Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (7): 795-809    DOI: 10.11867/j.issn.1001-8166.2014.07.0795
综述与评述     
西藏班公湖—怒江成矿带研究进展及一些新认识
宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳
中国地质科学院矿产资源研究所,国土资源部成矿作用与资源评价重点实验室,北京 100037
Metallogenic Belt and Some New Recognition
Song Yang, Tang Juxing, Qu Xiaoming, Wang Denghong, Xin Hongbo, Yang Chao, Lin Bin, Fan Shufang
MLR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,CAGS,Beijing 100037,China
 全文: PDF(3960 KB)   HTML
摘要:

狭义的班公湖—怒江成矿带的范围与班公湖—怒江洋盆残留的蛇绿混杂岩带一致,包括与超基性岩浆熔离作用相关的Cr,Fe,Ni等矿床;广义的班公湖—怒江成矿带包括缝合线南北两侧与班公湖—怒江洋俯冲、碰撞、碰撞后及陆内伸展作用有关的所有矿床和岩浆岩,其范围包括南羌塘地体南缘、班公湖—怒江缝合带、北—中拉萨地块的大部分区域,发育的矿床类型有斑岩型铜(金)矿、矽卡岩型铁(铜)矿、热液—蚀变岩型金矿和热液型钨矿等,涉及的动力学背景包括活动大陆边缘到板内的各个阶段。在2期重要的斑岩铜(金)成矿作用中,120~105 Ma BP矿床的形成与拉萨地体和南羌塘地体碰撞过程中深部俯冲洋壳物质的重熔有关,90~85 Ma BP矿床始于碰撞后阶段岩石圈地幔的底侵作用。一些关键的基础性科学问题,诸如大地构造背景(成矿环境)、岩浆作用特征、典型矿床成矿机制、矿床的保存与高原隆升之间的关系等,需要在今后的研究工作中予以关注。

关键词: 班怒成矿带矿床学斑岩铜矿青藏高原    
Abstract:

The traditional Bangongco-Nujiang metallogenic belt overlap with the ophiolitic melange units remained in the Bangongco-Nujiang ocean including the Cr, Au, Fe mineralization controlled with magma liquation. On the other hand, the broad metallogenic belt involved the deposits which had been recognized the products of subduction or postsubduction lithospheric extension in the northern and southern sides of Bangongco-Nujiang subduction zone, which includes the southern edge of the southern Qiangtang, suture zone, part of the North and Middle Gangdese block. The types of deposits include porphyry copper (gold) deposits, skarn iron (copper) deposits, hydrothermal-altered rock type of gold deposits and hydrothermal type of tungsten deposits throughout the evolution of Bangongco-Nujiang ocean. The copper mineralization has two episodes at about 120~105 Ma and 90~85 Ma, respectively. The early stage of copper mineralization (120~105 Ma) likely formes by remelting of previously subduction-modified arc lithosphere. Moreover, the late stage of copper mineralization (90~85 Ma) could be triggered by postcollisional lithospheric mantle delamination. Some of key fundamental scientific problems, such as Tectonic background (metallogenic environment), magmatism, metallogenic mechanism of typical deposits, the relationship between the preservation and plateau uplift, we need to pay attention to in the future work.

Key words: Porphyry copper deposits    The Qinghai-Tibet plateau    Deposits.    Bangongco-Nujiang metallogenic belt
出版日期: 2014-07-10
:  P611  
基金资助:

国家重点基础研究发展计划项目“青藏高原南部增生造山成矿系统发育机制”(编号:2011CB403103); 中国地质调查局项目“我国重要矿产和区域成矿规律研究”(编号:1212010633903)资助

作者简介: 宋扬(1983-),男,新疆乌鲁木齐人,助理研究员,主要从事矿产勘查和区域成矿规律研究. E-mail:songyang100@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曲晓明
宋扬
王登红
辛洪波
杨超
范淑芳
唐菊兴
林彬

引用本文:

宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 西藏班公湖—怒江成矿带研究进展及一些新认识[J]. 地球科学进展, 2014, 29(7): 795-809.

