地球科学进展 ›› 2020, Vol. 35 ›› Issue (12): 1243 -1255. doi: 10.11867/j.issn.1001-8166.2020.106

综述与评述 上一篇    下一篇

海水中铜的生物地球化学研究进展
阮雅青( ),张瑞峰( )   
  1. 上海交通大学 海洋学院,上海 200030
  • 收稿日期:2020-10-04 修回日期:2020-11-29 出版日期:2020-12-10
  • 通讯作者: 张瑞峰 E-mail:ruanyaqing@sjtu.edu.cn;ruifengzhang@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目“海洋荒漠区常量和微量营养物质的来源、通量及其时空分布格局”(41890801);“长江口冲淡水的对流、扩散和物质转换综合过程”(41530960)

Review of the Copper Biogeochemistry in Seawater

Yaqing Ruan( ),Ruifeng Zhang( )   

  1. School of Oceanography,Shanghai Jiao Tong University,Shanghai 200030,China
  • Received:2020-10-04 Revised:2020-11-29 Online:2020-12-10 Published:2021-02-09
  • Contact: Ruifeng Zhang E-mail:ruanyaqing@sjtu.edu.cn;ruifengzhang@sjtu.edu.cn
  • About author:Ruan Yaqing (1997-), female, Putian City, Fujian Province, Master student. Research areas include marine chemistry. E-mail: ruanyaqing@sjtu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “The sources,fluxes and spatio-temporal structures of macro-and micro-nutrients in the oligotrophic ocean”(41890801);“Integrated process of convection,diffusion and material conversion of dilute water in the Changjiang Estuary”(41530960)

铜在开阔大洋表层水中含量极低,以多种形态存在,具有生物可用性和毒性双重功能。海水中的铜能调节浮游植物的群落结构并影响初级生产力,在全球生物地球化学循环中发挥着重要作用。近30年来,随着样品采集、分析技术的进步,海水中铜的生物地球化学研究得到了飞速发展。综述了铜对浮游植物和微生物的生理生态效应(参与生命过程,与其他金属的相互作用和毒性等),铜在海水中的形态(价态、化学形态、有机配体和生物有效性等),源汇通量(主要源汇过程、通量及同位素组成特征),水平和垂直分布规律和影响因素等。最后,对海洋痕量金属铜的研究方向进行了展望,以期为今后海水中铜的生物地球化学研究提供参考。

The concentration of copper is extremely low in the surface water of the open ocean. Copper has multiple speciations and the dual functions of bioavailability and toxicity. Copper in seawater can regulate phytoplankton and affect the primary production, playing an important role in marine biogeochemical cycles. With the advancement of sample collection and analysis techniques, the biogeochemical research of copper in seawater has developed rapidly in the past 30 years. Here, we provide a comprehensive review on marine copper biogeochemistry. Firstly, we summarized the physiological and ecological effects of copper on phytoplankton and microorganism. For example, copper can participate in the life processes of phytoplankton and microorganism, interact with other metals and have the toxicity. Secondly, we reviewed the chemical forms of copper in seawater (such as valence states, speciations, complexation with organic ligands and bioavailability). Finally, we summarized the sources and sinks of copper in the ocean (and the fluxes and isotopic composition), the horizontal and vertical distribution of copper in seawater, and factors influencing these were also reviewed. We suggest future research topics dealing with copper biogeochemistry to provide new insights into the role of copper in seawater and biological cycles.

中图分类号: 

图1 海洋中铜参与的生物地球化学过程和生理生态功能概念示意图
Fig.1 Biogeochemical process of copper in the ocean and its physiological and ecological functions
图2 北太平洋(47°01′N,170°30′W)铜配体、总铜离子和自由铜离子浓度剖面(据参考文献[ 53 ]修改)
Fig.2 Profiles of ligand,total dissolved Cu and free Cu2+ for station in the North Pacific (47°01′N 170°30′W,modified after reference [ 53 ])
图3 全球海洋铜质量平衡示意图及源汇物质的δ65Cu值(数据来自参考文献[ 23 , 24 80 ~ 87 ])
Fig.3 Schematic diagrams illustrating the global ocean isotopic mass balance of Cu (Data from references [23,2480~87])
图4 溶解态铜在世界大洋表层的现有数据分布(0~50 m)(数据来自参考文献[ 23 , 83 , 84 , 99 ~ 102 ])
Fig.4 The existing data of dissolved copper in the world surface ocean (0~50 m) (data from references [23, 83,84, 99~102])
表1 不同海区、不同深度的海水溶解态铜浓度
Table 1 Dissolved copper concentration in different oceans and depth
图5 世界不同大洋的溶解态铜垂直剖面分布(数据来自参考文献[ 21 , 99 118 ])
Fig.5 The vertical profiles of dCu in different ocean (data from references [21,99118])
1 Hatje V,Bruland K W,Flegal A R. Determination of rare earth elements after pre-concentration using NOBIAS-chelate PA-1?resin: Method development and application in the San Francisco Bay plume[J]. Marine Chemistry,2014,160: 34-41.
