1 |
Hatje V,Bruland K W,Flegal A R. Determination of rare earth elements after pre-concentration using NOBIAS-chelate PA-1?resin: Method development and application in the San Francisco Bay plume[J]. Marine Chemistry,2014,160: 34-41.
|
2 |
Rapp I,Schlosser C,Rusiecka D,et al. Automated preconcentration of Fe,Zn,Cu,Ni,Cd,Pb,Co,and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry[J]. Analytica Chimica Acta,2017,976: 1-13.
|
3 |
Wu J,Boyle E A. Low blank preconcentration technique for the determination of lead,Copper,and Cadmium in small-volume seawater samples by Isotope Dilution ICPMS[J]. Analytical Chemistry,1997,69(13): 2 464-2 470.
|
4 |
Morel F M M,Price N M. The biogeochemical cycles of trace metals in the oceans[J]. Science,2003,300(5 621): 944-947.
|
5 |
Boyle E,Sclater F,Edmond J. The distribution of dissolved copper in the Pacific[J]. Earth and Planetary Science Letters,1977,37(1): 38-54.
|
6 |
Boyle E A,Edmond J M. Copper in surface waters south of New Zealand[J]. Nature,1975,253(5 487): 107-109.
|
7 |
Spencer D W,Robertson D E,Turekian K K,et al. Trace element calibrations and profiles at the Geosecs Test Station in the northeast Pacific Ocean[J]. Journal of Geophysical Research,1970,75(36): 7 688-7 696.
|
8 |
Bruland K W,Lohan M C. Controls of Trace Metals in Seawater[M]. America: Elsevier,2003: 23-47.
|
9 |
Group S W. GEOTRACES—An international study of the global marine biogeochemical cycles of trace elements and their isotopes[J]. Geochemistry,2007,67(2): 85-131.
|
10 |
Brand L E,Sunda W G,Guillard R R L. Reduction of marine phytoplankton reproduction rates by copper and cadmium [J]. Journal of Experimental Marine Biology and Ecology,1986,96(3): 225-250.
|
11 |
Sunda W G. Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean[J]. Frontiers in Microbiology,2012,3: 204.
|
12 |
Raven J A,Evans M C W,Korb R E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms[J]. Photosynthesis Research,1999,60(2): 111-150.
|
13 |
Peers G,Price N M. Copper-containing plastocyanin used for electron transport by an oceanic diatom[J]. Nature,2006,441(7 091): 341-344.
|
14 |
Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43(1): 83-116.
|
15 |
Walker C B,De La Torre J R,Klotz M G,et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(19): 8 818-8 823.
|
16 |
Granger J,Price N M. The importance of siderophores in iron nutrition of heterotrophic marine bacteria[J]. Limnology and Oceanography,1999,44(3): 541-555.
|
17 |
Wells M L,Kozelka P B,Bruland K W. The complexation of 'dissolved' Cu,Zn,Cd and Pb by soluble and colloidal organic matter in Narragansett Bay,RI[J]. Marine Chemistry,1998,62(3): 203-217.
|
18 |
Smrzka D,Zwicker J,Bach W,et al. The behavior of trace elements in seawater,sedimentary pore water,and their incorporation into carbonate minerals: A review[J]. Facies,2019,65(4): 41.
|
19 |
Fru E C,Rodriguez N P,Partin C A,et al. Cu isotopes in marine black shales record the Great Oxidation Event[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(18): 4 941-4 946.
|
20 |
Bruland K W. Oceanographic distributions of cadmium,zinc,nickel,and copper in the North Pacific[J]. Earth and Planetary Science Letters,1980,47(2): 176-198.
|
21 |
Posacka A M,Semeniuk D M,Whitby H,et al. Dissolved Copper (dCu) biogeochemical cycling in the subarctic Northeast Pacific and a call for improving methodologies[J]. Marine Chemistry,2017,196: 47-61.
|
22 |
Roshan S,Wu J. The distribution of dissolved copper in the tropical-subtropical north Atlantic across the GEOTRACES GA03 transect[J]. Marine Chemistry,2015,176: 189-198.
|
23 |
Little S,Vance D,Walker-Brown C,et al. The oceanic mass balance of copper and zinc isotopes,investigated by analysis of their inputs,and outputs to ferromanganese oxide sediments[J]. Geochimica et Cosmochimica Acta,2014,125: 673-693.
