1 |
Prouty N G, Roark E B, Andrews A H, et al. Age, rates growth, and paleoclimate studies in deep‐sea corals of the United States[M]//Hourigan T F, Etnoyer P J, Cairns S D. The State of Deep‐Sea Coral and Sponge Ecosystems of the United States. NOAA Technical Memorandum NMFS‐OHC‐4, Silver Spring, MD. 2017: 22.
|
2 |
Cairns S D, Gerhswin L A, Brook F, et al. Cnidaria Phylum; corals, medusae, hydroids, myxozoa[M]// Dennis P G. Kingdom Animalia: Radiata, Lophotrochozoa,Deuterostomia. New Zealand Inventory of Biodiversity. Volume1. Christchurch: Canterbury University Press,2009.
|
3 |
Noé S, W-C Dullo. Skeletal morphogenesis and growth mode of modern and fossil deep-water isidid gorgonians (Octocorallia) in the West Pacific (New Zealand and Sea of Okhotsk) [J]. Coral Reefs, 2006, 25(3): 303-320.
|
4 |
Pérez C D, de Moura Neves B, Cordeiro R T, et al. Diversity and distribution of Octocorallia[M]// Goffredo S, Dubinsky Z. The Cnidaria, Past, Present and Future. Cham, Switzerland: Springer International Publishing, 2016:109-123.
|
5 |
Wang Pinxian. Deep-sea coral forest [J]. Advances in Earth Science, 2019,34(12):1 222-1 242.
|
|
汪品先. 深水珊瑚林[J]. 地球科学进展, 2019,34(12):1 222-1 242.
|
6 |
Zou R, Huang B, Wang X. Studies on the Gorgonians of China—Ⅰ. Isis with one new species [J]. Acta Oceanologica Sinica, 1991, 10(4): 593-602.
|
7 |
Huang Hui, Li Xiubao, He Jianguo, et al. Species diversity and distribution of gorgonian at Xuwen, Zhanjiang,Guangdong Province[J]. Journal of Tropical Oceanography, 2007, 26(1): 60-67.
|
|
黄晖, 李秀保, 何建国, 等. 湛江徐闻西海岸柳珊瑚的物种多样性和分布研究[J]. 热带海洋学报, 2007, 26(1): 60-67.
|
8 |
Huang Hui, Li Xiubao, Lian Jiansheng, et al. Species diversity and distribution of gorgonian (Cnidaria, Anthozoa, Octocoral) in Xiamen Bay and Dongshan Bay, Fujian [J]. Journal of Oceanography in Taiwan Strait, 2007, 26(1): 92-98.
|
|
黄晖, 李秀保, 练健生, 等. 福建厦门湾和东山湾海域柳珊瑚的物种多样性及其分布[J]. 台湾海峡, 2007, 26(1): 92-98.
|
9 |
Li Xiubao, Huang Hui, Lian Jiansheng, et al. Diversity and spatial distribution of gorgonian coral in Dongshan Coastal waters in Fujian, China [J]. Journal of Oceanography in Taiwan Strait, 2011, 30(1): 92-96.
|
|
李秀保, 黄晖, 练健生, 等. 福建东山海域柳珊瑚种类空间分布与多样性[J]. 台湾海峡, 2011, 30(1): 92-96.
|
10 |
Huang Hui, He Jianguo, Li Xiubao, et al. Molecular phylogeny of gorgonian [J]. Marine Science Bulletin, 2005, 24(2), 63-78.
|
|
黄晖, 何建国, 李秀保, 等. 柳珊瑚分子系统发育学的研究进展[J]. 海洋通报, 2005, 24(2): 63-78.
|
11 |
Li J, Wang P. Discovery of deep-water bamboo coral forest in the South China Sea[J]. Scientific Reports, 2019, 9(1):1-5.
|
12 |
Sherwood O A, Scott D B, Risk M J, et al. Radiocarbon evidence for annual growth rings in the deep-sea octocoral Primnoa resedaeformis[J]. Marine Ecology Progress Series, 2005, 301: 129-134.
|
13 |
Sherwood O A, Edinger E N. Ages and growth rates of some deep-sea gorgonian and antipatharian corals of Newfoundland and Labrador[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66(1): 142-152.
|
14 |
Roark E B, Guilderson T P, Dunbar R B, et al. Extreme longevity in proteinaceous deep-sea corals[J]. PNAS, 2009, 106(13): 5 204-5 208.
|
15 |
Thresher R E, MacRae C M, Wilson N C, et al. Feasibility of age determination of deep-water bamboo corals (Gorgonacea; Isididae) from annual cycles in skeletal composition[J]. Deep-Sea Research I:Oceanographic Research Papers, 2009, 56(3): 442-449.
|
16 |
Roark E B, Guilderson T P, Flood-Page S, et al. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska[J]. Geophysical Research Letters, 2005, 32(4). DOI:10.1029/2004GL021919.
doi: 10.1029/2004GL021919
|
17 |
Sherwood O A, Heikoop J M, Scott D B, et al. Stable isotopic composition of deep-sea gorgonian corals Primnoa spp.: A new archive of surface processes[J]. Marine Ecology Progress Series, 2005, 301: 135-148.
