地球科学进展 ›› 2019, Vol. 34 ›› Issue (12): 1252 -1261. doi: 10.11867/j.issn.1001-8166.2019.12.1252

所属专题: 深海科学研究专刊

深水珊瑚研究进展 上一篇    下一篇

冷水珊瑚氧、碳同位素—古水温重建与钙化机制
孔乐( ),黄恩清( ),田军   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2019-10-20 修回日期:2019-11-30 出版日期:2019-12-10
  • 通讯作者: 黄恩清 E-mail:kongleet@163.com;ehuang@tongji.edu.cn
  • 基金资助:
    同济大学海洋地质国家重点实验室自主项目(MG20190101);国家自然科学基金杰出青年科学基金项目“古海洋”(41525020)

Oxygen and Carbon Isotopes of Cold-water CoralsReconstructing Paleotemperature Changes and Calcification Mechanism

Le Kong( ),Enqing Huang( ),Jun Tian   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2019-10-20 Revised:2019-11-30 Online:2019-12-10 Published:2020-02-12
  • Contact: Enqing Huang E-mail:kongleet@163.com;ehuang@tongji.edu.cn

冷水珊瑚是开展中—深层海水高分辨率古海洋学研究的理想载体。不同于浅水珊瑚,冷水珊瑚受到生命效应的强烈影响,其δ18O亏损4‰~6‰,δ13C亏损约10‰,因此利用冷水珊瑚氧、碳同位素恢复古水温时需要校正。综述了利用冷水珊瑚氧、碳同位素重建中—深层海水古温度的原理和方法,以及现有的3种冷水珊瑚钙化模型及优缺点。提出需要进行进一步的微区分析及针对性实验来阐明冷水珊瑚的钙化过程。

Cold-water corals represent an intriguing paleoceanographic archive with a great potential to reconstruct high-resolution paleoenvironmental changes. Compared to those of shallow-water corals, proxies derived from cold-water corals have been complicated by biologically mediated vital effects. The oxygen and carbon stable isotope compositions of cold-water coral skeletons are more depleted than the expected carbonate-seawater equilibrium values by 4‰~6‰ and about 10‰, respectively. Therefore, it is necessary to correct for the vital effects before using δ18O as a temperature proxy. The principles and methods of reconstructing paleotemperature variations of intermediate and deep oceans using oxygen and carbon isotopes of cold-water corals are reviewed, as well as three existing cold-water coral calcification models and their advantages and disadvantages. It is suggested that further micro-scales analysis and targeted experiments are required to clarify the calcification processes of cold-water corals.

中图分类号: 