2 Rapp I,Schlosser C,Rusiecka D,et al. Automated preconcentration of Fe,Zn,Cu,Ni,Cd,Pb,Co,and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry[J]. Analytica Chimica Acta,2017,976: 1-13.
3 Wu J,Boyle E A. Low blank preconcentration technique for the determination of lead,Copper,and Cadmium in small-volume seawater samples by Isotope Dilution ICPMS[J]. Analytical Chemistry,1997,69(13): 2 464-2 470.
4 Morel F M M,Price N M. The biogeochemical cycles of trace metals in the oceans[J]. Science,2003,300(5 621): 944-947.
5 Boyle E,Sclater F,Edmond J. The distribution of dissolved copper in the Pacific[J]. Earth and Planetary Science Letters,1977,37(1): 38-54.
6 Boyle E A,Edmond J M. Copper in surface waters south of New Zealand[J]. Nature,1975,253(5 487): 107-109.
7 Spencer D W,Robertson D E,Turekian K K,et al. Trace element calibrations and profiles at the Geosecs Test Station in the northeast Pacific Ocean[J]. Journal of Geophysical Research,1970,75(36): 7 688-7 696.
8 Bruland K W,Lohan M C. Controls of Trace Metals in Seawater[M]. America: Elsevier,2003: 23-47.
9 Group S W. GEOTRACES—An international study of the global marine biogeochemical cycles of trace elements and their isotopes[J]. Geochemistry,2007,67(2): 85-131.
10 Brand L E,Sunda W G,Guillard R R L. Reduction of marine phytoplankton reproduction rates by copper and cadmium [J]. Journal of Experimental Marine Biology and Ecology,1986,96(3): 225-250.
11 Sunda W G. Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean[J]. Frontiers in Microbiology,2012,3: 204.
12 Raven J A,Evans M C W,Korb R E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms[J]. Photosynthesis Research,1999,60(2): 111-150.
13 Peers G,Price N M. Copper-containing plastocyanin used for electron transport by an oceanic diatom[J]. Nature,2006,441(7 091): 341-344.
14 Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43(1): 83-116.
15 Walker C B,De La Torre J R,Klotz M G,et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(19): 8 818-8 823.
16 Granger J,Price N M. The importance of siderophores in iron nutrition of heterotrophic marine bacteria[J]. Limnology and Oceanography,1999,44(3): 541-555.
17 Wells M L,Kozelka P B,Bruland K W. The complexation of 'dissolved' Cu,Zn,Cd and Pb by soluble and colloidal organic matter in Narragansett Bay,RI[J]. Marine Chemistry,1998,62(3): 203-217.
18 Smrzka D,Zwicker J,Bach W,et al. The behavior of trace elements in seawater,sedimentary pore water,and their incorporation into carbonate minerals: A review[J]. Facies,2019,65(4): 41.
19 Fru E C,Rodriguez N P,Partin C A,et al. Cu isotopes in marine black shales record the Great Oxidation Event[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(18): 4 941-4 946.
20 Bruland K W. Oceanographic distributions of cadmium,zinc,nickel,and copper in the North Pacific[J]. Earth and Planetary Science Letters,1980,47(2): 176-198.
21 Posacka A M,Semeniuk D M,Whitby H,et al. Dissolved Copper (dCu) biogeochemical cycling in the subarctic Northeast Pacific and a call for improving methodologies[J]. Marine Chemistry,2017,196: 47-61.
22 Roshan S,Wu J. The distribution of dissolved copper in the tropical-subtropical north Atlantic across the GEOTRACES GA03 transect[J]. Marine Chemistry,2015,176: 189-198.