|
18 |
Thresher R, Rintoul S R, Koslow J A, et al. Oceanic evidence of climate change in southern Australia over the last three centuries[J]. Geophysical Research Letters, 2004, 31(7). DOI: 10.1029/2003GL018869.
doi: 10.1029/2003GL018869
|
19 |
Hill T M, Lavigne M, Spero H J, et al. Variations in seawater Sr/Ca recorded in deep-sea bamboo corals[J]. Paleoceanography, 2012, 27(3). DOI:10.1029/2011PA002260.
doi: 10.1029/2011PA002260
|
20 |
Tracey D M, Neil H, Marriott P, et al. Age and growth of two genera of deep-sea bamboo corals (family Isididae) in New Zealand waters[J]. Bulletin of Marine Science, 2007, 81: 393-408.
|
21 |
Cheng H, Adkins J, Edwards R L, et al. U-Th dating of deep-sea corals[J]. Geochimica et Cosmochimica Acta, 2000, 64(4): 2 401-2 416.
|
22 |
Sherwood O A, Scott D B, Risk M J. Late Holocene radiocarbon and aspartic acid racemization dating of deep-sea octocorals[J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2 806-2 814.
|
23 |
Miller G H, Kaufman D S, Clarke S J. Amino acid dating[M]// Scott A E,Cary J M. Encyclopedia of Quaternary Science: Second Edition. Oxford: Elsevier Inc., 2013: 37-48.
|
24 |
Huang Enqing, Kong Le, Tian Jun. Dating methods of cold-water corals and their application in reconstructing carbon-reservoir ages of intermediate and deep oceans[J]. Advances in Earth Science, 2019,34(12):1 243-1 251.
|
|
黄恩清, 孔乐, 田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019,34(12):1 243-1 251.
|
25 |
Frenkel M M, LaVigne M, Miller H R, et al. Quantifying bamboo coral growth rate nonlinearity with the radiocarbon bomb spike: A new model for paleoceanographic chronology development[J]. Deep Sea Research I: Oceanographic Research Papers, 2017, 125: 26-39.
|
26 |
Griffin S, Druffel E R M. Sources of carbon to deep-sea corals[J]. Radiocarbon, 1989, 31(3): 533-543.
|
27 |
Farmer J R, Robison L F, H?nisch B. Growth rate determinations from radiocarbon in bamboo corals (genus Keratoisis) [J]. Deep Sea Research I: Oceanographic Research Papers, 2015, 105: 26-40.
|
28 |
Thresher R E, MacRae C M, Wilson N C, et al. Feasibility of age determination of deep-water bamboo corals (Gorgonacea; Isididae) from annual cycles in skeletal composition[J]. Deep-Sea Research I: Oceanographic Research Papers, 2009, 56: 442-449.
|
29 |
Thresher R E, Fallon S J, Townsend A T. A "core-top" screen for trace element proxies of environmental conditions and growth rates in the calcite skeletons of bamboo corals (Isididae)[J]. Geochimica et Cosmochimica Acta, 2016, 193: 75-99.
|
30 |
Thresher R E. Environmental and compositional correlates of growth rate in deep-water bamboo corals (Gorgonacea; Isididae)[J]. Marine Ecology Progress Series, 2009, 397: 187-196.
|
31 |
Thresher R E, Wilson N C, MacRae C M, et al. Temperature effects on the calcite skeletal composition of deep-water gorgonians (Isididae)[J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4 655-4 670.
|
32 |
LaVigne M, Hill T M, Spero H J, et al. Bamboo coral Ba/Ca: Calibration of a new deep ocean refractory nutrient proxy[J]. Earth and Planetary Science Letters, 2011, 312(3/4): 506-515.
|
33 |
Farmer J R, H?nisch B, Robinson L F, et al. Effects of seawater-pH and biomineralization on the boron isotopic composition of deep-sea bamboo corals[J]. Geochimica et Cosmochimica Acta, 2015, 155: 86-106.
|
34 |
Kong Le, Huang Enqing, Tian Jun. Oxygen and carbon isotopes of cold-water corals—Reconstructing paleotemperature changes and calcification mechanism [J]. Advances in Earth Science, 2019,34(12):1 252-1 261.
|
|
孔乐, 黄恩清, 田军. 冷水珊瑚氧、碳同位素——古水温重建与钙化机制[J]. 地球科学进展, 2019,34(12):1 252-1 261.
|
35 |
Luo Zhongyuan, Li Jiangtao, Jia Guodong. Food and its geochemical implications of deep-water corals [J]. Advances in Earth Science, 2019,34(12):1 234-1 242.
|
|
罗中原, 李江涛, 贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019,34(12):1 234-1 242.
|
36 |
Sherwood O A, Lehmann M F, Schubert C J, et al. Nutrient regime shift in the western North Atlantic indicated by compound-specific δ15N of deep-sea gorgonian corals[J]. PNAS, 2011, 108(3): 1 011-1 015.
|
37 |
Sherwood O A, Guilderson T P, Batista F C, et al. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age[J]. Nature, 2014, 505(7 481):78.