图1 竹节柳珊瑚氧、碳同位素关系图[ 14 , 15 , 23 , 24 , 25 , 26 ]
δ 18O 冷水珊瑚18O 海水、δ 13C 冷水珊瑚13C 海水代表珊瑚氧、碳同位素与海水同位素的差值,橘黄色虚线表示δ 13C 冷水珊瑚13C 海水=0时的δ 18O轴
Fig.1 δ13C versus δ18O in bamboo corals[ 14 , 15 , 23 , 24 , 25 , 26 ]
δ 18O cold-water coral18O seawater,δ 13C cold-water cora13C seawater: δ 18O and δ 13C values are adjusted for local δ 18O seawater and δ 13C seawater values; The orange dashed line indicates δ 18O axis at δ 13C cold-water coral 13C seawater=0
图2 δ18O截距值与温度之间的拟合关系[ 13 , 14 , 15 ]
(a)石珊瑚δ 18O与温度间的拟合关系;(b)竹节柳珊瑚δ 18O与温度间的拟合关系
Fig.2 δ18O-temperature regressions from cold-water corals with 95% confidence intervals[ 13 , 14 , 15 ]
(a) δ 18O-temperature regression for scleractinian corals;(b) δ 18O-temperature regression for bamboo corals
表1 同位素随机分布时 CO3CO2各同位素体的丰度 [ 37 ]
Table 1 Abundances of isotopologues of CO3 andCO2, assuming a stochastic distribution of isotopes [ 37 ]
图3 pH驱动冷水珊瑚钙化模型示意图[ 17 , 18 ]
骨骼与细胞膜之间存在钙化空间,碳酸钙在胞外钙化液中生成
Fig.3 pH model schematic diagram of cold-water coral calcifying processes[ 17 , 18 ]
There is a calcification space between coral skeletons and the cell membrane, and calcium carbonate is generated
in the Extracytoplasmic Calcifying Fluid (ECF)
图4 冷水珊瑚动力学分馏模型示意图[ 9 ]
Fig.4 Kinetic fractionation model of cold-water coral calcification[ 9 ]
图5 冷水珊瑚无定形碳酸钙模型示意图[ 20 ]
EMZ表示“早期钙化区”; ACC表示“无定形碳酸钙”
Fig.5 ACC model of cold-water coral calcification[ 20 ]
EMZ: Early Mineralization Zone; ACC: Amorphous Calcium Carbonates
1 Chen X, K-K Tung. Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science, 2014, 345(6 199):897-903.
2 S-K Lee, Park W, Baringer M O, et al. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus[J]. Nature Geoscience, 2015, 8(6): 445-449.
3 Thiagarajan N, Subhas A V, Southon J R, et al. Abrupt pre-Bolling-Allerod warming and circulation changes in the deep ocean[J]. Nature, 2014, 511(7 507): 75-78.
4 McCrea J M. On the isotopic chemistry of carbonates and a paleotemperature scale[J]. The Journal of Chemical Physics, 1950, 18(6): 849-857.
5 Epstein S, Buchsbaum R, Lowenstam H A, et al. Revised carbonate-water isotopic temperature scale[J]. Geological Society of America Bulletin, 1953, 64(11): 1 315-1 326.
6 Roberts J M, Wheeler A J, Freiwald A. Reefs of the deep: The biology and geology of cold-water coral ecosystems[J]. Science, 2006, 312(5 773): 543-547.
7 Robinson L F, Adkins J F, Scheirer D S, et al. Deep-sea scleractinian coral age and depth distributions in the WN Atlantic for the last 225 thousand years[J]. Bulletin of Marine Science, 2007, 81(3): 371-391.
8 Thiagarajan N, Gerlach D, Roberts M L, et al. Movement of deep-sea coral populations on climatic timescales[J]. Paleoceanography, 2013,28(2): 227-236.
9 Spooner P T, Guo W, Robinson L F, et al. Clumped isotope composition of cold-water corals: A role for vital effects?[J]. Geochimica et Cosmochimica Acta, 2016, 179:123-141.
10 Case D L, Robinson L F, Auro M E, et al. Environmental and biological controls on Mg and Li in deep-sea scleractinian corals[J]. Earth and Planetary Science Letters, 2010, 300(3/4): 215-225.
11 Bryan S P, Marchitto T M. Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li[J]. Paleoceanography, 2008, 23. DOI:10.1029/2007PA001553.
doi: 10.1029/2007PA001553    
12 Gagnon A, Adkins J F, Fernandez D P, et al. Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian Deep-Sea coral and the role of Rayleigh fractionation[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 280-295.
13 Smith J E, Schwarcz H P, Risk M J, et al. Paleotemperatures from deep-sea corals: Overcoming ‘vital effects’[J]. Palaios, 2000, 15(1): 25-32.
14 Hill T M, Spero H J, Guilderson T, et al. Temperature and vital effect controls on bamboo coral (Isididae) isotope geochemistry: A test of the ‘lines method’ [J]. Geochemistry, Geophysics, Geosystems, 2011, 12. DOI:10.1029/2010G C003443.
doi: 10.1029/2010G C003443    
15 Kimball J B, Dunbar R B, Guilderson T P. Oxygen and carbon isotope fractionation in calcitic deep-sea corals: Implications for paleotemperature reconstruction[J]. Chemical Geology, 2014, 381: 223-233.
16 Emiliani C, Hudson J H, Shinn E A, et al. Oxygen and carbon isotopic growth records in a reef coral from Florida Keys and a deep-sea coral from Blake Plateau[J]. Science, 1978, 202(4 368): 627-629.
17 McConnaughey T. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects[J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 163-171.
18 Adkins J, Boyle E A, Curry W B, et al. Stable isotopes in deep-sea corals and a new mechanism for ‘vital effects’[J]. Geochimica et Cosmochimica Acta, 2003, 67(6): 1 129-1 143.
19 Robinson L F, Adkins J F, Frank N, et al. The geochemistry of deep-sea coral skeletons: A review of vital effects and applications for paleoceanography[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2014, 99:184-198.
