地球科学进展 ›› 2006, Vol. 21 ›› Issue (1): 62 -69. doi: 10.11867/j.issn.1001-8166.2006.01.0062

综述与评述 上一篇    下一篇

黄土有机质稳定碳同位素研究进展
饶志国 1,2,3,朱照宇 1,陈发虎 2,张家武 2   
  1. 1.中国科学院广州地球化学研究所与南海海洋研究所边缘海地质重点实验室,广东 广州 510640;2.兰州大学资源环境学院西部环境教育部重点实验室中德干旱环境联合研究中心,甘肃 兰州 730000;3.中国科学院研究生院,北京 100039
  • 收稿日期:2005-04-12 修回日期:2005-08-02 出版日期:2006-01-15
  • 通讯作者: 饶志国 E-mail:zgrao@gig.ac.cn
  • 基金资助:

    国家自然科学杰出青年基金项目“亚洲中部干旱区全新世气候快速变化过程和机制”(编号:40125001);科技部国际合作重点项目(纳入国家重点研究发展计划项目)“阿拉善高原及毗邻地区沙漠与生态环境的变化过程和机制研究”(编号:2002GB714004);中国科学院知识创新工程重要方向项目“我国新生代构造尺度环境演变及其机制”(编号:KZCX2-SW-133)联合资助.

Reviews on the Stable Carbon Isotopic Researches of Organic Matter of Chinese Loess

Rao Zhiguo 1,2,3,Zhu Zhaoyu 1,Chen Fahu 2,Zhang Jiawu 2   

  1. 1.Key Laboratory of Marginal Sea Geology, Guangzhou Insitutute of Geochemistry and South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou 510640, China; 2. Sino-German Center for Arid Environment and Paleoclimate Research, Key Laboratory of Western China's Environment Systems,Ministry of Education, College of Resources and Environment, Lanzhou University, Lanzhou 730000, China;3. Graduate School of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2005-04-12 Revised:2005-08-02 Online:2006-01-15 Published:2006-01-15

有关黄土高原历史时期原生植被类型的研究不仅具有重要的理论意义,也具有现实的指导意义。土壤有机质稳定碳同位素(δ13Corg)是区域植被中C4/C3植物相对丰度的灵敏指示器,对黄土有机质稳定碳同位素的研究可以部分地重建过去的植被类型变化历史,并可探讨与此有关的气候、环境问题。已有的研究结果表明:黄土高原古土壤发育阶段δ13Corg偏正于黄土沉积阶段,表明随气候由冷干向暖湿转变黄土高原C4植物相对丰度上升,然而在C4植物相对丰度上升的主要驱动因素上仍存在夏季风和温度两种观点。相应的在空间上,C4植物的相对丰度无论冰期还是间冰期都是由黄土高原东南向西北递减。而基于黄土δ13Corg的研究认为黄土高原历史时期一直以草原为主,不存在大面积的森林。尽管已有的研究对黄土有机质稳定碳同位素分布和变化的一般性规律取得了共识,但在研究中还存在一些问题,在黄土δ13Corg变化机制上还存在争议,值得进一步研究。

Soil stable organic carbon isotopic composition (δ13Corg) is a sensitive indicator of relative abundance of local C4/C3 plants due to the distinct distribution range of their δ13Corg and has little or no isotopic fractionation during bury and decompound process of plants. Chinese Loess Plateau (CLP), located in the northwest inner continent, is a sensitive area to climatic and environmental change and weak change of climate and environment can result in strong landscape change. So, the research on δ13Corg of Chinese loess can partly reconstruct paleovegetation type, and furthermore, indicate the relationships between climate and environment related to paleovegetation. Reviews on δ13Corg studies of Chinese loess showed: δ13Corg of Chinese loess more positive in paleosols developed during warm and moist interglacials and more positive southeastward in both paleosols and loess. The available δ13Corg data indicate the proportion of C4 plants increasing form glacial to interglacial and from the northwestern part to southeastern part of CLP. The past vegetation type of CLP  determined as grassland still lack direct evidences because of all trees are also use C3 photosynthesis pathway. The key control environmental factors on C4 plants, such as temperature and Asian Summer Monsoon are still debated. Although the general rule of the distribution of Chinese loess δ13Corg is clear in both temporal and spatial sequence, some other problems including the control mechanism on Chinese loess δ13Corg are still blurry. Further understanding of Chinese loess δ13Corg needs more research work.

中图分类号: 

[1] Lü Houyuan, Liu Tungsheng, Guo Zhengtang. Natural vegetation of geological and historical periods in Loess Plateau [J]. Chinese Science Bulletin, 2003, 48(5): 411-416.