|
24 |
Richon C,Tagliabue A. Insights into the major processes driving the global distribution of copper in the ocean from a global model[J]. Global Biogeochemical Cycles,2019,33: 1 594-1 610.
|
25 |
Hill K L,Hassett R,Kosman D J,et al. Regulated copper uptake in chlamydomonas reinhardtii in response to copper availability[J]. Plant Physiology,1996,112(2): 697-704.
|
26 |
Herbik A,Bolling C,Buckhout T J. The involvement of a multicopper oxidase in iron uptake by the green algae chlamydomonas reinhardtii[J]. Plant Physiology,2002,130(4): 2 039-2 048.
|
27 |
Vajrala N,Martens-Habbena W,Sayavedra-Soto L A,et al. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(3): 1 006-1 011.
|
28 |
Amin S A,Moffett J W,Martens-Habbena W,et al. Copper requirements of the ammonia-oxidizing archaeon Nitrosopumilus maritimus SCM1 and implications for nitrification in the marine environment[J]. Limnology and Oceanography,2013,58(6): 2 037-2 045.
|
29 |
Stauber J L,Florence T M. Mechanism of toxicity of ionic copper and copper complexes to algae[J]. Marine Biology,1987,94(4): 511-519.
|
30 |
Biswas H,Bandyopadhyay D. Physiological responses of coastal phytoplankton (Visakhapatnam,SW Bay of Bengal,India) to experimental copper addition[J]. Marine Environmental Research,2017,131: 19-31.
|
31 |
Stuart R K,Dupont C L,Johnson D A,et al. Coastal strains of marine Synechococcus species exhibit increased tolerance to copper shock and a distinctive transcriptional response relative to those of open-ocean strains[J]. Applied and Environmental Microbiology,2009,75(15): 5 047-5 057.
|
32 |
Baron M,Arellano J B,Gorge J L. Copper and photosystem II: A controversial relationship[J]. Physiologia Plantarum,1995,94(1): 174-180.
|
33 |
Coale K H,Bruland K W. Copper complexation in the Northeast Pacific[J]. Limnology and Oceanography,1988,33(5): 1 084-1 101.
|
34 |
Sunda W G,Huntsman S A. Interactions among Cu2+,Zn2+,and Mn2+ in controlling cellular Mn,Zn,and growth rate in the coastal alga Chlamydomonas[J]. Limnology and Oceanography,1998,43(6): 1 055-1 064.
|
35 |
Guo C,Yu J Z,Ho T,et al. Dynamics of phytoplankton community structure in the South China Sea in response to the East Asian aerosol input[J]. Biogeosciences,2011,9(4): 1 519-1 536.
|
36 |
Maldonado M T,Price N M. Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae)[J]. Journal of Phycology,2001,37(2): 298-309.
|
37 |
Maldonado M T,Price N M. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography,1999,46(11): 2 447-2 473.
|
38 |
Maldonado M T,Allen A E,Chong J S,et al. Copper‐dependent iron transport in coastal and oceanic diatoms[J]. Limnology and Oceanography,2006,51(4): 1 729-1 743.
|
39 |
Shaked Y,Kustka A B,Morel F M M. A general kinetic model for iron acquisition by eukaryotic phytoplankton[J]. Limnology and Oceanography,2005,50(3): 872-882.
|
40 |
De Baar H J W,Boyd P W,Coale K H,et al. Synthesis of iron fertilization experiments: From the iron age in the age of Enlightenment[J]. Journal of Geophysical Research,2005,110(9): 1-24.
|
41 |
Sunda W G,Huntsman S A. Interactive effects of external manganese,the toxic metals copper and zinc,and light in controlling cellular manganese and growth in a coastal diatom[J]. Limnology and Oceanography,1998,43(7): 1 467-1 475.
|
42 |
Rueter J G,Morel F M M. The interaction between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanisms in Thalassiosira pseudonana1[J]. Limnology and Oceanography,1981,26(1): 67-73.
|
43 |
Quigg A,Reinfelder J R,Fisher N S. Copper uptake kinetics in diverse marine phytoplankton[J]. Limnology and Oceanography,2006,51(2): 893-899.