20 Rollion-Bard C, Blamart D, J-P Cuif, et al. In situ measurements of oxygen isotopic composition in deep-sea coral, Lophelia pertusa: Re-examination of the current geochemical models of biomineralization[J]. Geochimica et Cosmochimica Acta, 2010,74(4):1 338-1 349.
21 Marali S, Wisshak M, Lopez C M, et al. Skeletal microstructure and stable isotope signature of three bathyal solitary cold-water corals from the Azores[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 373: 25-38.
22 Heikoop J M, Hickmott D D, Risk M J, et al. Potential climate signals from the deep-sea gorgonian coral Primnoa resedaeformis[J]. Hydrobiologia, 2002, 471(1): 117-124.
23 Thresher R E, Neil H. Scale dependence of environmental and physiological correlates of δ18O and δ13C in the magnesium calcite skeletons of bamboo corals (Gorgonacea; Isididae) [J]. Geochimica et Cosmochimica Acta, 2016,187: 260-278.
24 Rollion-Bard C, Blamart D, J-P Cuif, et al. Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe[J]. Coral Reefs, 2003, 22(4): 405-415.
25 Lopez Correa M, Montagna P, Joseph N, et al. Preboreal onset of cold-water coral growth beyond the Arctic Circle revealed by coupled radiocarbon and U-series dating and neodymium isotopes[J]. Quaternary Science Reviews, 2012, 34: 24-43.
26 Rollion-Bard C, J-P Cuif, Blamart D. Optical observations and geochemical data in deep-sea Hexa- and Octo-Coralla Specimens[J]. Minerals, 2017, 7(154). DOI:10. 3390/min7090154.
doi: 10. 3390/min7090154    
27 Grossman E L, T-L Ku. Carbon and oxygen isotopic fractionation in biogenic aragonite-temp effects[J]. Chemical Geology, 1986, 59: 59-74.
28 Saenger C, Gabitov R I, Farmer J, et al. Linear correlations in bamboo coral δ13C and δ18O sampled by SIMS and micromill: Evaluating paleoceanographic potential and biomineralization mechanisms using δ11B and Δ47 composition[J]. Chemical Geology, 2017. DOI: 10.1016/j.chemgeo.2017.02.014.
doi: 10.1016/j.chemgeo.2017.02.014    
29 Andrews A H, Cailliet G M, Kerr L A, et al. Investigations of age and growth for three deep‐sea corals from the Davidson Seamount off central California[M]// Freiwald A, Roberts J M. Cold Water Corals and Ecosystems. Berlin,Heidelbery: Springer, 2005: 1 021-1 038.
30 Roark E B, Guilderson T P, Flood‐Page S, et al. Radiocarbon‐based ages and growth rates of bamboo corals from the Gulf of Alaska[J]. Geophysical Research Letters, 2005, 32(4). DOI:10.1029/2004GL021919.
doi: 10.1029/2004GL021919    
31 Noé S U, Lembke‐Jene L, W‐Chr Dullo. Varying growth rates in bamboo corals: Sclerochronology and radiocarbon dating of amid‐Holocene deep‐water gorgonian skeleton (Keratoisis sp.: Octocorallia) from Chatham Rise (New Zealand) [J]. Facies, 2008, 54(2): 151-166.
32 Blamart D, Rollion-Bard C, J-P Cuif, et al. C and O isotopes in a deep-sea coral (Lophelia pertusa) related to skeletal microstructure[M]//Freiwald P D A, Roberts J M. Cold-water Corals and Ecosystems. Berlin, Heidelberg: Springer, 2005: 1 005-1 020.
33 Saenger C, Watkins J M. A refined method for calculating paleotemperatures from linear correlations in bamboo coral carbon and oxygen isotopes[J]. Paleoceanography, 2016, 31(6): 789-799.
34 Watkins J M, Nielsen L C, Ryerson F J, et al. The influence of kinetics on the oxygen isotope composition of calcium carbonate[J]. Earth and Planetary Science Letters, 2013, 375: 349-360.
35 Watkins J M, Hunt J D, Ryerson F J, et al. The influence of temperature, pH, and growth rate on the δ18O composition of inorganically precipitated calcite[J]. Earth and Planetary Science Letters, 2014, 404:332-343.
36 Watkins J M, Hunt J D. A process-based model for nonequilibrium clumped isotope effects in carbonates[J]. Earth and Planetary Science Letters, 2015, 432: 152-165.
37 Ghosh P, Adkins J, Affek H, et al. 13C-18O bonds in carbonate minerals: A new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70(6):1 439-1 456.
38 Eiler J M. “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 309-327.
39 Dennis K J. Schrag D P. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 4 110-4 122.
40 Thiagarajan N, Adkins J, Eiler J. Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects[J]. Geochimica et Cosmochimica Acta, 2011,75(16): 4 416-4 425.
41 Zaarur S, Olack G, Affek H P. Paleo-environmental implication of clumped isotopes in land snail shells[J]. Geochimica et Cosmochimica Acta, 2011,75(22): 6 859-6 869.
42 Erez J, Braun A. Calcification in hermatypic corals is based on direct seawater supply to the biomineralization site[C]// Goldschmidt Conference. Cologne, Germany, 2007, 71: 260.
43 McConnaughey T. Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: Carbonate and kinetic models[J]. Coral Reefs, 2003, 22(4): 316-327.
