1 |
Chen X, K-K Tung. Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science, 2014, 345(6 199):897-903.
|
2 |
S-K Lee, Park W, Baringer M O, et al. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus[J]. Nature Geoscience, 2015, 8(6): 445-449.
|
3 |
Thiagarajan N, Subhas A V, Southon J R, et al. Abrupt pre-Bolling-Allerod warming and circulation changes in the deep ocean[J]. Nature, 2014, 511(7 507): 75-78.
|
4 |
McCrea J M. On the isotopic chemistry of carbonates and a paleotemperature scale[J]. The Journal of Chemical Physics, 1950, 18(6): 849-857.
|
5 |
Epstein S, Buchsbaum R, Lowenstam H A, et al. Revised carbonate-water isotopic temperature scale[J]. Geological Society of America Bulletin, 1953, 64(11): 1 315-1 326.
|
6 |
Roberts J M, Wheeler A J, Freiwald A. Reefs of the deep: The biology and geology of cold-water coral ecosystems[J]. Science, 2006, 312(5 773): 543-547.
|
7 |
Robinson L F, Adkins J F, Scheirer D S, et al. Deep-sea scleractinian coral age and depth distributions in the WN Atlantic for the last 225 thousand years[J]. Bulletin of Marine Science, 2007, 81(3): 371-391.
|
8 |
Thiagarajan N, Gerlach D, Roberts M L, et al. Movement of deep-sea coral populations on climatic timescales[J]. Paleoceanography, 2013,28(2): 227-236.
|
9 |
Spooner P T, Guo W, Robinson L F, et al. Clumped isotope composition of cold-water corals: A role for vital effects?[J]. Geochimica et Cosmochimica Acta, 2016, 179:123-141.
|
10 |
Case D L, Robinson L F, Auro M E, et al. Environmental and biological controls on Mg and Li in deep-sea scleractinian corals[J]. Earth and Planetary Science Letters, 2010, 300(3/4): 215-225.
|
11 |
Bryan S P, Marchitto T M. Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li[J]. Paleoceanography, 2008, 23. DOI:10.1029/2007PA001553.
doi: 10.1029/2007PA001553
|
12 |
Gagnon A, Adkins J F, Fernandez D P, et al. Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian Deep-Sea coral and the role of Rayleigh fractionation[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 280-295.
|
13 |
Smith J E, Schwarcz H P, Risk M J, et al. Paleotemperatures from deep-sea corals: Overcoming ‘vital effects’[J]. Palaios, 2000, 15(1): 25-32.
|
14 |
Hill T M, Spero H J, Guilderson T, et al. Temperature and vital effect controls on bamboo coral (Isididae) isotope geochemistry: A test of the ‘lines method’ [J]. Geochemistry, Geophysics, Geosystems, 2011, 12. DOI:10.1029/2010G C003443.
doi: 10.1029/2010G C003443
|
15 |
Kimball J B, Dunbar R B, Guilderson T P. Oxygen and carbon isotope fractionation in calcitic deep-sea corals: Implications for paleotemperature reconstruction[J]. Chemical Geology, 2014, 381: 223-233.
|
16 |
Emiliani C, Hudson J H, Shinn E A, et al. Oxygen and carbon isotopic growth records in a reef coral from Florida Keys and a deep-sea coral from Blake Plateau[J]. Science, 1978, 202(4 368): 627-629.
|
17 |
McConnaughey T. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects[J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 163-171.
|
18 |
Adkins J, Boyle E A, Curry W B, et al. Stable isotopes in deep-sea corals and a new mechanism for ‘vital effects’[J]. Geochimica et Cosmochimica Acta, 2003, 67(6): 1 129-1 143.
|
19 |
Robinson L F, Adkins J F, Frank N, et al. The geochemistry of deep-sea coral skeletons: A review of vital effects and applications for paleoceanography[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2014, 99:184-198.
|
20 |
Rollion-Bard C, Blamart D, J-P Cuif, et al. In situ measurements of oxygen isotopic composition in deep-sea coral, Lophelia pertusa: Re-examination of the current geochemical models of biomineralization[J]. Geochimica et Cosmochimica Acta, 2010,74(4):1 338-1 349.
|
21 |
Marali S, Wisshak M, Lopez C M, et al. Skeletal microstructure and stable isotope signature of three bathyal solitary cold-water corals from the Azores[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 373: 25-38.
|
22 |
Heikoop J M, Hickmott D D, Risk M J, et al. Potential climate signals from the deep-sea gorgonian coral Primnoa resedaeformis[J]. Hydrobiologia, 2002, 471(1): 117-124.
|
23 |
Thresher R E, Neil H. Scale dependence of environmental and physiological correlates of δ18O and δ13C in the magnesium calcite skeletons of bamboo corals (Gorgonacea; Isididae) [J]. Geochimica et Cosmochimica Acta, 2016,187: 260-278.