|
44 |
Gordon A S,Howell L D,Harwood V. Responses of diverse heterotrophic bacteria to elevated copper concentrations[J]. Canadian Journal of Microbiology,1994,40(5): 408-411.
|
45 |
Kawakami S K,Gledhill M,Achterberg E P. Production of phytochelatins and glutathione by marine phytoplankton in response to metal stress[J]. Journal of Phycology,2006,42(5): 975-989.
|
46 |
Moffett J W,Brand L E. Production of strong,extracellular Cu chelators by marine cyanobacteria in response to Cu stress[J]. Limnology and Oceanography,1996,41(3): 388-395.
|
47 |
Lee J G,Ahner B A,Morel F M M. Export of cadmium and phytochelatin by the marine diatom Thalassiosira weissflogii[J]. Environmental Science & Technology,1996,30(6): 1 814-1 821.
|
48 |
Levy J L,Stauber J L,Jolley D F. Sensitivity of marine microalgae to copper: The effect of biotic factors on copper adsorption and toxicity[J]. Science of the Total Environment,2007,387(1/3): 141-154.
|
49 |
Peers G,Quesnel S,Price N M. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms[J]. Limnology and Oceanography,2005,50(4): 1 149-1 158.
|
50 |
Williams R J. The natural selection of the chemical elements[J]. Cellular and Molecular Life Sciences,1997,53(10): 816-829.
|
51 |
Moffett J W,Zika R G. Measurement of copper(I) in surface waters of the subtropical Atlantic and Gulf of Mexico[J]. Geochimica et Cosmochimica Acta,1988,52(7): 1 849-1 857.
|
52 |
Bruland K W,Donat J R,Hutchins D A. Interactive influences of bioactive trace metals on biological production in oceanic waters[J]. Limnology and Oceanography,1991,36(8): 1 555-1 577.
|
53 |
Moffett J W,Dupont C. Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea[J]. Deep-Sea Research Part I: Oceanographic Research Papers,2007,54(4): 586-595.
|
54 |
Buck K N,Ross J R M,Flegal A R,et al. A review of total dissolved copper and its chemical speciation in San Francisco Bay,California[J]. Environmental Research,2007,105(1): 5-19.
|
55 |
Byrne R H,Van Der Weijden C H,Kester D R,et al. Evaluation of the CuCl+ stability constant and molar absorptivity in aqueous media[J]. Journal of Solution Chemistry,1983,12(8): 581-596.
|
56 |
Powell K J,Brown P L,Byrne R H,et al. Chemical speciation of environmentally significant metals with inorganic ligands - Part 2: The Cu2+-OH-,Cl-,CO32-,SO42-,and PO43- systems - (IUPAC technical report)[J]. Pure and Applied Chemistry,2007,79(5): 895-950.
|
57 |
Voelker B M,Sedlak,L D,et al. Chemistry of superoxide radical in seawater: Reactions with organic Cu complexes[J]. Environmental Science & Technology,2000,34(6): 1 036-1 042.
|
58 |
Zafiriou O C,Voelker B M,Sedlak D L. Chemistry of the Superoxide Radical (O2-) in Seawater: Reactions with Inorganic Copper Complexes[J]. Journal of Physical Chemistry A,1998,102(28): 5 693-5 700.
|
59 |
Gonzalez-Davila M,Santana-Casiano J M,Gonzalez A G,et al. Oxidation of copper(I) in seawater at nanomolar levels[J]. Marine Chemistry,2009,115(1/2): 118-124.
|
60 |
Moffett J W,Zika R G. Oxidation kinetics of Cu(I) in seawater: Implications for its existence in the marine environment[J]. Marine Chemistry,1983,13(3): 239-251.
|
61 |
Leal M F C,Van Den Berg C M G. Evidence for strong copper(I) complexation by organic ligands in seawater[J]. Aquatic Geochemistry,1998,4(1): 49-75.
|
62 |
Little S H,Archer C,Milne A,et al. Paired dissolved and particulate phase Cu isotope distributions in the South Atlantic[J]. Chemical Geology,2018,502: 29-43.
|
63 |
Lee J-M,Heller M I,Lam P J. Size distribution of particulate trace elements in the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16)[J]. Marine Chemistry,2018,201: 108-123.