Song Yang, Tang Juxing, Qu Xiaoming, Wang Denghong, Xin Hongbo, Yang Chao, Lin Bin, Fan Shufang. Metallogenic Belt and Some New Recognition. Advances in Earth Science, 2014, 29(7): 795-809.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.07.0795        http://www.adearth.ac.cn/CN/Y2014/V29/I7/795

[1] Tianfeng. Paleozoic tectonics and its related endogenic metallogeny in Tianshan-Altay region[J]. Mineral Deposits,2013, 32(4): 706-715.[万天丰. 天山—阿尔泰地区古生代构造及相关的内生成矿作用[J]. 矿床地质, 2013, 32(4): 706-715.]
[2] J W, Pirajno F, Lehmann B, et al. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings[J]. Journal of Asian Earth Sciences, 2013,79: 576-584.
[3] J P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37 (3): 247-250.
[4] Z Q, Yang Z M, Qu X M, et al. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 2009, 36(1/3): 25-51.
[5] Z M, Hou Z Q, White N C, et al. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet[J]. Ore Geology Reviews, 2009, 36(1/3): 133-159.
[6] Z Q, Cook N J. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue[J]. Ore Geology Reviews, 2009, 36(1/3): 2-24.
[7] Yuchuan, Zhu Yusheng, Xiao Keyan, et al. Division of minerogenic provinces (belts) in China[J]. Mineral Deposits,2006, 25(Suppl.1): 1-6.[陈毓川,朱裕生,肖克炎,等. 中国成矿区(带)的划分[J]. 矿床地质, 2006, 25(增刊1): 1-6.]
[8] Yusheng, Xiao Keyan,Song Guoyao. Geological Feature and Metallogenic Pedigree of Ore Deposits in the Major Metallogenic Regions (Belts) in China[M]. Beijing: Geological Publishing House, 2007.[朱裕生,肖克炎,宋国耀. 中国主要成矿区 (带) 成矿地质特征及矿床成矿谱系[M]. 北京: 地质出版社, 2007.]
[9] Zhigang, Wang Denghong, Chen Yuchuan. The Scheme of the Classification of the Minerogenetic Units in China[M]. Beijing: Geological Publishing House, 2008.[徐志刚,王登红,陈毓川. 中国成矿区带划分方案[M]. 北京: 地质出版社, 2008.]
[10] Quanru,Pan Guitang,Wang Liquan, et al. Tethyan evolution and metallogenic geological background of the Bangong Co-Nujiang belt and the Qiangtang massif in Tibet[J]. Geological Bulletin of China, 2011, 31(8): 1 261-1 274.[耿全如,潘桂棠,王立全,等. 班公湖—怒江带、羌塘地块特提斯演化与成矿地质背景[J]. 地质通报, 2011, 31(8): 1 261-1 274.]
[11] Xiaoming, Wang Ruijiang, Xin Hongbo, et al. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan Plateau[J]. Lithos, 2012, 146-264.
[12] R D, Griffin W L, O’Reilly S Y, et al. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet[J]. Gondwana Research, 2012, 21(1): 194-206.
[13] Dong,Liu Bo,Zhang Zhilin,et al. The stage of understanding on geological characteristics and exploration sign of the Shangxu gold deposit in Tibet[J]. The Earth, 2012, (9): 12-14.[马东,刘波,张智霖,等. 西藏商旭金矿地质特征及找矿标志阶段性认识[J]. 地球, 2012, (9): 12-14.]
[14] Run, Li Shengrong, Fu Lujia, et al. Isotope geochemistry of Dacha gold deposits in Tibet[J].Geoscience, 2002, 16(2): 165-169.[肖润,李胜荣,傅璐珈,等. 西藏尼玛县达查金矿床同位素地球化学研究[J]. 现代地质, 2002, 16(2): 165-169.]
[15] Quanru, Peng Zhimin, Zhang Zhang, et al. Tethyan Evolution and Geological Background of the Bangong Co-Nujiang Belt in Tibet[M]. Beijing: Geological Publishing House, 2012.[耿全如,彭智敏,张璋,等. 班公湖—怒江成矿带及邻区特提斯演化与成矿地质背景[M]. 北京: 地质出版社, 2012.]