23 Little S,Vance D,Walker-Brown C,et al. The oceanic mass balance of copper and zinc isotopes,investigated by analysis of their inputs,and outputs to ferromanganese oxide sediments[J]. Geochimica et Cosmochimica Acta,2014,125: 673-693.
24 Richon C,Tagliabue A. Insights into the major processes driving the global distribution of copper in the ocean from a global model[J]. Global Biogeochemical Cycles,2019,33: 1 594-1 610.
25 Hill K L,Hassett R,Kosman D J,et al. Regulated copper uptake in chlamydomonas reinhardtii in response to copper availability[J]. Plant Physiology,1996,112(2): 697-704.
26 Herbik A,Bolling C,Buckhout T J. The involvement of a multicopper oxidase in iron uptake by the green algae chlamydomonas reinhardtii[J]. Plant Physiology,2002,130(4): 2 039-2 048.
27 Vajrala N,Martens-Habbena W,Sayavedra-Soto L A,et al. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(3): 1 006-1 011.
28 Amin S A,Moffett J W,Martens-Habbena W,et al. Copper requirements of the ammonia-oxidizing archaeon Nitrosopumilus maritimus SCM1 and implications for nitrification in the marine environment[J]. Limnology and Oceanography,2013,58(6): 2 037-2 045.
29 Stauber J L,Florence T M. Mechanism of toxicity of ionic copper and copper complexes to algae[J]. Marine Biology,1987,94(4): 511-519.
30 Biswas H,Bandyopadhyay D. Physiological responses of coastal phytoplankton (Visakhapatnam,SW Bay of Bengal,India) to experimental copper addition[J]. Marine Environmental Research,2017,131: 19-31.
31 Stuart R K,Dupont C L,Johnson D A,et al. Coastal strains of marine Synechococcus species exhibit increased tolerance to copper shock and a distinctive transcriptional response relative to those of open-ocean strains[J]. Applied and Environmental Microbiology,2009,75(15): 5 047-5 057.
32 Baron M,Arellano J B,Gorge J L. Copper and photosystem II: A controversial relationship[J]. Physiologia Plantarum,1995,94(1): 174-180.
33 Coale K H,Bruland K W. Copper complexation in the Northeast Pacific[J]. Limnology and Oceanography,1988,33(5): 1 084-1 101.
34 Sunda W G,Huntsman S A. Interactions among Cu2+,Zn2+,and Mn2+ in controlling cellular Mn,Zn,and growth rate in the coastal alga Chlamydomonas[J]. Limnology and Oceanography,1998,43(6): 1 055-1 064.
35 Guo C,Yu J Z,Ho T,et al. Dynamics of phytoplankton community structure in the South China Sea in response to the East Asian aerosol input[J]. Biogeosciences,2011,9(4): 1 519-1 536.
36 Maldonado M T,Price N M. Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae)[J]. Journal of Phycology,2001,37(2): 298-309.
37 Maldonado M T,Price N M. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography,1999,46(11): 2 447-2 473.
38 Maldonado M T,Allen A E,Chong J S,et al. Copper‐dependent iron transport in coastal and oceanic diatoms[J]. Limnology and Oceanography,2006,51(4): 1 729-1 743.
39 Shaked Y,Kustka A B,Morel F M M. A general kinetic model for iron acquisition by eukaryotic phytoplankton[J]. Limnology and Oceanography,2005,50(3): 872-882.
40 De Baar H J W,Boyd P W,Coale K H,et al. Synthesis of iron fertilization experiments: From the iron age in the age of Enlightenment[J]. Journal of Geophysical Research,2005,110(9): 1-24.
41 Sunda W G,Huntsman S A. Interactive effects of external manganese,the toxic metals copper and zinc,and light in controlling cellular manganese and growth in a coastal diatom[J]. Limnology and Oceanography,1998,43(7): 1 467-1 475.
42 Rueter J G,Morel F M M. The interaction between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanisms in Thalassiosira pseudonana1[J]. Limnology and Oceanography,1981,26(1): 67-73.
43 Quigg A,Reinfelder J R,Fisher N S. Copper uptake kinetics in diverse marine phytoplankton[J]. Limnology and Oceanography,2006,51(2): 893-899.
44 Gordon A S,Howell L D,Harwood V. Responses of diverse heterotrophic bacteria to elevated copper concentrations[J]. Canadian Journal of Microbiology,1994,40(5): 408-411.
