organic Geochemistry, 1993, 20(7): 1 063-1 076.
106 Bernards M A , Razem F A . The poly (phenolic) domain of potato suberin: A non-lignin cell wall bio-polymer[J]. Phytochemistry, 2001, 57(7): 1 115-1 122.
107 Ranathunge K , Schreiber L , Franke R . Suberin research in the genomics era—New interest for an old polymer[J]. Plant Science, 2011, 180(3): 399-413.
108 Wiesenberg G L B , Schwarzbauer J , Schmidt M W I , et al . Source and turnover of organic matter in agricultural soils derived from n-alkane/n-carboxylic acid compositions and C-isotope signatures[J]. Organic Geochemistry, 2004, 35(11/12): 1 371-1 393.
109 Spielvogel S , Prietzel J , K?gelknabner I , et al . Lignin phenols and cutin-and suberin-derived aliphatic monomers as biomarkers for stand history, SOM source, and turnover[J]. Geochimica et Cosmochimica Acta, 2010, 74(11): 983.
110 Franke R , Briesen I , Wojciechowski T , et al . Apoplastic polyesters in Arabidopsis surface tissues—A typical suberin and a particular cutin [J]. Phytochemistry, 2005, 66(22):2 643-2 658.
111 Gandini A , Neto C P , Silvestre A J D . Suberin: A promising renewable resource for novel macromolecular materials[J]. Progress in Polymer Science, 2006, 31(10): 878-892.
112 Mendez-Millan M , Dignac M F , Rumpel C , et al . Can cutin and suberin biomarkers be used to trace shoot and root-derived organic matter?A molecular and isotopic approach[J]. Biogeochemistry, 2011, 106(1): 23-38.
113 Mendez-Millan M , Dignac M F , Rumpel C , et al . Molecular dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural abundance 13C labelling[J]. Soil Biology and Biochemistry, 2010, 42(2): 169-177.
114 K?gel-Knabner I , Ziegler F , Riederer M , et al . Distribution and decomposition pattern of cutin and suberin in forest soils[J]. Zeitschrift für Pflanzenern?hrung und Bodenkunde, 1989, 152(5): 409-413.
115 Jung K H , Han M J , Lee D Y , et al . Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development[J]. Plant Cell, 2006, 18(11):3 015-3 032.
116 Ji H , Ding Y , Liu X , et al . Root-derived short-chain suberin diacids from rice and rape seed in a paddy soil under rice cultivar treatments[J]. PLoS ONE, 2015, 10(5): e0127474.
117 Filley T R , Boutton T W , Liao J D , et al . Chemical changes to nonaggregated particulate soil organic matter following grassland‐to‐woodland transition in a subtropical savanna[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G3). DOI:10.1029/2007JG000564 .
doi: 10.1029/2007JG000564    
118 Crow S E , Lajtha K , Filley T R , et al . Sources of plant‐derived carbon and stability of organic matter in soil: Implications for global change [J]. Global Change Biology, 2009, 15(8): 2 003-2 019.
119 Crow S E , Lajtha K , Bowden R D , et al . Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest[J]. Forest Ecology and Management, 2009, 258(10): 2 224-2 232.
120 Nguyen B T , Lehmann J , Hockaday W C , et al . Temperature sensitivity of black carbon decomposition and oxidation[J]. Environmental Science & Technology, 2010, 44(9): 3 324-3 331.
121 Zhou Ping , Piccolo Alessandro , Pan Genxing , et al . SOC enhancement in three major types of paddy soils in a long term agro-ecosystem experiment in South China. III, Structural variation of two paddy soils of particular organic matter of two paddy soils[J]. Pedologica Sinica, 2009, 46(3):398-405.
周萍, Piccolo Alessandro , 潘根兴,等 . 三种南方典型水稻土长期试验下有机碳积累机制研究Ⅲ.两种水稻土颗粒有机质结构特征的变化[J]. 土壤学报, 2009, 46(3):398-405.
122 Lou Y M , Joseph S , Li L Q , et al . Water extract from straw biochar used for plant growth promotion: An initial test[J]. Bioresources, 2016, 11(1):249-266.
123 Zubarev R A , Demirev P A , Haakansson P , et al . Approaches and limits for accurate Mass characterization of large biomolecules[J]. Analytical Chemistry, 2008, 67(20):3 793-3 798.