[16] Q R, Peng Z M, Zhang Z, et al. Metallogenesis related to magmatic arcs in north and south sides of the Bangong-Nujiang suture in central Tibet[J]. Acta Geologica Sinica, 2013, 87(Suppl.): 22-24.
[17] P A, Walshe J L. The role of preexisting geologic architecture in the formation of giant porphyry-related Cu ± Au deposits: Examples from new guinea and chile[J]. Economic Geology, 2005, 100 (5): 819-833.
[18] J P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37 (3): 247-250.
[19] R J, Anderson E D, Hart C J R. Tectonic setting of the pebble and other copper-gold-molybdenum porphyry deposits within the evolving middle cretaceous continental margin of northwestern north America[J]. Economic Geology, 2013, 108 (3): 405-419.
[20] Xiaoming,Xin Hongbo,Du Dedao, et al. Ages of post-collisional A-type granite and constraints on the closure of the oceanic basin in the middle segment of the Bangonghu-Nujiang suture, the Tibetan Plateau[J]. Geochimica,2012, 41(1): 1-14.[曲晓明,辛洪波,杜德道,等. 西藏班公湖—怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束[J]. 地球化学, 2012, 41(1): 1-14.]
[21] Dedao,Qu Xiaoming,Wang Genhou, et al. Bidirectional subduction of the Middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture, Tibet: Evidence from zircon U-Pb LAICPMS dating and petrogeochemistry of arc granites[J]. Acta Petrologica Sinica,2011, 27(7): 1 993-2 002.[杜德道,曲晓明,王根厚,等. 西藏班公湖—怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J]. 岩石学报, 2011, 27(7): 1 993-2 002.]
[22] A, Harrison T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
[23] U, Appel E, Ding L, et al. Position of the Lhasa terrane prior to India-Asia collision derived from palaeomagnetic inclinations of 53 Ma old dykes of the Linzhou Basin: Constraints on the age of collision and post-collisional shortening within the Tibetan Plateau[J]. Geophysical Journal International, 2010, 182 (3): 1 199-1 215.
[24] J, Mercier J C C, Wang X B. Petrology of the mafic rocks of the Xigaze ophiolite, Tibet[J]. Contributions to Mineralogy and Petrology, 1985, 90(4): 309-321.
[25] G, Ding J, Yao D S, et al. Guidebook of 1∶ [KG-*2]1,500,000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas[M]. Chengdu: Cartographic Publishing House, 2004.
[26] R D, Yang J S, Xu Z Q, et al. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone[J]. Journal of Asian Earth Sciences, 2008, 32(5/6): 438-457.
[27] Q, Wang C Y, Liu D Y, et al. A brief review of ophiolites in China[J]. Journal of Asian Earth Sciences, 2008, 32(5/6): 308-324.
[28] D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1 429-1 454.
[29] M F, Chung S L, O’Reilly S Y, et al. India’s hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks[J]. Earth and Planetary Science Letters, 2011, 307(3/4): 479-486.
[30] D G, Wu Z H, Jiang W, et al. SHRIMP zircon U-Pb age and Nd isotopic study on the Nyainqêntanglha Group in Tibet[J]. Science in China (Series D), 2005, 48(9): 1 377-1 386.
[31] X, Zhang Z M, Santosh M, et al. Late Neoproterozoic thermal events in the northern Lhasa terrane, south Tibet: Zircon chronology and tectonic implications[J]. Journal of Geodynamics, 2011, 52(5): 389-405.
[32] D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
[33] Z H, Ye P S, Barosh P J, et al. Early Cenozoic multiple thrust in the Tibetan Plateau[J]. Journal of Geological Research, 2013, doi:org/10.1155/2013/784361.
[34] Y, Santosh M, Zhao Z B, et al. Evidence for palaeo-Tethyan oceanic subduction within central Qiangtang, northern Tibet[J]. Lithos, 2011, 127(1/2): 39-53.
[35] K J, Tang X C. Eclogites in the interior of the Tibetan Plateau and their geodynamic implications[J]. Chinese Science Bulletin, 2009, 54(15): 2 556-2 567.
[36] J, Marcoux J, Allegre C J, et al. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet[J]. Nature, 1984, 307: 27-31.
[37] I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33.
[38] G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14.