45 Kawakami S K,Gledhill M,Achterberg E P. Production of phytochelatins and glutathione by marine phytoplankton in response to metal stress[J]. Journal of Phycology,2006,42(5): 975-989.
46 Moffett J W,Brand L E. Production of strong,extracellular Cu chelators by marine cyanobacteria in response to Cu stress[J]. Limnology and Oceanography,1996,41(3): 388-395.
47 Lee J G,Ahner B A,Morel F M M. Export of cadmium and phytochelatin by the marine diatom Thalassiosira weissflogii[J]. Environmental Science & Technology,1996,30(6): 1 814-1 821.
48 Levy J L,Stauber J L,Jolley D F. Sensitivity of marine microalgae to copper: The effect of biotic factors on copper adsorption and toxicity[J]. Science of the Total Environment,2007,387(1/3): 141-154.
49 Peers G,Quesnel S,Price N M. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms[J]. Limnology and Oceanography,2005,50(4): 1 149-1 158.
50 Williams R J. The natural selection of the chemical elements[J]. Cellular and Molecular Life Sciences,1997,53(10): 816-829.
51 Moffett J W,Zika R G. Measurement of copper(I) in surface waters of the subtropical Atlantic and Gulf of Mexico[J]. Geochimica et Cosmochimica Acta,1988,52(7): 1 849-1 857.
52 Bruland K W,Donat J R,Hutchins D A. Interactive influences of bioactive trace metals on biological production in oceanic waters[J]. Limnology and Oceanography,1991,36(8): 1 555-1 577.
53 Moffett J W,Dupont C. Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea[J]. Deep-Sea Research Part I: Oceanographic Research Papers,2007,54(4): 586-595.
54 Buck K N,Ross J R M,Flegal A R,et al. A review of total dissolved copper and its chemical speciation in San Francisco Bay,California[J]. Environmental Research,2007,105(1): 5-19.
55 Byrne R H,Van Der Weijden C H,Kester D R,et al. Evaluation of the CuCl+ stability constant and molar absorptivity in aqueous media[J]. Journal of Solution Chemistry,1983,12(8): 581-596.
56 Powell K J,Brown P L,Byrne R H,et al. Chemical speciation of environmentally significant metals with inorganic ligands - Part 2: The Cu2+-OH-,Cl-,CO32-,SO42-,and PO43- systems - (IUPAC technical report)[J]. Pure and Applied Chemistry,2007,79(5): 895-950.
57 Voelker B M,Sedlak,L D,et al. Chemistry of superoxide radical in seawater: Reactions with organic Cu complexes[J]. Environmental Science & Technology,2000,34(6): 1 036-1 042.
58 Zafiriou O C,Voelker B M,Sedlak D L. Chemistry of the Superoxide Radical (O2-) in Seawater: Reactions with Inorganic Copper Complexes[J]. Journal of Physical Chemistry A,1998,102(28): 5 693-5 700.
59 Gonzalez-Davila M,Santana-Casiano J M,Gonzalez A G,et al. Oxidation of copper(I) in seawater at nanomolar levels[J]. Marine Chemistry,2009,115(1/2): 118-124.
60 Moffett J W,Zika R G. Oxidation kinetics of Cu(I) in seawater: Implications for its existence in the marine environment[J]. Marine Chemistry,1983,13(3): 239-251.
61 Leal M F C,Van Den Berg C M G. Evidence for strong copper(I) complexation by organic ligands in seawater[J]. Aquatic Geochemistry,1998,4(1): 49-75.
62 Little S H,Archer C,Milne A,et al. Paired dissolved and particulate phase Cu isotope distributions in the South Atlantic[J]. Chemical Geology,2018,502: 29-43.
63 Lee J-M,Heller M I,Lam P J. Size distribution of particulate trace elements in the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16)[J]. Marine Chemistry,2018,201: 108-123.
64 Ohnemus D C,Torrie R,Wining B S. Exposing the distributions and elemental associations of scavenged particulate phases in the ocean using basin-scale multi-element data sets[J]. Global Biogeochemical Cycles,2019,33(6): 725-748.
65 Tait T N,Mcgeer J C,Smith D S. Testing the underlying chemical principles of the Biotic Ligand Model (BLM) to marine copper systems: Measuring copper speciation using fluorescence quenching[J]. Bulletin of Environmental Contamination and Toxicology,2018,100(1): 76-81.
