地球科学进展 ›› 2019, Vol. 34 ›› Issue (12): 1262 -1272. doi: 10.11867/j.issn.1001-8166.2019.12.1262

所属专题: 深海科学研究专刊

深水珊瑚研究进展 上一篇    下一篇

重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法
党皓文 1( ),马小林 2,杨策 1,金海燕 1,翦知湣 1   
  1. 1.同济大学海洋地质国家重点实验室, 上海 200092
    2.中国科学院地球环境研究所黄土与 第四纪地质国家重点实验室, 陕西 西安 710061
  • 收稿日期:2019-10-31 修回日期:2019-11-12 出版日期:2019-12-10
  • 基金资助:
    同济大学海洋地质国家重点实验室探索课题“探索冷水珊瑚的高分辨率古环境重建意义”(MG20190101);国家自然科学基金项目“全新世ENSO和沃克环流的演变”(91958208)

Reconstructing High-resolution Deep-sea Environmental Change: Inorganic Geochemical Proxy Methods of Cold-water Bamboo Corals

Haowen Dang 1( ),Xiaolin Ma 2,Ce Yang 1,Haiyan Jin 1,Zhimin Jian 1   

  1. 1.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092,China
    2.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061,China
  • Received:2019-10-31 Revised:2019-11-12 Online:2019-12-10 Published:2020-02-12
  • About author:Dang Haowen (1985-), male, Xi’an City, Shaanxi Province, Associate professor. Research areas include marine geology and paleoceanography. E-mail: hwdang@tongji.edu.cn
  • Supported by:
    the Discovery Project of the State Key Laboratory of Marine Geology, Tongji University “Exploring the high-resolution paleoenvironmental reconstruction of cold-water corals”(MG20190101);The National Natural Science Foundation of China “Holocene evolution of ENSO and Walker Circulation”(91958208)

广泛分布于海洋深部的竹节珊瑚,以其碳酸钙和蛋白质相间的“竹节状”骨骼而得名,且横向上具有“树轮状”生长纹层。利用竹节珊瑚进行古海洋学再造,可以填补传统方法在时间和空间上的空缺。着重介绍竹节珊瑚的无机地球化学指标方法,包括Mg/Ca温度计、Ba/Ca营养物浓度计和δ11B-pH计,并简要描述了生命效应的潜在影响。最近在西太平洋海域新发现的深海竹节珊瑚林,开拓了竹节珊瑚古海洋学研究的新领域。

The cold-water bamboo coral, dwelling in the depths of global seas, is characterized by the “bamboo-like” skeletal structure of alternating calcite internodes and gorgonin nodes, and has “tree-ring-like” concentric growth rings transversally. Paleoceanograhic reconstructions using bamboo coals would fill the geographic and temporal gaps of traditional means. In this work, the inorganic geochemical proxy methods for bamboo coral are introduced, including Mg/Ca for ambient temperature, Ba/Ca for seawater nutrient content, and δ11B for seawater pH. Also, the potential influences of vital effect on the proxy reconstructions are briefly discussed. With the recent findings of deep-sea bamboo coral forests in the western Pacific region, a new territory of bamboo coral paleoceanography is opened for the scientists from the nearby countries.