124 Rogovska N , Laird D , Cruse R M , et al . Germination tests for assessing biochar quality[J]. Journal of Environmental Quality, 2012, 41(4): 1 014-1 022.
125 Podgorski D C , Hamdan R , McKenna A M , et al . Characterization of pyrogenic black carbon by desorption atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 2012, 84(3): 1 281-1 287.
126 Mosher J J , Kaplan L A , Podgorski D C , et al . Longitudinal shifts in dissolved organic matter chemogeography and chemodiversity within headwater streams: A river continuum reprise[J]. Biogeochemistry,2015,124: 371. DOI:10.1007/s10533-015-0103-6 .
doi: 10.1007/s10533-015-0103-6    
127 Mazzei P , Piccolo A . HRMAS NMR spectroscopy applications in agriculture[J]. Chemical & Biological Technologies in Agriculture, 2017, 4(1): 11.
128 Uchimiya M , Ohno T , He Z . Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 84-94.
129 Jamieson T , Sager E , Céline G . Characterization of biochar-derived dissolved organic matter using UV-visible absorption and excitation-emission fluorescence spectroscopies [J]. Chemosphere, 2014, 103:197-204.
130 Berhe A A , Harden J W , Torn M S , et al . Persistence of soil organic matter in eroding versus depositional landform positions[J]. Journal of Geophysics Research, 2012,117: G02019.
131 Incerti G , Bonanomi G , Giannino F , et al . OMDY: A new model of organic matter decomposition based on biomolecular content as assessed by 13C-CPMAS-NMR[J]. Plant & Soil, 2016, 411(1): 1-18.
132 Masoom H , Courtier-Murias D , Farooq H , et al . Soil organic matter in its native state: Unravelling the most complex biomaterial on earth[J]. Environmental Science & Technology, 2016, 50(4): 1 670-1 680.
133 Spaccini R , Piccolo A , Conte P , et al . Increased soil organic carbon sequestration through hydrophobic protection by humic substances [J]. Soil Biology and Biochemistry, 2002, 34(12):1 839-1 851.
134 Zanella A , Ponge J F , Gobat J M , et al . Humusica 1, article 1: Essential bases-Vocabulary[J]. Applied Soil Ecology, 2017,122:10-21.
135 Birk J J , Dippold M , Wiesenberg G L , et al . Combined quantification of faecal sterols, stanols, stanones and bile acids in soils and terrestrial sediments by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2012,1 242(2): 1-10.
136 Bollag J M , Loll M J . Incorporation of xenobiotics into soil humus[J]. Experientia, 1983, 39(11): 1 221-1 231.
137 Sarker J R , Singh B P , Dougherty W J , et al . Impact of agricultural management practices on the nutrient supply potential of soil organic matter under long-term farming systems[J]. Soil and Tillage Research, 2018, 175: 71-81.
138 Piccolo A , Spiteller M . Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions[J]. Analytical and Bioanalytical Chemistry, 2003, 377(6): 1 047-1 059.
139 Smith A P , Marín-Spiotta E , de Graaff M A , et al . Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change[J]. Soil Biology and Biochemistry, 2014, 77: 292-303.
140 Buurman P , Roscoe R . Different chemical composition of free light, occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields, Minas Gerais, Brazil: A pyrolysis‐GC/MS study[J]. European Journal of Soil Science, 2011, 62(2): 253-266.
141 Zhou P , Pan G X , Spaccini R , et al . Molecular changes in Particulate Organic Matter (POM) in a typical Chinese paddy soil under different long‐term fertilizer treatments[J]. European Journal of Soil Science, 2010, 61(2): 231-242.
142 Li Y , Li Y , Chang S X , et al . Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical bamboo forests[J]. Soil Biology and Biochemistry, 2017, 107: 19-31
143 Grasset L , Amblès A . Aliphatic lipids released from a soil humin after enzymatic degradation of cellulose[J]. Organic Geochemistry, 1998, 29(4): 893-897.
144 Six J , Bossuyt H , Degryze S , et al . A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31.
145 Six J , Paustian K . Aggregate-associated soil organic matter as an ecosystem property and a measurement tool[J]. Soil Biology and Biochemistry, 2014, 68: A4-A9.