[39] Xiaoming,Wang Ruijiang,Xin Hongbo, et al. Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arc zone, the western Tibetan Plateau[J]. Geochimica,2009, 38(6): 523-535.[曲晓明,王瑞江,辛洪波,等. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学[J]. 地球化学, 2009, 38(6): 523-535.]
[40] W L, Aitchison J C, Lo C, et al. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet[J]. Journal of Asian Earth Sciences, 2008, 33(1/2): 122-138.
[41] R Z, Zhou S, Li T D, et al. The tectonic-setting of ophiolites in the western Qinghai-Tibet Plateau, China[J]. Journal of Asian Earth Sciences, 2007, 29(2/3): 215-228.
[42] Baodi,Xu Jifeng,Zeng Qinggao, et al. Geochemistry and genesis of Lhaguo Tso ophiolite in south of Gerze area-Center Tibet[J]. Acta Petrologica Sinica,2007, 23(6): 1 521-1 530.[王保弟,许继峰,曾庆高,等. 西藏改则地区拉果错蛇绿岩地球化学特征及成因[J]. 岩石学报, 2007, 23(6): 1 521-1 530.]
[43] T, Li D W, Feng M X. Tectonic zonation and tectonic rock assemblages of melange in Bangong Lake area[J]. Acta Geologica Sinica, 2013, 87(z1): 200.
[44] Peisheng, Xiao Xuchang, Su Li, et al. Tectonic environment of Tibet the Dongco ophiolite: Petrological, geochemical and geochronological constraints[J]. Science in China(Series D),2007, 37(3): 298-307.[鲍佩声,肖序常,苏犁,等. 西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约[J]. 中国科学:D辑, 2007, 37(3): 298-307.]
[45] Qishuai,Shi Rendeng,Ding Binghua, et al. Re-Os isotopic evidence of MOR-type ophiolite from the Bangong Co for the opening of Bangong-Nujiang Tethys Ocean[J]. Acta Petrologica et Mineralogica,2012, 31(4): 465-478.[黄启帅,史仁灯,丁炳华,等. 班公湖MOR型蛇绿岩Re-Os同位素特征对班公湖—怒江特提斯洋裂解时间的制约[J]. 岩石矿物学杂志, 2012, 31(4): 465-478.]
[46] P, Yin A, Manning C E, et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet[J]. Tectonics, 2003, 22(4): 1 043.
[47] Guorong, Liu Hongfei, Jiang Guangwu, et al. Discovery of the Shamuluo formation in the central segment of the Bangong Co-Nujiang River sutrue zone, Tibet[J]. Geological Bulletin of China,2004, 23(2): 193-194.[陈国荣,刘鸿飞,蒋光武,等. 西藏班公湖—怒江结合带中段沙木罗组的发现[J]. 地质通报, 2004, 23(2): 193-194.]
[48] P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-933.
[49] Jianjun, Li Cai, Hu Peiyuan, et al. The Characteristics of Zhonggang Ocean Island in Gaiz area, Tibet: Evidence on the closure of the Nujiang Suture Zone-Bangong[C]. Guangzhou:University of Zhongshan Press, 2013.[范建军,李才,胡培远,等. 西藏改则地区仲岗洋岛的特征——兼论班公湖—怒江缝合带的闭合时限[C]. 广州: 中山大学出版社,2013.]
[50] D L, Huang Q H, Fan S Q, et al. Subduction of the Bangong-Nujiang Ocean: Constraints from granites in the Bangong Co area, Tibet[J]. Geological Journal, 2014, 49(2): 188-206.
[51] J X, Qin K Z, Li G M, et al. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet: Petrogenetic and tectonic implications[J]. Lithos, 2014, (198/199):77-91.
[52] P, Tapponnier P, Arnaud N, et al. Tectonics of Western Tibet, between the Tarim and the Indus[J]. Earth and Planetary Science Letters, 1996, 142(3/4): 311-330.
[53] J, Wan Y W, Zhang D. The new evidence of southward subduction of the middle Tethys Oceanic Basin in the weat segment of Bangonghu-Nujiang Suture, Tibet,Nawucuo area:Zircon U-Pb LAICPMS Dating and Lithogeochemistry of arc Granites[J]. Acta Geologica Sinica, 2013, 87(Suppl.): 30.