中图分类号: 

图1 新西兰查塔姆海丘的活体竹节柳珊瑚(Isidid gorgonian)及竹节珊瑚生长模式
(a) 活体柳珊瑚局部,可见棕红色活体组织(coenenchyme)、黑色软蛋白质节 (slimes)及灰白色碳酸钙骨骼(skeleton);(b) 去除有机质机体组织后裸露的柳珊瑚骨骼,可见3种分枝形式(主干: main branch, 等价分枝: equivalent branch和非等价分枝: unequivalent branch) 和分枝芽体 (bud),及碳酸钙节间 (internode)和蛋白质节 (node)构成的竹节状形态特征 ;(c) 竹节珊瑚 ( Keratoisis为例) 垂向和横向的生长模式示意图(6阶生长期):(1) 横向上每一层新的生长层包覆骨骼整体、个体基部为最厚;(2) 垂向上,枝体的生长层分布模式取决于分枝类型 (A: 等价分枝, B: 非等价分枝);据参考文献[ 3 ]修改
Fig.1 Live-collected bamboo corals (Isidid gorgonian) from Chatham Rise, New Zealand and the growth model of bamboo coral
(a) Part of a living bamboo coral colony with reddishzucheng coenenchyma, black gorgonian slimes and white carbonate skeleton; (b) Skeletal fragment of the colony after removal of organic tissue exhibiting three branching types (main, equivalent and unequivalent branches) and the bud, and also the characteristics resembling a bamboo built by carbonate internodes and gorgonian nodes; (c) Sketches of the longitudinal and transversal growth modes of a bamboo coral ( Keratoisis) showing incremental growth in six stages. A = equivalent branch; B = unequivalent branch which ceased growth during stage IV; Modified after reference [ 3 ]
图2 加拿大新斯科舍岸外竹节珊瑚Primnoa resedaeformis (于2001年活体采集)蛋白质节的横断面(a)和14C定年结果(b)
(a) 白色中心为钙质中轴,外围环带为角质生长环,数字示生长环编号(自外缘起),括号内数字示日历年份;(b) 珊瑚样品的Δ 14C分析数据(较大标记)和样条拟合结果(黑色粗线),及与邻近水域报导的海洋圆蛤( A. islandicaM. aeglefinus) Δ 14C结果的对比(较小标记), 横轴示纹层年龄(year of ring count);据参考文献[ 12 ]修改
Fig.2 A bamboo coral (Primnoa resedaeformis) from Nova Scotia, Canada (collected live in 2001) showing its transversal section on proteinaceous gorgonian node (a) and the 14C dating results along the radial growth direction (b)
(a) The transversal section showing calcite axis (white core), horny growth rings (outer banded sections) with markings denoting individual rings, and the corresponding calendar age in parentheses;(b) Primnoa resedaeformis Δ 14C vs. age (large marks) and their spline fit (thick black line), comparing with data for Arctica islandica and Melanogrammus aeglefinus otoliths (smaller marks) collected nearby; Modified after reference [ 12 ]
图3 阿拉斯加湾竹节珊瑚 (Isididae科)碳酸钙骨骼和蛋白质节的测年结果
(a) 碳酸钙(白色骨骼,黑色圆点标记)和蛋白质(深色骨节,黑色方块标记)采样横截面位置示意;(b) 碳酸钙(黑色圆点标记)和蛋白质(黑色方块标记)横截面上的 14C测年结果,横轴示采样点距轴心距离(distance, mm),图中数字示日历年,由蛋白质节 14C曲线对比表层海水Δ 14C变化推定;据参考文献[ 16 ]修改
Fig.3 Dating results of a bamboo coral (family Isididae) from the Gulf of Alaska
(a) Photo showing the carbonate (white skeleton, marked by circle) and gorgonian (dark node, marked by square) and the sampling transversal sections; (b) 14C dating results of carbonate (circle) and gorgonin (square) along the radial transects on the transversal sections, Distance (mm) measures from the sampling position to the axis, labeled dates denote the calendar age determined by comparison of the bomb- 14C curve in the gorgonian section to a surface water Δ 14C time series and collection date; Modified after reference [ 16 ]
图4 热带西太平洋到南大洋竹节珊瑚 (Isididae科)碳酸钙骨骼的Mg/CaBa/Ca值与环境参数的关系
(a) Mg/Ca—温度(ambient temperature)相关关系,(b) Ba/Ca—硅酸盐浓度(ambient silicate)相关关系;数据来自4种竹节珊瑚类群,见(a)中图注标示;据参考文献[ 29 ]修改
Fig.4 Relationships of environmental parameters with Mg/Ca and Ba/Ca in the carbonate skeleton of bamboo corals (Isididae) over the tropical western Pacific to the Southern Ocean