|
38 |
McMahon K W, McCarthy M D, Sherwood O A, et al. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean[J]. Science, 2015, 350(6 267): 1 530-1 533.
|
39 |
McMahon K W, Williams B, Guilderson T P, et al. Calibrating amino acid δ13C and δ15N offsets between polyp and protein skeleton to develop proteinaceous deep-sea corals as paleoceanographic archives[J]. Geochimica et Cosmochimica Acta, 2018, 220: 261-275.
|
40 |
Matsumoto A K. Effects of low water temperature on growth and magnesium carbonate concentrations in the cold-water gorgonian Primnoa pacifica[J]. Bulletin of Marine Science, 2007, 81(3): 423-453.
|
41 |
Shirai K, Kusakabe M, Nakai S, et al. Deep-sea coral geochemistry: Implication for the vital effect[J]. Chemical Geology, 2005, 224(4): 212-222.
|
42 |
Rollion-Bard C, J-P Cuif, Blamart D. Optical observations and geochemical data in deep-sea Hexa- and Octo-coralla specimens[J]. Minerals, 2017,7(9):154.
|
43 |
Sinclair D J, Williams B, Allard G, et al. Reproducibility of trace element profiles in a specimen of the deep-water bamboo coral Keratoisis sp.[J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5 101-5 121.
|
44 |
Thresher R E, MacRae C M, Wilson N C, et al. Environmental effects on the skeletal composition of deep-water Gorgonians (Keratoisis spp.; Isididae) [J]. Bulletin of Marine Science, 2007, 81(3): 409-422.
|
45 |
Geyman B M, Ptacek J L, LaVigne M, et al. Barium in deep-sea bamboo corals: Phase associations, barium stable isotopes, & prospects for paleoceanography[J]. Earth and Planetary Science Letters, 2019, 525. DOI: 10.1016/j.epsl.2019.115751.
doi: 10.1016/j.epsl.2019.115751
|
46 |
Fl?ter S, Fietzke J, Gutjahr M, et al. The influence of skeletal micro-structures on potential proxy records in a bamboo coral[J]. Geochimica et Cosmochimica Acta, 2019, 248: 43-60.
|
47 |
Marks G S, LaVigne M, Hill T M, et al. Reproducibility of Ba/Ca variations recorded by northeast Pacific bamboo corals [J]. Paleoceanography, 2017, 32: 966-979.
|
48 |
Liu Yi, Peng Zicheng, Liu Weiguo, et al. Advances in paleo-seawater pH proxy: Boron isotope in marine carbonate [J]. Advances in Earth Science, 2007, 22(12): 1 240-1 250.
|
|
刘羿, 彭子成,刘卫国,等.古海水pH值代用指标——海洋碳酸盐硼同位素研究进展[J].地球科学进展,2007,22(12): 1 240-1 250.
|
49 |
McCulloch M, Trotter J, Montagna P, et al. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation [J]. Geochimica et Cosmochimica Acta, 2012, 87: 21-34.
|
50 |
Anagnostou E, Huang K F, You C F, et al. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: Evidence of physiological pH adjustment[J]. Earth and Planetary Science Letters, 2012, 349/350: 251-260.
|
51 |
Balan E, Pietrucci F, Gervais C, et al. First-principles study of boron speciation in calcite and aragonite[J]. Geochimica et Cosmochimica Acta, 2016, 193: 119-131.
|
52 |
Farmer J R, Bransond O, Uchikawa J, et al. Boric acid and borate incorporation in inorganic calcite inferred from B/Ca, boron isotopes and surface kinetic modeling[J]. Geochimica et Cosmochimica Acta, 2019, 244: 229-247.
|
53 |
Martin P, Goodkin N F, Stewart J A, et al. Deep‐sea coral δ13C: A tool to reconstruct the difference between seawater pH and δ11B‐derived calcifying fluid pH[J]. Geophysical Research Letters, 2016,43(1): 299-308.
|
54 |
Robinson L F, Adkins J F, Frank N, et al. The geochemistry of deep-sea coral skeletons: A review of vital effects and applications for palaeoceanography[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2014, 99: 184-198.
|
55 |
Roberts J M, Wheeler A J, Freiwald A, et al. Cold-water Corals: The Biology and Geology of Deep-Sea Coral Habitats[M]. Cambridge, UK: Cambridge University Press, 2009.
|
56 |
Aranha R, Edinger E, Layne G, et al. Growth rate variation and potential paleoceanographic proxies in Primnoapacifica: Insights from high-resolution trace element microanalysis[J]. Deep Sea Research II:Topical Studies in Oceanography, 2014, 99: 213-226.
|
57 |
Rimstidt J D, Balog A, Webb J. Distribution of trace elements between carbonate minerals and aqueous solutions[J]. Geochimica et Cosmochimica Acta, 1998, 62: 1 851-1 863.
|
58 |
Noé S, Lembke-Jene L, Reveillaud J, et al. Microstructure, growth banding and age determination of a primnoid gorgonian skeleton (Octocorallia) from the late Younger Dryas to earliest Holocene of the Bay of Biscay[J]. Facies, 2007, 53: 177-188.
|