|
24 |
Rollion-Bard C, Blamart D, J-P Cuif, et al. Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe[J]. Coral Reefs, 2003, 22(4): 405-415.
|
25 |
Lopez Correa M, Montagna P, Joseph N, et al. Preboreal onset of cold-water coral growth beyond the Arctic Circle revealed by coupled radiocarbon and U-series dating and neodymium isotopes[J]. Quaternary Science Reviews, 2012, 34: 24-43.
|
26 |
Rollion-Bard C, J-P Cuif, Blamart D. Optical observations and geochemical data in deep-sea Hexa- and Octo-Coralla Specimens[J]. Minerals, 2017, 7(154). DOI:10. 3390/min7090154.
doi: 10. 3390/min7090154
|
27 |
Grossman E L, T-L Ku. Carbon and oxygen isotopic fractionation in biogenic aragonite-temp effects[J]. Chemical Geology, 1986, 59: 59-74.
|
28 |
Saenger C, Gabitov R I, Farmer J, et al. Linear correlations in bamboo coral δ13C and δ18O sampled by SIMS and micromill: Evaluating paleoceanographic potential and biomineralization mechanisms using δ11B and Δ47 composition[J]. Chemical Geology, 2017. DOI: 10.1016/j.chemgeo.2017.02.014.
doi: 10.1016/j.chemgeo.2017.02.014
|
29 |
Andrews A H, Cailliet G M, Kerr L A, et al. Investigations of age and growth for three deep‐sea corals from the Davidson Seamount off central California[M]// Freiwald A, Roberts J M. Cold Water Corals and Ecosystems. Berlin,Heidelbery: Springer, 2005: 1 021-1 038.
|
30 |
Roark E B, Guilderson T P, Flood‐Page S, et al. Radiocarbon‐based ages and growth rates of bamboo corals from the Gulf of Alaska[J]. Geophysical Research Letters, 2005, 32(4). DOI:10.1029/2004GL021919.
doi: 10.1029/2004GL021919
|
31 |
Noé S U, Lembke‐Jene L, W‐Chr Dullo. Varying growth rates in bamboo corals: Sclerochronology and radiocarbon dating of amid‐Holocene deep‐water gorgonian skeleton (Keratoisis sp.: Octocorallia) from Chatham Rise (New Zealand) [J]. Facies, 2008, 54(2): 151-166.
|
32 |
Blamart D, Rollion-Bard C, J-P Cuif, et al. C and O isotopes in a deep-sea coral (Lophelia pertusa) related to skeletal microstructure[M]//Freiwald P D A, Roberts J M. Cold-water Corals and Ecosystems. Berlin, Heidelberg: Springer, 2005: 1 005-1 020.
|
33 |
Saenger C, Watkins J M. A refined method for calculating paleotemperatures from linear correlations in bamboo coral carbon and oxygen isotopes[J]. Paleoceanography, 2016, 31(6): 789-799.
|
34 |
Watkins J M, Nielsen L C, Ryerson F J, et al. The influence of kinetics on the oxygen isotope composition of calcium carbonate[J]. Earth and Planetary Science Letters, 2013, 375: 349-360.
|
35 |
Watkins J M, Hunt J D, Ryerson F J, et al. The influence of temperature, pH, and growth rate on the δ18O composition of inorganically precipitated calcite[J]. Earth and Planetary Science Letters, 2014, 404:332-343.
|
36 |
Watkins J M, Hunt J D. A process-based model for nonequilibrium clumped isotope effects in carbonates[J]. Earth and Planetary Science Letters, 2015, 432: 152-165.
|
37 |
Ghosh P, Adkins J, Affek H, et al. 13C-18O bonds in carbonate minerals: A new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70(6):1 439-1 456.
|
38 |
Eiler J M. “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 309-327.
|
39 |
Dennis K J. Schrag D P. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 4 110-4 122.
|
40 |
Thiagarajan N, Adkins J, Eiler J. Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects[J]. Geochimica et Cosmochimica Acta, 2011,75(16): 4 416-4 425.
|
41 |
Zaarur S, Olack G, Affek H P. Paleo-environmental implication of clumped isotopes in land snail shells[J]. Geochimica et Cosmochimica Acta, 2011,75(22): 6 859-6 869.
|
42 |
Erez J, Braun A. Calcification in hermatypic corals is based on direct seawater supply to the biomineralization site[C]// Goldschmidt Conference. Cologne, Germany, 2007, 71: 260.
|
43 |
McConnaughey T. Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: Carbonate and kinetic models[J]. Coral Reefs, 2003, 22(4): 316-327.
|
44 |
Zeebe R E. An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes[J]. Geochimica et Cosmochimica Acta, 1999, 63 (13/14): 2 001-2 007.
|
45 |
Zeebe R E. An expression for the overall oxygen isotope fractionation between the sum of dissolved inorganic carbon and water[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9). DOI:10.1029/2007GC001663.