Predictive regressions of Mg/Ca-temperature (a) and Ba/Ca-silicate (b) for bamboo coral (family Isididae) carbonate skeletons from a large geographic range from the tropical west Pacific to the Southern Oceans. Date collected from four taxa of family Isididae, showing in (a); Modified after reference [ 29 ]
图5 竹节珊瑚(Keratoisis)的硼同位素测试结果和分析
(a) 测试采样点,黄色箭头示竖向生长方向(longitudinal growth direction); (b)~(d) 依次示对应的硼(δ 11B)、碳(δ 13C)和氧(δ 18O)同位素测试结果; (e) 竹节珊瑚δ 11B (空心菱形)与冷水石珊瑚 (实心菱形)、其他海洋碳酸盐(其他标记)的比较,黑色粗实线示基于假定硼酸表观电离常数(pK B=8.78)和实测的水中硼分馏系数的海水硼酸根δ 11B随pH的变化; (f) 竹节珊瑚δ 11B推算的pH与海水pH的差值(ΔpH)在太平洋(方解石饱和度Ω ca=0.9)和大西洋(Ω ca=1.8)之间的横向比较,硼分馏系数和温度分别取α B=1.0272 (25 °C)和温度校正α B=1.0290 (3.3 °C),绿色圆点示外围生长环、橙色方块示生长轴心样品结果;改绘自参考文献[ 33 ]
Fig.5 Boron isotope analyses and results on a bamboo coral (Keratoisis)
(a) Location of samples on the skeleton, with yellow arrow showing the longitudinal growth direction; (b)~(d) The results of δ 11B (B), δ 13C (c) and δ 18O (d) analyses; (e) The δ 11B vs. pH of bamboo corals (open diamonds) and comparisons with data of cold-water scleractinian corals (filled diamonds) and other kinds of marine carbonate (other symbols), solid curve shows the δ 11B of borate anion in seawater at representative deep-ocean pK B=8.78 as a function of pH based on the measured aqueous boron fractionation factor; (f) ΔpH (difference between pH app and pH sw, pH app: coral-δ 11B calculated apparent pH, pH sw: seawater pH) for Pacific specimen (Ω calcite=0.92) and Atlantic specimen (Ω calcite=1.78), as calculated using α B=1.0272 (25 °C) and temperature-corrected α B=1.0290 (3.3 °C), green circles from radial thickening and orange square from the central axis; Modified after reference [ 33 ]
图6 竹节珊瑚(Keratoisis grayi, 采自佛罗里达岸外)横截面的电子探针扫描结果(a~c)及扇形高Mg/Ca异常点的概念性解释(d~g)
(a) 横截面Mg/Ca扫描结果总览,可见环状生长纹及近中轴处的Mg/Ca高值异常区;(b) 沿单一径向的Mg/Ca高分辨率扫描结果,可见Mg富集的环带和异常点;(c) 去除局部异常之后的平均Mg/Ca值序列(沿B所示生长径向),及据文献换算式 [ 29 ]估算的温度(右侧纵轴示, temperature),蓝色水平粗线示采样区域近年平均水温;(d) 成纤维细胞附着于骨骼上;(e) 成纤维细胞周围形成方解石结晶并造成骨骼生长;(f) 成纤维细胞脱离后在骨骼上遗留扇形空洞;(g) 高Mg方解石填充空洞同时成纤维细胞附着于邻近位置;下方扫描电镜照片示遗留和填充空洞的观测结构 (白色标尺长10 μm),em: 细胞外基质,lf: 长纤维,bl: 基底有机质层;据参考文献[ 46 ]修改
Fig.6 Electron Microprobe scan of a section of bamboo coral (Keratoisis grayi) from offshore Florida (a~c), and a schematic explanation for the fan-shaped Mg/Ca anomalies seen after sample etching (d~g)
(a) Mg/Ca overview scan showing ring-structure and high Mg/Ca anomalies around the central axis; (b) High-resolution scan along a growth radial showing concentric growth rings and elevated-Mg/Ca spots; (c) Average Mg/Ca along B after removal of local enrichments, temperature estimated using the calibration from reference [ 29 ], recent mean temperature at the sampling region is denoted by the horizontal blue bar; (d) Desmocyte attaches to the skeleton; (e) Calcification around the desmocyte; (f) An empty fan-shaped pit remains after detachment of the desmocyte; (g) High-Mg calcite fills the pit while a desmocyte attaches to a nearby site. The scanning electron microscopic pictures below show the observed structures of the empty and filled pits (white bar=10 μm), em: Extracellular matrix, lf: Long fibres, bl: Basal organic layer; Modified after reference [ 46 ]
1 Prouty N G, Roark E B, Andrews A H, et al. Age, rates growth, and paleoclimate studies in deep‐sea corals of the United States[M]//Hourigan T F, Etnoyer P J, Cairns S D. The State of Deep‐Sea Coral and Sponge Ecosystems of the United States. NOAA Technical Memorandum NMFS‐OHC‐4, Silver Spring, MD. 2017: 22.