[2] Liu Tungsheng, Guo Zhengtang, Wu Naiqin, et al. Prehistoric vegetation on the Loess Plateau: steppe or forest? [J]. Journal of Southeast Asian Earth Sciences, 1996, 13: 341-346.

[3] Shi Nianhai. On the historical distribution and vicissitudes of national vegetation of China [J]. Collections of Essays on Chinese Historical Geography,1991, 3: 43-73.[史念海. 论历史时期我国植被的分布及其变迁[J]. 中国历史地理论丛, 19991, 3: 43-73.]

[4] Zhu Zhicheng. Extent of forest and steppe of the Loess Plateau in the northern part of Shaanxi [J]. Acta Phytoecologica et Geobotanica Sinica, 1983, 7(4): 122-131.[朱志诚. 陕北黄土高原森林草原的范围[J]. 植物生态学与地植物学丛刊, 1983, 7(4): 122-131.]

[5] Zhu Zhicheng. Basic features of forest steppe in the Loess Plateau of China[J]. Chinese Geographical Sciences, 1994, 14(2): 52-155.[朱志诚. 黄土高原森林草原的基本特征[ J]. 地理科学, 1994, 14(2): 52-155.]

[6] Liu Tungsheng, Guo Zhengtang, Wu Naiqin, et al. Prehistoric vegetation on the Loess Plateau: Steppe or forest? [J]. Acta Geoscientia Sinica, 1994, (3/4): 226-273.[刘东生, 郭正堂, 吴乃琴,. 史前黄土高原自然植被景观: 森林还是草原?[J].地球学报, 1994, (3/4): 226-273.]

[7] Sun Xiangjun, Song Changqing, Wang Fengyu, et al. Vegetation history of the Loess Plateau of China during the last 100000 years based on pollen data [J]. Quaternary International, 1997, 37: 25-36.

[8] Wang Shouchun. On ancient Loess Plateau vegetation [J]. Geographical Study,1990,9: 72-79.[王守春. 论古代黄土高原植被[J]. 地理研究, 1990,9:72-79.]

[9] Lin Benhai, An Zhisheng, Liu Rongmo. Stable isotopic evidence of monsoon variation on Chinese Loess Plateau during the last 600 ka [A]. In: Liu Tungsheng, An Zhisheng, eds. Loess, Quaternary Geology and Global Change(Vol. 3) [C]. Beijing: Science Press, 1992:51-54.[林本海, 安芷生, 刘荣谟. 最近60万年中国黄土高原季风变迁的稳定同位素证据[A]. : 刘东生,安芷生主编.黄土·第四纪地质·全球变化(第三辑)[C]. 北京: 科学出版社, 1992:51-54.]

[10] Lü Houyuan, Liu Tungsheng, Wu Naiqin, et al. Phytolith record of vegetation succession in the southern Loess Plateau since Late Pleistocene [J]. Quaternary Sciences,1999,19(4): 336-349.[吕厚远, 刘东生, 吴乃琴,. 末次间冰期以来黄土高原南部植被演替的植物硅酸体记录[J]. 第四纪研究, 1999,19(4):336-349.]

[11] Deines P. The isotopic composition of reduced organic carbon[A]. In: Fritz P, Fontes J Ch,eds. Handbook of Environmental Isotope Geochemistry, Volume 1, The Terrestrial Environment, A[C]. Elsevier Scientific Publishing Company, 1980:339-345.

[12] O'Leary M H. Carbon isotope fractionation in plants [J]. Phytochemistry, 1981, 20(4): 553-567.

[13] O'Leary M H. Carbon Isotope in Photosynthesis[J]. Bioscience,1988,38(5):328-336.

[14] Farquhar G D, Ehleringer J R, Hubick K T. Carbon Isotope Discrimination And Photosynthesis [J]. Annual Review Plant Physilecular Biology, 1989,40: 503-537.

[15] Balesdent J, Mariotti A. Measurement of soil organic matter turnover using 13C natural abundance [A]. In: Boutton T W, Yamasaki S I, eds. Mass Spectrometry in Soils[C]. New York: Marcel Dekker, 1996:83-112.

[16] Melillo J M, Aber J D, Linkins A E, et al. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter [J]. Plant and Soil,1989, 115: 189-198.

[17] Connin S L. Isotopic discrimination during long-term decomposition in an arid land ecosystem [J]. Soil Biology & Biogeochemistry,2001, 33(1): 41-45.