66 Smith D S,Bell R A,Kramer J R. Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites[J]. Comparative Biochemistry and Physiology C:Toxicology & Pharmacology,2002,133(1): 65-74.
67 Leal M F C,Vasconcelos M T S D,Den Berg C M G V. Copper-induced release of complexing ligands similar to thiols by Emiliania huxleyi in seawater cultures[J]. Limnology and Oceanography,1999,44(7): 1 750-1 762.
68 Kim H J,Graham D W,Dispirito A A,et al. Methanobactin,a copper-acquisition compound from methane-oxidizing bacteria[J]. Science,2004,305(5 690): 1 612-1 615.
69 Olafson R W,Mccubbin W D,Kay C M. Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium[J]. Biochemical Journal,1988,251(3): 691-699.
70 Takamuraenya T,Tokutake M. Novel speciation analysis of copper in river water: Observation of soluble anionic copper-ligand complexes[J]. Limnology,2016,17(2): 117-125.
71 Van Den Berg C M G. Determination of the complexing capacity and conditional stability constants of complexes of copper(II) with natural organic ligands in seawater by cathodic stripping voltammetry of copper-catechol complex ions[J]. Marine Chemistry,1984,15(1): 1-18.
72 Van Den Berg C M G,Merks A G A,Duursma E K. Organic complexation and its control of the dissolved concentrations of copper and zinc in the Scheldt estuary[J]. Estuarine,Coastal and Shelf Science,1987,24(6): 785-797.
73 Donat J R,Lao K A,Bruland K W. Speciation of dissolved copper and nickel in South San Francisco Bay: A multi-method approach[J]. Analytica Chimica Acta,1994,284(3): 547-571.
74 Nixon R L,Jackson S L,Cullen J T,et al. Distribution of copper-complexing ligands in Canadian Arctic waters as determined by immobilized copper(II)-ion affinity chromatography[J]. Marine Chemistry,2019,215: 103673.
75 Sunda W G,Huntsman S A. Processes regulating cellular metal accumulation and physiological effects: Phytoplankton as model systems[J]. Science of the Total Environment,1998,219(2): 165-181.
76 Phinney J T,Bruland K W. Uptake of lipophilic organic Cu,Cd,and Pb complexes in the coastal diatom Thalassiosira weissflogii[J]. Environmental Science & Technology,1994,28(11): 1 781-1 790.
77 Croot P L,Moffett J W,Brand L E. Production of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stress[J]. Limnology and Oceanography,2000,45(3): 619-627.
78 Annett A L,Lapi S E,Ruth T J,et al. The effects of Cu and Fe availability on the growth and Cu∶C ratios of marine diatoms[J]. Limnology and Oceanography,2008,53(6): 2451-2461.
79 Millero F,Woosley R,Ditrolio B,et al. Effect of ocean acidification on the speciation of metals in seawater[J]. Oceanography,2009,22(4): 72-85.
80 Schleicher N J,Dong S,Packman H,et al. A global assessment of copper,zinc,and lead isotopes in mineral dust sources and aerosols[J]. Frontiers in Earth Science,2020,8: 167.
81 Takano S,Tanimizu M,Hirata T,et al. Isotopic constraints on biogeochemical cycling of copper in the ocean[J]. Nature communications,2014,5: 5 663.
82 Little S H,Vance D,Mcmanus J,et al. Copper isotope signatures in modern marine sediments[J]. Geochimica et Cosmochimica Acta,2017,212: 253-273.
83 Baconnais I,Rouxel O,Dulaquais G,et al. Determination of the copper isotope composition of seawater revisited: A case study from the Mediterranean Sea[J]. Chemical Geology,2019,511: 465-480.
84 Thompson C M,Ellwood M J. Dissolved copper isotope biogeochemistry in the Tasman Sea,SW Pacific Ocean[J]. Marine Chemistry,2014,165: 1-9.
85 Albarède F. The stable isotope geochemistry of copper and zinc[J]. Reviews in Mineralogy and Geochemistry,2004,55(1): 409-427.
86 Zhu X K,O'nions R K,Guo Y,et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers[J]. Chemical Geology,2000,163(1/4): 139-149.
87 Takano S,Liao W-H,Tian H-A,et al. Sources of particulate Ni and Cu in the water column of the northern South China Sea: Evidence from elemental and isotope ratios in aerosols and sinking particles[J]. Marine Chemistry,2020,219: 103751.