|
64 |
Ohnemus D C,Torrie R,Wining B S. Exposing the distributions and elemental associations of scavenged particulate phases in the ocean using basin-scale multi-element data sets[J]. Global Biogeochemical Cycles,2019,33(6): 725-748.
|
65 |
Tait T N,Mcgeer J C,Smith D S. Testing the underlying chemical principles of the Biotic Ligand Model (BLM) to marine copper systems: Measuring copper speciation using fluorescence quenching[J]. Bulletin of Environmental Contamination and Toxicology,2018,100(1): 76-81.
|
66 |
Smith D S,Bell R A,Kramer J R. Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites[J]. Comparative Biochemistry and Physiology C:Toxicology & Pharmacology,2002,133(1): 65-74.
|
67 |
Leal M F C,Vasconcelos M T S D,Den Berg C M G V. Copper-induced release of complexing ligands similar to thiols by Emiliania huxleyi in seawater cultures[J]. Limnology and Oceanography,1999,44(7): 1 750-1 762.
|
68 |
Kim H J,Graham D W,Dispirito A A,et al. Methanobactin,a copper-acquisition compound from methane-oxidizing bacteria[J]. Science,2004,305(5 690): 1 612-1 615.
|
69 |
Olafson R W,Mccubbin W D,Kay C M. Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium[J]. Biochemical Journal,1988,251(3): 691-699.
|
70 |
Takamuraenya T,Tokutake M. Novel speciation analysis of copper in river water: Observation of soluble anionic copper-ligand complexes[J]. Limnology,2016,17(2): 117-125.
|
71 |
Van Den Berg C M G. Determination of the complexing capacity and conditional stability constants of complexes of copper(II) with natural organic ligands in seawater by cathodic stripping voltammetry of copper-catechol complex ions[J]. Marine Chemistry,1984,15(1): 1-18.
|
72 |
Van Den Berg C M G,Merks A G A,Duursma E K. Organic complexation and its control of the dissolved concentrations of copper and zinc in the Scheldt estuary[J]. Estuarine,Coastal and Shelf Science,1987,24(6): 785-797.
|
73 |
Donat J R,Lao K A,Bruland K W. Speciation of dissolved copper and nickel in South San Francisco Bay: A multi-method approach[J]. Analytica Chimica Acta,1994,284(3): 547-571.
|
74 |
Nixon R L,Jackson S L,Cullen J T,et al. Distribution of copper-complexing ligands in Canadian Arctic waters as determined by immobilized copper(II)-ion affinity chromatography[J]. Marine Chemistry,2019,215: 103673.
|
75 |
Sunda W G,Huntsman S A. Processes regulating cellular metal accumulation and physiological effects: Phytoplankton as model systems[J]. Science of the Total Environment,1998,219(2): 165-181.
|
76 |
Phinney J T,Bruland K W. Uptake of lipophilic organic Cu,Cd,and Pb complexes in the coastal diatom Thalassiosira weissflogii[J]. Environmental Science & Technology,1994,28(11): 1 781-1 790.
|
77 |
Croot P L,Moffett J W,Brand L E. Production of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stress[J]. Limnology and Oceanography,2000,45(3): 619-627.
|
78 |
Annett A L,Lapi S E,Ruth T J,et al. The effects of Cu and Fe availability on the growth and Cu∶C ratios of marine diatoms[J]. Limnology and Oceanography,2008,53(6): 2451-2461.
|
79 |
Millero F,Woosley R,Ditrolio B,et al. Effect of ocean acidification on the speciation of metals in seawater[J]. Oceanography,2009,22(4): 72-85.
|
80 |
Schleicher N J,Dong S,Packman H,et al. A global assessment of copper,zinc,and lead isotopes in mineral dust sources and aerosols[J]. Frontiers in Earth Science,2020,8: 167.
|
81 |
Takano S,Tanimizu M,Hirata T,et al. Isotopic constraints on biogeochemical cycling of copper in the ocean[J]. Nature communications,2014,5: 5 663.
|
82 |
Little S H,Vance D,Mcmanus J,et al. Copper isotope signatures in modern marine sediments[J]. Geochimica et Cosmochimica Acta,2017,212: 253-273.