44 Zeebe R E. An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes[J]. Geochimica et Cosmochimica Acta, 1999, 63 (13/14): 2 001-2 007.
45 Zeebe R E. An expression for the overall oxygen isotope fractionation between the sum of dissolved inorganic carbon and water[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9). DOI:10.1029/2007GC001663.
doi: 10.1029/2007GC001663    
46 Spero H J, Bijma J, Lea D W, et al. Effect of seawater carbonate ion concentration on foraminiferal carbon and oxygen isotopes[J]. Nature, 1997, 390(6 659): 497-500.
47 Romanek C S, Grossman E L, Morse J W. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 419-430.
48 Zhang J, Quay P D, Wilbur D O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2[J]. Geochimica et Cosmochimica Acta,1995, 59(1): 107-114.
49 Ogilvie M M. Microscopic and systematic study of madreporarian type of corals[J]. Proceedings of the Royal Society of London (1854-1905), 1895, 59(1: 9-18.
50 J-P Cuif, Dauphin Y. Microstructural and physicochemical characterization of “centers of calcification” in septa of some recent scleractinian corals[J]. Pal?ontologische Zeitschrift, 1998, 72(3): 257-270.
51 Meibom A, Yurimoto H, J-P Cuif, et al. Vital effects in coral skeletal composition display strict three-dimensional control[J]. Geophysical Research Letters, 2006, 33(11). DOI:10.1029/2006GL025968.
doi: 10.1029/2006GL025968    
52 Meibom A, J-P Cuif, Houlbreque F, et al. Compositional variations at ultra-structure length scales in coral skeleton[J]. Geochimica et Cosmochimica Acta, 2008, 72(6): 1 555-1 569.
53 Sinclair D J, Risk M J. A numerical model of trace element coprecpitation in a physicochemical calcification system: Application to coral biomineralization and trace element ‘vital effects’ [J]. Geochimica et Cosmochimica Acta, 2006, 70(15): 3 855-3 866.
54 Rollion-Bard C, Vigier N, Meibom A, et al. Effect of environmental conditions on the Li isotopic composition of scleractinian corals[J]. Earth and Planetary Science Letters, 2009, 286(1/2): 63-70.
55 de Villiers S, Shen G T, Nelson B K. The Sr/Ca temperature relationship incoralline aragonite: Influence of variability in (Sr/Ca) seawater and skeletal growth parameters[J]. Geochimica et Cosmochimica Acta, 1994, 58(1):197-208.
56 Tambutté E, Allemand D, Zoccola D, et al. Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata[J]. Coral Reefs, 2007, 26(3): 517-529.
57 Clode P L, Marshall A T. Calcium associated with a fibrillar organic matrix in the scleractinian coral Galaxea fascicularis[J]. Protoplasma, 2003, 220(3/4): 153-161.
58 Addadi L, Raz S, Weiner S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization[J]. ChemInform, 2003, 34(33): 959-970.
59 Gebauer D, V?lkel A, C?lfen H. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5 909): 1 819-1 822.
60 Jacob D E, Soldati A L, Wirth R, et al. Nanostructure, composition and mechanisms of bivalve shell growth[J]. Geochimica et Cosmochimica Acta, 2008, 72(22): 5 401-5 415.
61 Levitus S, Antonov J I, Boyer T P, et al. World ocean heat content and thermosteric sea level change (0-2000m), 1955-2010[J]. Geophysical Research Letters, 2012, 39. DOI:10.1029/2012GL051106.
doi: 10.1029/2012GL051106    
62 Burke A, Robinson L F. The southern ocean's role in carbon exchange during the last deglaciation[J]. Science, 2012, 335(6 068): 557-561.
63 Chen T, Robinson L F, Burke A, et al. Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation[J]. Science, 2015, 349(6 255): 1 537-1 541.
64 Mangini A, Lomitschka M, Eichstadter R, et al. Coral provides way to age deep water[J]. Nature, 1998, 392(6 674): 347-348.
65 Rae J W B, Burke A, Robinson L F, et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales[J]. Nature, 2018, 562(7 728): 569-573.
66 Adkins J F, Cheng H, Boyle E A, et al. Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago[J]. Science,1998, 280(5 364): 725-728.
67 Blamart D, Rollion-Bard C, Meibom A, et al. Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: Implications for biomineralization and paleo-pH[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(12). DOI:10.1029/2007GC001686.
doi: 10.1029/2007GC001686    
68 Farmer J R, Hoenisch B, Robinson L F, et al. Effects of seawater-pH and biomineralization on the boron isotopic composition of deep-sea bamboo corals[J]. Geochimica et Cosmochimica Acta, 2015, 155: 86-106.
69 Rollion-Bard C, Blamart D, Trebosc J, et al. Boron isotopes as pH proxy: A new look at boron speciation in deep-sea corals using B-11 MAS NMR and EELS[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1 003-1 012.
[1] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[2] 李祥辉,陈云华,徐宝亮,AkihiroKano,ChizuruTakashima. 新生代深海冷水碳酸盐泥丘成因及IODP 307航次初步研究结果[J]. 地球科学进展, 2007, 22(7): 666-672.
阅读次数
全文


摘要