[18] Cerling T E, Quade J, Wang Y, et al. Carbon isotopes in soil and paleosols as ecologic and paleoecologic indicators [J]. Nature,1989, 341: 138-139.

[19] Schwartz D, Mariotti A, Lanfranchi R, et al. 13C/12C ratios of soil organic matter as indicators of vegetation changes in the Congo [J]. Geoderma,1986, 39: 97-103.

[20] Ambrose S H, Sikes N E. Soil carbon isotope evidence for Holocene Habitat change in the Kenya rift valley[J]. Science,1991, 253: 1 402-1 405.

[21] Lin Benhai, Liu Rongmo, An Zhisheng. Preliminary research on stable isotopic compositions of Chinese Loess [A]. In: Liu Tungsheng, eds. Loess Environment and Global Change [C]. Beijing: Science Press, 1991:124-131.

[22] Lin Benhai, Liu Rongmo. Stable isotopic evidence of the summer monsoon evolution during the last 800 ka in Chinese Loess Plateau [J]. Chinese Science Bulletin, 1992, 18: 1 691-1 693.[林本海, 刘荣谟. 最近800 ka黄土高原夏季风变迁的稳定同位素证据[J]. 科学通报, 1992, 18: 1 691-1 693.]

[23] An Zhisheng, Stephen C P, Zhou Weijian, et al. Episode of strengthened summer monsoon climate of Younger Dryas age on the Loess Plateau of Central China [J]. Quaternary Research,1993, 39(1): 45-54.

[24] He Yong, Qin Dahe, Ren Jiawen, et al. The summer monsoon evolution recorded by carbon isotope of organic matter from the Yuanbao loess section during the Last Interglaciation [J]. Chinese Science Bulletin,2002, 47(15): 1 289-1 291.

[25] He Yong, Qin Dahe, Ren Jiawen, et al. The climatic record of organic matter in the paleosol from the Yuanbao Holocene Profile [J]. Journal of Glaciology and Geocryolog,2002, 24(5): 512-516.[何勇, 秦大河, 任贾文,. 临夏塬堡全新世黄土剖面古土壤有机质碳同位素的气候记录[J]. 冰川冻土, 2002, 24(5): 512-516.]

[26] He Yong, Qin Dahe, Ren Jiawen, et al. Climatic significance of δ13C record of organic matters in the paleosol from the Yuanbao Holocene profile, Gansu Province [J]. Geochimica, 2004, 33(2): 178-184.[ 何勇, 秦大河, 任贾文,.塬堡全新世黄土剖面有机质碳同位素的气候记录[J]. 地球化学, 2004, 33(2): 178-184.]

[27] Liu Weiguo, Ning Youfeng, An Zhisheng, et al. Modern soil and paleosol organic carbon isotope response to vegetation of Chinese Loess Plateau [J]. Science in China(D), 2002, 32(10): 830-836.[刘卫国, 宁有丰, 安芷生,. 黄土高原现代土壤和古土壤有机碳同位素对植被的响应[J]. 中国科学:D, 2002, 32(10): 830-836.]

[28] Liu Weiguo, Yang Hong, Cao Yunning, et al. Did an extensive forest ever develop on the Chinese Loess Plateau during the past 130 ka?: A test using soil carbon isotopic signatures [J]. Applied Gecchemistry, 2005, 20: 519-527.

[29] Liu Weiguo, Huang Yongsong, An Zhisheng, et al. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220: 243-254.

[30] Gu Zhaoyan, Liu Qiang, Xu Bing, et al. Climate as the dominant control on C3 and C4 plant abundance in the Loess Plateau: Organic carbon isotope evidence from the last [J]. Chinese Science Bulletin,2003, 48(12):1 271-1 276.

[31] Gu Zhaoyan, Han Jiamao, Liu Tungsheng. Progress in geochemical research on the loess and other Quaternary deposits in China [J]. Quaternary Science,2000, 20(1): 41-55.[顾兆炎, 韩家懋, 刘东生. 中国第四纪黄土地球化学研究进展[J].第四纪研究, 2000, 20(1): 41-55.]

[32] Natasa J V, Isabel P M. Climatically driven glacial-interglacial variations in C3 and C4 plant proportions on the Chinese Loess Plateau [J]. Geology, 2004, 32(4): 337-340.

[33] Zhang Zhaohui, Zhao Meixun, Lu Huayu, et al. Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau [J]. Earth and Planetary Science Letters, 2003, 214(3/4): 467-481.