2 Cairns S D, Gerhswin L A, Brook F, et al. Cnidaria Phylum; corals, medusae, hydroids, myxozoa[M]// Dennis P G. Kingdom Animalia: Radiata, Lophotrochozoa,Deuterostomia. New Zealand Inventory of Biodiversity. Volume1. Christchurch: Canterbury University Press,2009.
3 Noé S, W-C Dullo. Skeletal morphogenesis and growth mode of modern and fossil deep-water isidid gorgonians (Octocorallia) in the West Pacific (New Zealand and Sea of Okhotsk) [J]. Coral Reefs, 2006, 25(3): 303-320.
4 Pérez C D, de Moura Neves B, Cordeiro R T, et al. Diversity and distribution of Octocorallia[M]// Goffredo S, Dubinsky Z. The Cnidaria, Past, Present and Future. Cham, Switzerland: Springer International Publishing, 2016:109-123.
5 Wang Pinxian. Deep-sea coral forest [J]. Advances in Earth Science, 2019,34(12):1 222-1 242.
汪品先. 深水珊瑚林[J]. 地球科学进展, 2019,34(12):1 222-1 242.
6 Zou R, Huang B, Wang X. Studies on the Gorgonians of China—Ⅰ. Isis with one new species [J]. Acta Oceanologica Sinica, 1991, 10(4): 593-602.
7 Huang Hui, Li Xiubao, He Jianguo, et al. Species diversity and distribution of gorgonian at Xuwen, Zhanjiang,Guangdong Province[J]. Journal of Tropical Oceanography, 2007, 26(1): 60-67.
黄晖, 李秀保, 何建国, 等. 湛江徐闻西海岸柳珊瑚的物种多样性和分布研究[J]. 热带海洋学报, 2007, 26(1): 60-67.
8 Huang Hui, Li Xiubao, Lian Jiansheng, et al. Species diversity and distribution of gorgonian (Cnidaria, Anthozoa, Octocoral) in Xiamen Bay and Dongshan Bay, Fujian [J]. Journal of Oceanography in Taiwan Strait, 2007, 26(1): 92-98.
黄晖, 李秀保, 练健生, 等. 福建厦门湾和东山湾海域柳珊瑚的物种多样性及其分布[J]. 台湾海峡, 2007, 26(1): 92-98.
9 Li Xiubao, Huang Hui, Lian Jiansheng, et al. Diversity and spatial distribution of gorgonian coral in Dongshan Coastal waters in Fujian, China [J]. Journal of Oceanography in Taiwan Strait, 2011, 30(1): 92-96.
李秀保, 黄晖, 练健生, 等. 福建东山海域柳珊瑚种类空间分布与多样性[J]. 台湾海峡, 2011, 30(1): 92-96.
10 Huang Hui, He Jianguo, Li Xiubao, et al. Molecular phylogeny of gorgonian [J]. Marine Science Bulletin, 2005, 24(2), 63-78.