146 Lehmann J , Kleber M . The contentious nature of soil organic matter[J]. Nature, 2015, 528(7 580): 60.
147 Ma Chong , Feng Xiao , Ding Yuanjun , et al . Nano-pore distribution of biochar and soil aggregates revealed with the technology of nuclear magnetic resonance cryoporometry [J]. Chinese Journal of Soil Science, 2018, 49(3): 582-587.
马冲, 冯潇, 丁元君, 等 . 核磁冻融微孔度技术应用于测定生物质炭及土壤团聚体纳米孔隙[J]. 土壤通报, 2018, 49(3): 582-587.
148 Six J , Conant R T , Paul E A , et al . Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2): 155-176.
149 Jenkinson D S , Rayner J H . The turnover of soil organic matter in some of the Rothamsted classical experiments[J]. Soil Science, 1977, 123(5): 298-305.
150 Hedges J I , Keil R G , Benner R . What happens to terrestrial organic matter in the ocean?[J] Organic Geochemistry, 1997, 27:195-212.
151 Essington M E , Foss J E , Roh Y . The soil mineralogy of lead at Horace's villa [J]. Soil Science Society of America Journal, 2004, 68(3): 979-993.
152 Bosatta E , Agren G I . Soil organic matter quality interpreted thermodynamically[J]. Soil Biology & Biochemistry, 1999, 31(13):1 889-1 891.
153 Wang R , Yu G , He N , et al . Latitudinal variation of leaf stomatal traits from species to community level in forests: Linkage with ecosystem productivity[J]. Scientific Reports, 2015, 5(5): 14 454.
154 Liu Y , Wang P , Ding Y , et al . Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation[J]. Biogeosciences, 2016, 13(24): 6 565-6 586.
155 Pan Genxing , Lu Haifei , Li Lianqing , et al . Soil carbon sequestration with bioactivity: A new emerging frontier for sustainable soil management[J]. Advances in Earth Science, 2015, 30(8): 940-951.
潘根兴, 陆海飞, 李恋卿, 等 . 土壤碳固定与生物活性: 面向可持续土壤管理的新前沿[J]. 地球科学进展, 2015, 30(8): 940-951.
156 Paul E A . The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization [J]. Soil Biology and Biochemistry, 2016, 98: 109-126.
157 Pan G , Cheng K , Zheng J F , et al . Organic carbon sequestration and its co-benefits in China’s croplands[M]//Lal R, Stewart B A, eds. Principles of Sustainable Soil Management in Agroecosystems. Boca Raton: CRC Press, 2013.
158 Monreal C M , Schulten H R , H. Age Kodama , turnover and molecular diversity of soil organic matter in aggregates of a Gleysol [J]. Canadian Journal of Soil Science, 1997, 77(3): 379-388.
159 Haynes R J . Labile organic matter fractions as central components of the quality of agricultural soils: An overview[J]. Advances in Agronomy, 2005, 85(4):221-268.
160 Graham M H , Haynes R J , Meyer J H . Soil organic matter content and quality: Effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa [J]. Soil Biology & Biochemistry, 2002, 34(1): 93-102.
161 Leifeld J . Soil organic matter fractions as early indicators for carbon stock changes under different land-use?[J]. Geoderma, 2005, 124(1):143-155.
162 Kwiatkowska-Malina J . Qualitative and quantitative soil organic matter estimation for sustainable soil management[J]. Journal of Soils & Sediments, 2018, 18(8): 2 801-2 812.
163 Liu Xiaoyu , Bian Rongjun , Lu Haifei , et al . Biochar for sustainable soil management: Biomass technology and industry from soil perspectives[J]. Bulletin of Chinese Academy of Sciences, 2018,(2): 10.
刘晓雨, 卞荣军, 陆海飞, 等 . 生物质炭与土壤可持续管理: 从土壤问题到生物质产业[J]. 中国科学院院刊, 2018,(2): 10.
164 Zheng J , Han J , Liu Z , et al . Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production[J]. Agriculture, Ecosystems & Environment, 2017, 241: 70-78.
165 Wang Pan , Zheng Tingqian , Bian Rongjun , et al . Yield, quality and nutrient uptake of chinese cabbage under organ/mineral water soluble fertilizer based on biochar extracts derived from pyrolyzed biomass [J]. Chinese Journal of Soil Science, 2018,49(6):1 377-1 382.
王盼,郑庭茜,卞荣军,等 .基于生物质裂解活性有机物的有机—无机水溶肥对空心菜产量、品质及养分的影响[J].土壤通报, 2018,49(6):1 377-1 382.