[54] Q R, Sun Z M, Pan G T, et al. Origin of the Gangdise (Transhimalaya) Permian arc in southern Tibet: Stratigraphic and volcanic geochemical constraints[J]. Island Arc, 2009, 18(3): 467-487.
[55] K J, Pan G T, Sengr A M C. Tectonic evolution of the Tibetan Plateau: A working hypothesis based on the archipelago model of orogenesis[J]. International Geology Review, 1995, 37(6): 473-508.
[56] R D. SHRIMP dating of the Bangong Lake SSZ-type ophiolite: Constraints on the closure time of ocean in the Bansong Lake-Nujiang River, northwestern Tibet[J]. Chinese Science Bulletin, 2007, 52(7): 936-941.
[57] Youye,Xu Rongke,Ma Guotao, et al. Ages of generation and subduction of Shiquan River ophiolite: Restriction from SHRIMP zircon dating[J]. Acta Petrologica Sinica,2006, 22(4): 895-904.[郑有业,许荣科,马国桃,等. 锆石SHRIMP测年对狮泉河蛇绿岩形成和俯冲的时间约束[J]. 岩石学报, 2006, 22(4): 895-904.]
[58] K J, Zhang Y X, Tang X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision[J]. Earth-Science Reviews, 2012, 114(3/4): 236-249.
[59] Zhiqiang, Xu Jifeng, Wang Baodi, et al. Qushenla Formation volcanic rocks in north Lhasa block: Products of Bangong Co-Nujiang Tethy’s southward subduction[J]. Acta Petrologica Sinica,2010, 26(10): 3 106-3 116.[康志强,许继峰,王保弟,等. 拉萨地块北部去申拉组火山岩:班公湖—怒江特提斯洋南向俯冲的产物?[J]. 岩石学报, 2010, 26(10): 3 106-3 116.]
[60] Hao,Li Cai,Hu Peiyuan, et al. The discovery of Qushenla volcanic rocks in Tasepule area of Nyima Country, Tibet, and its geological significance[J]. Geological Bulletin of China,2013, 32(7): 1 014-1 026.[吴浩,李才,胡培远,等. 西藏尼玛县塔色普勒地区去申拉组火山岩的发现及其地质意义[J]. 地质通报, 2013, 32(7): 1 014-1 026.]
[61] Dicheng,Mo Xuanxue,Zhao Zhidan, et al. Zircon U-Pb geochronology of Zenong Group volcanic rocks in Coqen area of the Gangdese, Tibet and tectonic significance[J]. Acta Petrologica Sinica,2008, 24(3): 401-412.[朱弟成,莫宣学,赵志丹,等. 西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J]. 岩石学报, 2008, 24(3): 401-412.]
[62] Wei,Li Fenqi,Yuan Sihua, et al. Volcanic rock provenance of Zenong Group in Coqen area of Tibet: Geochemistry and Sr-Nd isotopic constraint[J]. Acta Petrologica et Mineralogica,2010, 29(4): 367-376.[刘伟,李奋其,袁四化,等. 西藏措勤地区则弄群火山岩源区——地球化学及Sr-Nd同位素制约[J]. 岩石矿物学杂志, 2010, 29(4): 367-376.]
[63] Liangliang,Zhu Dicheng,Zhao Zhidan, et al. Early Cretaceous granitoids in Xainza, Tibet:Evidence of slab break-off[J]. Acta Petrologica Sinica,2011, 27(7): 1 938-1 948.[张亮亮,朱弟成,赵志丹,等. 西藏申扎早白垩世花岗岩类:板片断离的证据[J]. 岩石学报, 2011, 27(7): 1 938-1 948.]
[64] Xiaoming,Xin Hongbo, Du Dedao,et al. Magma source of the A-type granite and slab break-off in the middle segment of the Bangonghu-Nujiang suture, Tibet Plateau[J]. Acta Geologica Sinica,2013, 87(6): 759-772.[曲晓明,辛洪波,杜德道,等. 西藏班公湖—怒江缝合带中段A-型花岗岩的岩浆源区与板片断离[J]. 地质学报, 2013, 87(6): 759-772.]