黄晖, 何建国, 李秀保, 等. 柳珊瑚分子系统发育学的研究进展[J]. 海洋通报, 2005, 24(2): 63-78.
11 Li J, Wang P. Discovery of deep-water bamboo coral forest in the South China Sea[J]. Scientific Reports, 2019, 9(1):1-5.
12 Sherwood O A, Scott D B, Risk M J, et al. Radiocarbon evidence for annual growth rings in the deep-sea octocoral Primnoa resedaeformis[J]. Marine Ecology Progress Series, 2005, 301: 129-134.
13 Sherwood O A, Edinger E N. Ages and growth rates of some deep-sea gorgonian and antipatharian corals of Newfoundland and Labrador[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66(1): 142-152.
14 Roark E B, Guilderson T P, Dunbar R B, et al. Extreme longevity in proteinaceous deep-sea corals[J]. PNAS, 2009, 106(13): 5 204-5 208.
15 Thresher R E, MacRae C M, Wilson N C, et al. Feasibility of age determination of deep-water bamboo corals (Gorgonacea; Isididae) from annual cycles in skeletal composition[J]. Deep-Sea Research I:Oceanographic Research Papers, 2009, 56(3): 442-449.
16 Roark E B, Guilderson T P, Flood-Page S, et al. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska[J]. Geophysical Research Letters, 2005, 32(4). DOI:10.1029/2004GL021919.
doi: 10.1029/2004GL021919    
17 Sherwood O A, Heikoop J M, Scott D B, et al. Stable isotopic composition of deep-sea gorgonian corals Primnoa spp.: A new archive of surface processes[J]. Marine Ecology Progress Series, 2005, 301: 135-148.
18 Thresher R, Rintoul S R, Koslow J A, et al. Oceanic evidence of climate change in southern Australia over the last three centuries[J]. Geophysical Research Letters, 2004, 31(7). DOI: 10.1029/2003GL018869.
doi: 10.1029/2003GL018869    
19 Hill T M, Lavigne M, Spero H J, et al. Variations in seawater Sr/Ca recorded in deep-sea bamboo corals[J]. Paleoceanography, 2012, 27(3). DOI:10.1029/2011PA002260.
doi: 10.1029/2011PA002260    
20 Tracey D M, Neil H, Marriott P, et al. Age and growth of two genera of deep-sea bamboo corals (family Isididae) in New Zealand waters[J]. Bulletin of Marine Science, 2007, 81: 393-408.
21 Cheng H, Adkins J, Edwards R L, et al. U-Th dating of deep-sea corals[J]. Geochimica et Cosmochimica Acta, 2000, 64(4): 2 401-2 416.
22 Sherwood O A, Scott D B, Risk M J. Late Holocene radiocarbon and aspartic acid racemization dating of deep-sea octocorals[J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2 806-2 814.
23 Miller G H, Kaufman D S, Clarke S J. Amino acid dating[M]// Scott A E,Cary J M. Encyclopedia of Quaternary Science: Second Edition. Oxford: Elsevier Inc., 2013: 37-48.
24 Huang Enqing, Kong Le, Tian Jun. Dating methods of cold-water corals and their application in reconstructing carbon-reservoir ages of intermediate and deep oceans[J]. Advances in Earth Science, 2019,34(12):1 243-1 251.
黄恩清, 孔乐, 田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019,34(12):1 243-1 251.
25 Frenkel M M, LaVigne M, Miller H R, et al. Quantifying bamboo coral growth rate nonlinearity with the radiocarbon bomb spike: A new model for paleoceanographic chronology development[J]. Deep Sea Research I: Oceanographic Research Papers, 2017, 125: 26-39.
26 Griffin S, Druffel E R M. Sources of carbon to deep-sea corals[J]. Radiocarbon, 1989, 31(3): 533-543.
27 Farmer J R, Robison L F, H?nisch B. Growth rate determinations from radiocarbon in bamboo corals (genus Keratoisis) [J]. Deep Sea Research I: Oceanographic Research Papers, 2015, 105: 26-40.