88 Boyle E,Edmond J,Sholkovitz E. The mechanism of iron removal in estuaries[J]. Geochimica et Cosmochimica Acta,1977,41(9): 1 313-1 324.
89 Spokes L J,Jickells T D. Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater[J]. Aquatic Geochemistry,1995,1(4): 355-374.
90 Jickells T D,An Z S,Andersen K K,et al. Global iron connections between desert dust,ocean biogeochemistry,and climate[J]. Science,2005,308(5 718): 67-71.
91 Paytan A,Mackey K R M,Chen Y,et al. Toxicity of atmospheric aerosols on marine phytoplankton[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(12): 4 601-4 605.
92 Desboeufs K V,Sofikitis A,Losno R,et al. Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter[J]. Chemosphere,2005,58(2): 195-203.
93 Sholkovitz E R,Sedwick P N,Church T M. On the fractional solubility of copper in marine aerosols: Toxicity of aeolian copper revisited[J]. Geophysical Research Letters,2010,37(20): L20601.
94 Calvert S. Geochemistry and origin of the Holocene sapropel in the Black Sea[J]. Facets of Modern Biogeochemistry,1990,326-352.
95 Calvert S,Pedersen T. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine geology,1993,113(1/2): 67-88.
96 Millward G E,Moore R M. The adsorption of Cu,Mn and Zn by iron oxyhydroxide in model estuarine solutions[J]. Water Research,1982,16(6): 981-985.
97 Morse J W,Arakaki T. Adsorption and coprecipitation of divalent metals with mackinawite (FeS)[J]. Geochimica et Cosmochimica Acta,1993,57(15): 3 635-3 640.
98 Vance D,Archer C,Bermin J,et al. The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters,2008,274(1/2): 204-213.
99 Schlitzer R,Anderson R F,Masferrer Dodas E,et al. The GEOTRACES Intermediate Data Product 2017[J]. Chemical Geology, 2018, 493: 210-223.
100 Lannuzel D,Bowie A R,Van Der Merwe P C,et al. Distribution of dissolved and particulate metals in Antarctic sea ice[J]. Marine Chemistry,2011,124(1/4): 134-146.
101 Hsu S,Wong G T F,Gong G,et al. Sources,solubility,and dry deposition of aerosol trace elements over the East China Sea[J]. Marine Chemistry,2010,120(1): 116-127.
102 Li J,Wang Z F,Zhuang G,et al. Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super-duststorm in March 2010[J]. Atmospheric Chemistry and Physics,2012,12(16): 7 591-7 607.
103 Moffett J W,Brand L E,Croot P,et al. Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs[J]. Limnology and Oceanography,1997,42(5): 789-799.
104 Martinezsoto M C,Tovarsanchez A,Sanchezquiles D,et al. Seasonal variation and sources of dissolved trace metals in Maó Harbour,Minorca Island[J]. Science of the Total Environment,2016,565: 191-199.
105 Li L,Liu J H,Wang X J,et al. Dissolved trace metal distributions and Cu speciation in the southern Bohai Sea,China[J]. Marine Chemistry,2015,172: 34-45.
106 Li L,Pala F,Jiang M,et al. Three-dimensional modeling of Cu and Pb distributions in Boston Harbor,Massachusetts and Cape Cod Bays[J]. Estuarine,Coastal and Shelf Science,2010,88(4): 450-463.
107 Cloete R,Loock J,Mtshali T,et al. Winter and summer distributions of Copper,Zinc and Nickel along the International GEOTRACES Section GIPY05: Insights into deep winter mixing[J]. Chemical Geology,2019,511: 342-357.
108 Chase Z,Paytan A,Beck A J,et al. Evaluating the impact of atmospheric deposition on dissolved trace-metals in the Gulf of Aqaba,Red Sea[J]. Marine Chemistry,2011,126(1): 256-268.
109 Bruland K,Lohan M. Controls of trace metals in seawater[J]. The Oceans and Marine Geochemistry,2003,6: 23-47.
110 Moore R M. The distribution of dissolved copper in the eastern Atlantic Ocean[J]. Earth and Planetary Science Letters,1978,41(4): 461-468.
111 Saager P M,De Baar H J,Howland R J. Cd,Zn,Ni and Cu in the Indian Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers,1992,39(1): 9-35.