|
83 |
Baconnais I,Rouxel O,Dulaquais G,et al. Determination of the copper isotope composition of seawater revisited: A case study from the Mediterranean Sea[J]. Chemical Geology,2019,511: 465-480.
|
84 |
Thompson C M,Ellwood M J. Dissolved copper isotope biogeochemistry in the Tasman Sea,SW Pacific Ocean[J]. Marine Chemistry,2014,165: 1-9.
|
85 |
Albarède F. The stable isotope geochemistry of copper and zinc[J]. Reviews in Mineralogy and Geochemistry,2004,55(1): 409-427.
|
86 |
Zhu X K,O'nions R K,Guo Y,et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers[J]. Chemical Geology,2000,163(1/4): 139-149.
|
87 |
Takano S,Liao W-H,Tian H-A,et al. Sources of particulate Ni and Cu in the water column of the northern South China Sea: Evidence from elemental and isotope ratios in aerosols and sinking particles[J]. Marine Chemistry,2020,219: 103751.
|
88 |
Boyle E,Edmond J,Sholkovitz E. The mechanism of iron removal in estuaries[J]. Geochimica et Cosmochimica Acta,1977,41(9): 1 313-1 324.
|
89 |
Spokes L J,Jickells T D. Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater[J]. Aquatic Geochemistry,1995,1(4): 355-374.
|
90 |
Jickells T D,An Z S,Andersen K K,et al. Global iron connections between desert dust,ocean biogeochemistry,and climate[J]. Science,2005,308(5 718): 67-71.
|
91 |
Paytan A,Mackey K R M,Chen Y,et al. Toxicity of atmospheric aerosols on marine phytoplankton[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(12): 4 601-4 605.
|
92 |
Desboeufs K V,Sofikitis A,Losno R,et al. Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter[J]. Chemosphere,2005,58(2): 195-203.
|
93 |
Sholkovitz E R,Sedwick P N,Church T M. On the fractional solubility of copper in marine aerosols: Toxicity of aeolian copper revisited[J]. Geophysical Research Letters,2010,37(20): L20601.
|
94 |
Calvert S. Geochemistry and origin of the Holocene sapropel in the Black Sea[J]. Facets of Modern Biogeochemistry,1990,326-352.
|
95 |
Calvert S,Pedersen T. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine geology,1993,113(1/2): 67-88.
|
96 |
Millward G E,Moore R M. The adsorption of Cu,Mn and Zn by iron oxyhydroxide in model estuarine solutions[J]. Water Research,1982,16(6): 981-985.
|
97 |
Morse J W,Arakaki T. Adsorption and coprecipitation of divalent metals with mackinawite (FeS)[J]. Geochimica et Cosmochimica Acta,1993,57(15): 3 635-3 640.
|
98 |
Vance D,Archer C,Bermin J,et al. The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters,2008,274(1/2): 204-213.
|
99 |
Schlitzer R,Anderson R F,Masferrer Dodas E,et al. The GEOTRACES Intermediate Data Product 2017[J]. Chemical Geology, 2018, 493: 210-223.
|
100 |
Lannuzel D,Bowie A R,Van Der Merwe P C,et al. Distribution of dissolved and particulate metals in Antarctic sea ice[J]. Marine Chemistry,2011,124(1/4): 134-146.
|
101 |
Hsu S,Wong G T F,Gong G,et al. Sources,solubility,and dry deposition of aerosol trace elements over the East China Sea[J]. Marine Chemistry,2010,120(1): 116-127.
|
102 |
Li J,Wang Z F,Zhuang G,et al. Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super-duststorm in March 2010[J]. Atmospheric Chemistry and Physics,2012,12(16): 7 591-7 607.
|
103 |
Moffett J W,Brand L E,Croot P,et al. Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs[J]. Limnology and Oceanography,1997,42(5): 789-799.
|
104 |
Martinezsoto M C,Tovarsanchez A,Sanchezquiles D,et al. Seasonal variation and sources of dissolved trace metals in Maó Harbour,Minorca Island[J]. Science of the Total Environment,2016,565: 191-199.
|
105 |
Li L,Liu J H,Wang X J,et al. Dissolved trace metal distributions and Cu speciation in the southern Bohai Sea,China[J]. Marine Chemistry,2015,172: 34-45.