28 Thresher R E, MacRae C M, Wilson N C, et al. Feasibility of age determination of deep-water bamboo corals (Gorgonacea; Isididae) from annual cycles in skeletal composition[J]. Deep-Sea Research I: Oceanographic Research Papers, 2009, 56: 442-449.
29 Thresher R E, Fallon S J, Townsend A T. A "core-top" screen for trace element proxies of environmental conditions and growth rates in the calcite skeletons of bamboo corals (Isididae)[J]. Geochimica et Cosmochimica Acta, 2016, 193: 75-99.
30 Thresher R E. Environmental and compositional correlates of growth rate in deep-water bamboo corals (Gorgonacea; Isididae)[J]. Marine Ecology Progress Series, 2009, 397: 187-196.
31 Thresher R E, Wilson N C, MacRae C M, et al. Temperature effects on the calcite skeletal composition of deep-water gorgonians (Isididae)[J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4 655-4 670.
32 LaVigne M, Hill T M, Spero H J, et al. Bamboo coral Ba/Ca: Calibration of a new deep ocean refractory nutrient proxy[J]. Earth and Planetary Science Letters, 2011, 312(3/4): 506-515.
33 Farmer J R, H?nisch B, Robinson L F, et al. Effects of seawater-pH and biomineralization on the boron isotopic composition of deep-sea bamboo corals[J]. Geochimica et Cosmochimica Acta, 2015, 155: 86-106.
34 Kong Le, Huang Enqing, Tian Jun. Oxygen and carbon isotopes of cold-water corals—Reconstructing paleotemperature changes and calcification mechanism [J]. Advances in Earth Science, 2019,34(12):1 252-1 261.
孔乐, 黄恩清, 田军. 冷水珊瑚氧、碳同位素——古水温重建与钙化机制[J]. 地球科学进展, 2019,34(12):1 252-1 261.
35 Luo Zhongyuan, Li Jiangtao, Jia Guodong. Food and its geochemical implications of deep-water corals [J]. Advances in Earth Science, 2019,34(12):1 234-1 242.
罗中原, 李江涛, 贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019,34(12):1 234-1 242.
36 Sherwood O A, Lehmann M F, Schubert C J, et al. Nutrient regime shift in the western North Atlantic indicated by compound-specific δ15N of deep-sea gorgonian corals[J]. PNAS, 2011, 108(3): 1 011-1 015.
37 Sherwood O A, Guilderson T P, Batista F C, et al. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age[J]. Nature, 2014, 505(7 481):78.
38 McMahon K W, McCarthy M D, Sherwood O A, et al. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean[J]. Science, 2015, 350(6 267): 1 530-1 533.
39 McMahon K W, Williams B, Guilderson T P, et al. Calibrating amino acid δ13C and δ15N offsets between polyp and protein skeleton to develop proteinaceous deep-sea corals as paleoceanographic archives[J]. Geochimica et Cosmochimica Acta, 2018, 220: 261-275.
40 Matsumoto A K. Effects of low water temperature on growth and magnesium carbonate concentrations in the cold-water gorgonian Primnoa pacifica[J]. Bulletin of Marine Science, 2007, 81(3): 423-453.
41 Shirai K, Kusakabe M, Nakai S, et al. Deep-sea coral geochemistry: Implication for the vital effect[J]. Chemical Geology, 2005, 224(4): 212-222.
42 Rollion-Bard C, J-P Cuif, Blamart D. Optical observations and geochemical data in deep-sea Hexa- and Octo-coralla specimens[J]. Minerals, 2017,7(9):154.
43 Sinclair D J, Williams B, Allard G, et al. Reproducibility of trace element profiles in a specimen of the deep-water bamboo coral Keratoisis sp.[J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5 101-5 121.
44 Thresher R E, MacRae C M, Wilson N C, et al. Environmental effects on the skeletal composition of deep-water Gorgonians (Keratoisis spp.; Isididae) [J]. Bulletin of Marine Science, 2007, 81(3): 409-422.