166 Kramer R W , Kujawinski E B , Hatcher P G .Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry [J]. Environmental Science & Technology, 2004, 38 (12): 3 387-3 395.
167 Graber E R , Tsechansky L , Lew B , et al . Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe[J]. European Journal of Soil Science, 2014, 65(1): 162-172.
168 Kwiatkowska-Malina J . Functions of organic matter in polluted soils: The effect of organic amendments on phytoavailability of heavy metals[J]. Applied Soil Ecology, 2018, 123: 542-545.
169 Mehari Z H , Elad Y , Rav-David D , et al . Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling[J]. Plant and Soil, 2015, 395(1/2): 31-44.
170 Nardi S , Concheri G , Pizzeghello D , et al . Soil organic matter mobilization by root exudates. [J]. Chemosphere, 2000, 41(5): 653-658.
171 Elad Y , David D R , Harel Y M , et al . Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent[J]. Phytopathology, 2010, 100(9): 913-921
172 Huang Ruicai . Soil Micromorphology: Development and Application[M]. Beijing: Higher Education Press, 1991.
黄瑞采 .土壤微形态学——发展及应用[M].北京:高等教育出版社,1991.
173 Gershuny G . Compost, vermicompost, and compost tea: Feeding the soil on the organic farm[J]. Animal Behaviour, 2011, 61(2):465-476.
174 Blair G J , Lefroy R , Lisle L . Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 393-406.
175 Córdova S , Carolina Olk D C , Dietzel R N , et al . Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter[J]. Soil Biology and Biochemistry, 2018, 125: 115-124.
176 Cyle K T , Hill N , Young K , et al . Substrate quality influences organic matter accumulation in the soil silt and clay fraction[J]. Soil Biology & Biochemistry, 2016, 103: 138-148.
177 Schulze W X , Gleixner G , Kaiser K , et al . A proteomic fingerprint of dissolved organic carbon and of soil particles [J]. Oecologia, 2005, 142(3):335-343.
178 Heitk?tter J , Marschner B . Soil zymography as a powerful tool for exploring hotspots and substrate limitation in undisturbed subsoil[J]. Soil Biology and Biochemistry, 2018, 124: 210-217.
179 Newcomb C J . Humic matter in soil and the environment, principles and controversies[J]. Soil Science Society of America Journal, 2015, 79(5):1 520.
[1] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[2] 侯笛,张俊杰,邢磊,周阳. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2): 140-147.
[3] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[4] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[5] 李启权,王昌全,岳天祥,张文江,余勇. 基于神经网络模型的中国表层土壤有机质空间分布模拟方法[J]. 地球科学进展, 2012, 27(2): 175-184.
[6] 陈中红, Moldowan J M,刘昭茜. 东营凹陷生物降解稠油甾烷分子的选择蚀变[J]. 地球科学进展, 2012, 27(10): 1108-1114.
[7] 赵军,姚鹏,于志刚. 海洋沉积物中色素生物标志物研究进展[J]. 地球科学进展, 2010, 25(9): 950-959.
[8] 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9): 981-989.
[9] 赵同谦,张华,徐华山,贺玉晓. 黄河湿地孟津段不同植物群落类型土壤有机质含量变化特征研究[J]. 地球科学进展, 2008, 23(6): 638-643.
[10] 吴乐知,蔡祖聪. 中国土壤有机质含量变异性与空间尺度的关系[J]. 地球科学进展, 2006, 21(9): 965-972.
[11] 饶志国,朱照宇,陈发虎,张家武. 黄土有机质稳定碳同位素研究进展[J]. 地球科学进展, 2006, 21(1): 62-69.
[12] 马安来;张水昌;张大江;金之钧. 生物降解原油地球化学研究新进展[J]. 地球科学进展, 2005, 20(4): 449-454.
[13] 陶贞;沈承德;易惟熙;高全洲. 土壤碳动力学同位素示踪研究进展[J]. 地球科学进展, 2004, 19(5): 793-801.
[14] 吴 莹,张 经,唐运千. 中国海洋有机地球化学研究的若干进展[J]. 地球科学进展, 1999, 14(3): 256-261.
[15] 陈庆强,沈承德,易惟熙,彭少麟,李志安. 土壤碳循环研究进展[J]. 地球科学进展, 1998, 13(6): 555-563.
阅读次数
全文


摘要