|
106 |
Li L,Pala F,Jiang M,et al. Three-dimensional modeling of Cu and Pb distributions in Boston Harbor,Massachusetts and Cape Cod Bays[J]. Estuarine,Coastal and Shelf Science,2010,88(4): 450-463.
|
107 |
Cloete R,Loock J,Mtshali T,et al. Winter and summer distributions of Copper,Zinc and Nickel along the International GEOTRACES Section GIPY05: Insights into deep winter mixing[J]. Chemical Geology,2019,511: 342-357.
|
108 |
Chase Z,Paytan A,Beck A J,et al. Evaluating the impact of atmospheric deposition on dissolved trace-metals in the Gulf of Aqaba,Red Sea[J]. Marine Chemistry,2011,126(1): 256-268.
|
109 |
Bruland K,Lohan M. Controls of trace metals in seawater[J]. The Oceans and Marine Geochemistry,2003,6: 23-47.
|
110 |
Moore R M. The distribution of dissolved copper in the eastern Atlantic Ocean[J]. Earth and Planetary Science Letters,1978,41(4): 461-468.
|
111 |
Saager P M,De Baar H J,Howland R J. Cd,Zn,Ni and Cu in the Indian Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers,1992,39(1): 9-35.
|
112 |
Hines M E,Lyons W B,Armstrong P B,et al. Seasonal metal remobilization in the sediments of Great Bay,New Hampshire[J]. Marine Chemistry,1984,15(2): 173-187.
|
113 |
Jacquot J E,Moffett J W. Copper distribution and speciation across the International GEOTRACES Section GA03[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2015,116: 187-207.
|
114 |
Tagliabue A,Resing J. Impact of hydrothermalism on the ocean iron cycle[J]. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences,2016,374(2 081): 20150291.
|
115 |
Little S H,Vance D,Siddall M,et al. A modeling assessment of the role of reversible scavenging in controlling oceanic dissolved Cu and Zn distributions[J]. Global Biogeochemical Cycles,2013,27: 780-791.
|
116 |
Weber T,John S,Tagliabue A,et al. Biological uptake and reversible scavenging of zinc in the global ocean[J]. Science,2018,361(6 397): 72-76.
|
117 |
Bacon M P,Anderson R F. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea[J]. Journal of Geophysical Research: Oceans,1982,87(C3): 2 045-2 056.
|
118 |
Nixon R L,Jackson S L,Cullen J T,et al. Distribution of copper-complexing ligands in Canadian Arctic waters as determined by immobilized copper(II)-ion affinity chromatography[J]. Marine Chemistry,2019,215: 103673.
|
119 |
Johnson K S,Gordon R M,Coale K H. What controls dissolved iron concentrations in the world ocean?[J]. Marine Chemistry,1997,57(3): 137-161.
|
120 |
Chen Y,Paytan A,Chase Z,et al. Sources and fluxes of atmospheric trace elements to the Gulf of Aqaba,Red Sea[J]. Journal of Geophysical Research: Atmospheres,2008,113(D5): D05306. DOI:10.1029/2007JD009110.
doi: 10.1029/2007JD009110
|
121 |
Balistrieri L S,Murray J W. Marine scavenging: Trace metal adsorption by interfacial sediment from MANOP Site H[J]. Geochimica et Cosmochimica Acta,1984,48(5): 921-929.
|
122 |
Balistrieri L,Brewer P G,Murray J W. Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers,1981,28(2): 101-121.
|
123 |
Feng Shibo,Jiang Yuelu,Cai Zhonghua,et al. The state of arts: Sources,microbial processesand ecological effects of iron in the marine environment[J]. Advances in Earth Science,2019,34(5): 513-522.
|
|
冯世博,姜玥璐,蔡中华,等. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展,2019,34(5): 513-522.
|
124 |
Liu Na,Wang Hui,Ling Tiejun,et al. Review and prospect of global operational ocean forecasting[J]. Advances in Earth Science,2018,33(2): 131-140.
|
|
刘娜,王辉,凌铁军,等. 全球业务化海洋预报进展与展望[J]. 地球科学进展,2018,33(2): 131-140.
|