45 Geyman B M, Ptacek J L, LaVigne M, et al. Barium in deep-sea bamboo corals: Phase associations, barium stable isotopes, & prospects for paleoceanography[J]. Earth and Planetary Science Letters, 2019, 525. DOI: 10.1016/j.epsl.2019.115751.
doi: 10.1016/j.epsl.2019.115751    
46 Fl?ter S, Fietzke J, Gutjahr M, et al. The influence of skeletal micro-structures on potential proxy records in a bamboo coral[J]. Geochimica et Cosmochimica Acta, 2019, 248: 43-60.
47 Marks G S, LaVigne M, Hill T M, et al. Reproducibility of Ba/Ca variations recorded by northeast Pacific bamboo corals [J]. Paleoceanography, 2017, 32: 966-979.
48 Liu Yi, Peng Zicheng, Liu Weiguo, et al. Advances in paleo-seawater pH proxy: Boron isotope in marine carbonate [J]. Advances in Earth Science, 2007, 22(12): 1 240-1 250.
刘羿, 彭子成,刘卫国,等.古海水pH值代用指标——海洋碳酸盐硼同位素研究进展[J].地球科学进展,2007,22(12): 1 240-1 250.
49 McCulloch M, Trotter J, Montagna P, et al. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation [J]. Geochimica et Cosmochimica Acta, 2012, 87: 21-34.
50 Anagnostou E, Huang K F, You C F, et al. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: Evidence of physiological pH adjustment[J]. Earth and Planetary Science Letters, 2012, 349/350: 251-260.
51 Balan E, Pietrucci F, Gervais C, et al. First-principles study of boron speciation in calcite and aragonite[J]. Geochimica et Cosmochimica Acta, 2016, 193: 119-131.
52 Farmer J R, Bransond O, Uchikawa J, et al. Boric acid and borate incorporation in inorganic calcite inferred from B/Ca, boron isotopes and surface kinetic modeling[J]. Geochimica et Cosmochimica Acta, 2019, 244: 229-247.
53 Martin P, Goodkin N F, Stewart J A, et al. Deep‐sea coral δ13C: A tool to reconstruct the difference between seawater pH and δ11B‐derived calcifying fluid pH[J]. Geophysical Research Letters, 2016,43(1): 299-308.
54 Robinson L F, Adkins J F, Frank N, et al. The geochemistry of deep-sea coral skeletons: A review of vital effects and applications for palaeoceanography[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2014, 99: 184-198.
55 Roberts J M, Wheeler A J, Freiwald A, et al. Cold-water Corals: The Biology and Geology of Deep-Sea Coral Habitats[M]. Cambridge, UK: Cambridge University Press, 2009.
56 Aranha R, Edinger E, Layne G, et al. Growth rate variation and potential paleoceanographic proxies in Primnoapacifica: Insights from high-resolution trace element microanalysis[J]. Deep Sea Research II:Topical Studies in Oceanography, 2014, 99: 213-226.
57 Rimstidt J D, Balog A, Webb J. Distribution of trace elements between carbonate minerals and aqueous solutions[J]. Geochimica et Cosmochimica Acta, 1998, 62: 1 851-1 863.
58 Noé S, Lembke-Jene L, Reveillaud J, et al. Microstructure, growth banding and age determination of a primnoid gorgonian skeleton (Octocorallia) from the late Younger Dryas to earliest Holocene of the Bay of Biscay[J]. Facies, 2007, 53: 177-188.
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[3] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[4] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[5] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[6] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[7] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[8] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[9] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[10] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[11] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[12] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[13] 徐昭萌, 刘素美. 底栖有孔虫体内储存硝酸盐和反硝化研究进展[J]. 地球科学进展, 2017, 32(9): 949-958.
[14] 吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.
[15] 崔豪,周炼,李超,彭兴芳,金承胜,石炜,张子虎,罗根明,谢树成. Fe-Mo同位素与古海洋化学演化[J]. 地球科学进展, 2013, 28(9): 1049-1056.
阅读次数
全文


摘要