112 Hines M E,Lyons W B,Armstrong P B,et al. Seasonal metal remobilization in the sediments of Great Bay,New Hampshire[J]. Marine Chemistry,1984,15(2): 173-187.
113 Jacquot J E,Moffett J W. Copper distribution and speciation across the International GEOTRACES Section GA03[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2015,116: 187-207.
114 Tagliabue A,Resing J. Impact of hydrothermalism on the ocean iron cycle[J]. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences,2016,374(2 081): 20150291.
115 Little S H,Vance D,Siddall M,et al. A modeling assessment of the role of reversible scavenging in controlling oceanic dissolved Cu and Zn distributions[J]. Global Biogeochemical Cycles,2013,27: 780-791.
116 Weber T,John S,Tagliabue A,et al. Biological uptake and reversible scavenging of zinc in the global ocean[J]. Science,2018,361(6 397): 72-76.
117 Bacon M P,Anderson R F. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea[J]. Journal of Geophysical Research: Oceans,1982,87(C3): 2 045-2 056.
118 Nixon R L,Jackson S L,Cullen J T,et al. Distribution of copper-complexing ligands in Canadian Arctic waters as determined by immobilized copper(II)-ion affinity chromatography[J]. Marine Chemistry,2019,215: 103673.
119 Johnson K S,Gordon R M,Coale K H. What controls dissolved iron concentrations in the world ocean?[J]. Marine Chemistry,1997,57(3): 137-161.
120 Chen Y,Paytan A,Chase Z,et al. Sources and fluxes of atmospheric trace elements to the Gulf of Aqaba,Red Sea[J]. Journal of Geophysical Research: Atmospheres,2008,113(D5): D05306. DOI:10.1029/2007JD009110.
doi: 10.1029/2007JD009110    
121 Balistrieri L S,Murray J W. Marine scavenging: Trace metal adsorption by interfacial sediment from MANOP Site H[J]. Geochimica et Cosmochimica Acta,1984,48(5): 921-929.
122 Balistrieri L,Brewer P G,Murray J W. Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers,1981,28(2): 101-121.
123 Feng Shibo,Jiang Yuelu,Cai Zhonghua,et al. The state of arts: Sources,microbial processesand ecological effects of iron in the marine environment[J]. Advances in Earth Science,2019,34(5): 513-522.
冯世博,姜玥璐,蔡中华,等. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展,2019,34(5): 513-522.
124 Liu Na,Wang Hui,Ling Tiejun,et al. Review and prospect of global operational ocean forecasting[J]. Advances in Earth Science,2018,33(2): 131-140.
刘娜,王辉,凌铁军,等. 全球业务化海洋预报进展与展望[J]. 地球科学进展,2018,33(2): 131-140.
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[4] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[5] 向杰, 陈建平, 胡彬, 胡桥, 杨伟. 基于三维地质—地球物理模型的三维成矿预测——以安徽铜陵矿集区为例[J]. 地球科学进展, 2016, 31(6): 603-614.
[6] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[7] 胡作维, 李云, 李北康, 黄思静, 韩信. 显生宙以来海水锶同位素组成研究的回顾与进展[J]. 地球科学进展, 2015, 30(1): 37-49.
[8] 方维萱, 李建旭. 智利铁氧化物铜金型矿床成矿规律、控制因素与成矿演化[J]. 地球科学进展, 2014, 29(9): 1011-1024.
[9] 张文媛, 王翠芝, 魏晓灿, 范明森, 陈丽华. 紫金山金铜矿黄铁矿化学成分标型特征及其意义[J]. 地球科学进展, 2014, 29(8): 974-984.
[10] 刘花台, 郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展, 2014, 29(7): 774-785.
[11] 宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 西藏班公湖—怒江成矿带研究进展及一些新认识[J]. 地球科学进展, 2014, 29(7): 795-809.
[12] 熊欣, 徐文艺, 贾丽琼, 李骏. 斑岩铜矿成矿构造背景研究进展[J]. 地球科学进展, 2014, 29(2): 250-264.
[13] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[14] 李玉红, 詹力扬, 陈立奇. 北冰洋CH 4研究进展[J]. 地球科学进展, 2014, 29(12): 1355-1361.
[15] 王翠芝. 紫金山铜金矿明矾石交代蚀变岩的岩石地球化学特征[J]. 地球科学进展, 2013, 28(8): 897-912.
阅读次数
全文


摘要