[34] Rao Zhiguo, Chen Fahu, Cao Jie, et al. Variation of soil organic carbon isotope and C3/C4 vegetation type transition in the western Loess Plateau during the last glacial and Holocene periods [J]. Quaternary Sciences, 2005, 25(1): 107-114.[饶志国, 陈发虎, 曹洁,. 黄土高原西部地区末次冰期和全新世有机碳同位素变化和C3/C4植被类型转换研究[J]. 第四纪研究, 2005, 25(1): 107-114.]

[35] Wang Hong, Follmer L R. Proxy of monsoon seasonality in carbon isotopes from paleosols of the southern Chinese Loess Plateau [J]. Geology,1998, 26(11): 987-990.

[36] Wang Hong, Ambrose S H, Chao-Li, et al. Paleosol stable isotope evidence for early hominid occupation of East Asian temperate environments [J]. Quaternary Research,1997, 48: 228-238.

[37] Wang Guoan, Han Jiamao. Relations between δ13C values of C-3 plants in Northwestern China and annual precipitation [J]. Chinese Journal of Geology, 2001,36(4): 494-499.[王国安, 韩家懋. 中国西北C3植物的碳同位素组成与年降水量关系初探[J]. 地质科学, 2001,36(4): 494-499.]

[38] Wang Guoan, Han Jiamao. δ13C variations of C3 plants in dry and rainy seasons [J]. Marine Geology & Quaternary Geology, 2001, 21(4): 43-47. [王国安, 韩家懋. C3植物碳同位素在旱季和雨季中的变化[J]. 海洋地质与第四纪地质, 2001, 21(4): 43-47.]

[39] Wang Guoan, Han Jiamao, Zhou Liping. The annual average temperature in northern China [J]. Geology in China,2002, 29(1): 55-57.[王国安, 韩家懋, 周力平. 中国北方C3植物碳同位素组成与年均温度关系[J].中国地质, 2002, 29(1): 55-57.]

[40] Wang Guo′an, Han Jiamao, Liu Tungsheng. The carbon isotope composition of C3 herbaceous plants in loess area of northern China [J]. Science in China(D),2003, 46(10): 1 069-1 076.

[41] Tieszen L L, Reed B C, Bliss N B, et al. C3 and C4 production, and distributions in the Great grassland cover classes [J]. Ecological Applications,1997, 7: 59-78.

[42] Bird M I, Pousai P. Variations of Dleta 13C in the surface soil organic carbon pool [J]. Global Biogeochemical Cycles,1997, 11: 315-322.

[43] Li Xiaoqiang, Zhou Weijian, An Zhisheng, et al. The palaeovegetation record of monsoon evolution in the desert-loess transition zone for the last 13 ka BP [J]. Acta Botanica Sinica,2000, 42(8): 868-872.[李小强, 周卫建, 安芷生,. 沙漠/黄土过渡带13 ka BP以来季风演化的古植被记录[J]. 植物学报, 2000, 42(8): 868-872.]

[44] Xie Shucheng, Guo Jianqiu, Huang Junhua, et al. Retricted utility of δ13C of bulk organic matter as a record of paleovegetation in some loess-paleosol sequences in the Chinese Loess Plateau [J]. Quaternary Research, 2004, 62(1): 86-93.

[45] Christine H, Michel F, Denis-Didier R, et al. δ13C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian [J]. Geology,1998, 26(7): 583-586.

[46] Christine H, Pierre A, Michel F, et al. New chronology and organic matter δ13C paleoclimatic significance of Nuβloch loess sequence(Rhine Valley,Germany)[J]. Quternary International,1999, 62(1): 85-91.

[47] Christine H, Pierre A, Michel F, et al. δ13C of loess organic matter as a potential proxy for paleoprecipitation[J]. Quaternary Research,2001, 55(1): 33-38.

[48] Lorius J M, Raynaud D, Lorius C, et al. Vostok ice core provides 160,000-year record of atmospheric CO2 [J]. Nature,1987, 329: 408-413.

[49] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of past 420, 000 years from the Vostok ice core, Antarctic [J].Nature,1999, 399: 429-436.

[1] 姜继兰,刘屹岷,李建平,张人禾. 印度洋偶极子研究进展回顾[J]. 地球科学进展, 2021, 36(6): 579-591.
[2] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[3] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[4] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[5] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[6] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[7] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[8] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[9] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
[10] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[11] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[12] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[13] 李岩瑛,蔡英,张春燕,曾婷,杨吉萍. 西北东部季风过渡区夹卷率与夏季风的动力学关系[J]. 地球科学进展, 2019, 34(12): 1316-1327.
[14] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[15] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
阅读次数
全文


摘要