doi: 10.1029/2007GC001663
|
46 |
Spero H J, Bijma J, Lea D W, et al. Effect of seawater carbonate ion concentration on foraminiferal carbon and oxygen isotopes[J]. Nature, 1997, 390(6 659): 497-500.
|
47 |
Romanek C S, Grossman E L, Morse J W. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 419-430.
|
48 |
Zhang J, Quay P D, Wilbur D O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2[J]. Geochimica et Cosmochimica Acta,1995, 59(1): 107-114.
|
49 |
Ogilvie M M. Microscopic and systematic study of madreporarian type of corals[J]. Proceedings of the Royal Society of London (1854-1905), 1895, 59(1: 9-18.
|
50 |
J-P Cuif, Dauphin Y. Microstructural and physicochemical characterization of “centers of calcification” in septa of some recent scleractinian corals[J]. Pal?ontologische Zeitschrift, 1998, 72(3): 257-270.
|
51 |
Meibom A, Yurimoto H, J-P Cuif, et al. Vital effects in coral skeletal composition display strict three-dimensional control[J]. Geophysical Research Letters, 2006, 33(11). DOI:10.1029/2006GL025968.
doi: 10.1029/2006GL025968
|
52 |
Meibom A, J-P Cuif, Houlbreque F, et al. Compositional variations at ultra-structure length scales in coral skeleton[J]. Geochimica et Cosmochimica Acta, 2008, 72(6): 1 555-1 569.
|
53 |
Sinclair D J, Risk M J. A numerical model of trace element coprecpitation in a physicochemical calcification system: Application to coral biomineralization and trace element ‘vital effects’ [J]. Geochimica et Cosmochimica Acta, 2006, 70(15): 3 855-3 866.
|
54 |
Rollion-Bard C, Vigier N, Meibom A, et al. Effect of environmental conditions on the Li isotopic composition of scleractinian corals[J]. Earth and Planetary Science Letters, 2009, 286(1/2): 63-70.
|
55 |
de Villiers S, Shen G T, Nelson B K. The Sr/Ca temperature relationship incoralline aragonite: Influence of variability in (Sr/Ca) seawater and skeletal growth parameters[J]. Geochimica et Cosmochimica Acta, 1994, 58(1):197-208.
|
56 |
Tambutté E, Allemand D, Zoccola D, et al. Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata[J]. Coral Reefs, 2007, 26(3): 517-529.
|
57 |
Clode P L, Marshall A T. Calcium associated with a fibrillar organic matrix in the scleractinian coral Galaxea fascicularis[J]. Protoplasma, 2003, 220(3/4): 153-161.
|
58 |
Addadi L, Raz S, Weiner S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization[J]. ChemInform, 2003, 34(33): 959-970.
|
59 |
Gebauer D, V?lkel A, C?lfen H. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5 909): 1 819-1 822.
|
60 |
Jacob D E, Soldati A L, Wirth R, et al. Nanostructure, composition and mechanisms of bivalve shell growth[J]. Geochimica et Cosmochimica Acta, 2008, 72(22): 5 401-5 415.
|
61 |
Levitus S, Antonov J I, Boyer T P, et al. World ocean heat content and thermosteric sea level change (0-2000m), 1955-2010[J]. Geophysical Research Letters, 2012, 39. DOI:10.1029/2012GL051106.
doi: 10.1029/2012GL051106
|
62 |
Burke A, Robinson L F. The southern ocean's role in carbon exchange during the last deglaciation[J]. Science, 2012, 335(6 068): 557-561.
|
63 |
Chen T, Robinson L F, Burke A, et al. Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation[J]. Science, 2015, 349(6 255): 1 537-1 541.
|
64 |
Mangini A, Lomitschka M, Eichstadter R, et al. Coral provides way to age deep water[J]. Nature, 1998, 392(6 674): 347-348.
|
65 |
Rae J W B, Burke A, Robinson L F, et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales[J]. Nature, 2018, 562(7 728): 569-573.
|
66 |
Adkins J F, Cheng H, Boyle E A, et al. Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago[J]. Science,1998, 280(5 364): 725-728.
|
67 |
Blamart D, Rollion-Bard C, Meibom A, et al. Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: Implications for biomineralization and paleo-pH[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(12). DOI:10.1029/2007GC001686.
doi: 10.1029/2007GC001686
|
68 |
Farmer J R, Hoenisch B, Robinson L F, et al. Effects of seawater-pH and biomineralization on the boron isotopic composition of deep-sea bamboo corals[J]. Geochimica et Cosmochimica Acta, 2015, 155: 86-106.
|
69 |
Rollion-Bard C, Blamart D, Trebosc J, et al. Boron isotopes as pH proxy: A new look at boron speciation in deep-sea corals using B-11 MAS NMR and EELS[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1 003-1 012.
|