[65] J X, Li G M, Qin K Z, et al. Mineralogy and mineral chemistry of the cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco Arc, Northern Tibet[J]. Resource Geology, 2012, 62(1): 19-41.
[66] Hongquan,Li Jinwen,Ma Dongfang, et al. Molybdenite Re-Os and SHRIMP zircon U-Pb dating of Duobuza porphyry copper deposit in Tibet and its geological implications[J]. Mineral Deposits,2009, 28(6): 737-746.[佘宏全,李进文,马东方,等. 西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义[J]. 矿床地质, 2009, 28(6): 737-746.]
[67] Shunbao,Zheng Youye,Xie Mingchen, et al. Geodynamic setting and mineralizational implication of the Xueru intrusion in Ban’ge, Tibet[J]. Earth Science—Journal of China University of Geosciences,2011, 36(4): 729-739.[高顺宝,郑有业,谢名臣,等. 西藏班戈地区雪如岩体的形成环境及成矿意义[J]. 地球科学——中国地质大学学报, 2011, 36(4): 729-739.]
[68] Junhua,Wang Ruijiang, Qu Xiaoming, et al. Crustal extension of the Bangong Lake Arc Zone, western Tibetan Plateau, after the closure of the Tethys Oceanic Basin[J]. Earth Science—Journal of China University of Geosciences, 2011, 36(6): 1 021-1 026.[江军华,王瑞江,曲晓明,等. 青藏高原西部班公湖岛弧带特提斯洋盆闭合后的地壳伸展作用[J]. 地球科学——中国地质大学学报, 2011, 36(6): 1 021-1 026.]
[69] Fangguo,Yang Junya,Chen Li. Ophiolite and chromite deposits in Qinghai-Tibet Plateau[J]. Geologcal Bulletin of China,2009, 28(12): 1 762-1 768.[王方国,杨君雅,陈莉. 青藏高原的蛇绿岩与铬铁矿[J]. 地质通报, 2009, 28(12): 1 762-1 768.]
[70] H B, Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 1984, 86(1): 54-76.
[71] A D. Origin of podiform chromite deposits by multistage melting, melt segregation and magma mixing in the upper mantle[J]. Ore Geology Reviews,1990, 5(3): 211-222.
[72] S, Ballhaus C. Role of water in the origin of podiform chromitite deposits[J]. Earth and Planetary Science Letters, 2002, 203(1): 235-243.
[73] R D, Alard O, Zhi X C, et al. Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru-Os-Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 33-48.
[74] R R, Griffin W L, O’Reilly S Y, et al. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet[J]. Gondwana Research, 2012, 21(1): 194-206.
[75] Xiaoming,Zhao Yuanyi,Wang Ruijiang, et al. Discovery of magmatic nickel sulfide mineralizations in Bangong Lake-Nujiang metallogenic belt, Qinghai-Tibet Plateau[J]. Mineral Deposits,2009, 28(6): 729-736.[曲晓明,赵元艺,王瑞江,等. 西藏班公湖—怒江成矿带发现硫化镍矿[J]. 矿床地质, 2009, 28(6): 729-736.]
[76] J X, Qin K Z, Li G M, et al. Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet: Evidence from U-Pb geochronology, petrochemistry and Sr-Nd-Hf-O isotope characteristics[J]. Lithos, 2013, (160/161):216-227.
[77] Juxing ,Sun Xingguo,Ding Shuai, et al. Discovery of the epithermal deposit of Cu (Au-Ag) in the Duolong Ore Concentrating area, Tibet[J]. Acta Geoscientica Sinica, 2014, 35(1): 6-10.[唐菊兴,孙兴国,丁帅,等. 西藏多龙矿集区发现浅成低温热液型铜(金银)矿床[J]. 地球学报, 2014, 35(1): 6-10.]
[78] Cuizhi. Lithogeochemical characteristics of the alunite metasomatic alterated rock of the Zijinshan gold-copper deposit[J]. Advances in Earth Science,2013, 28(8): 897-912.[王翠芝. 紫金山铜金矿明矾石交代蚀变岩的岩石地球化学特征[J]. 地球科学进展, 2013, 28(8): 897-912.]
[79] J W, Taran Y A. Modeling the formation of advanced argillic lithocaps: Volcanic vapor vondensation above porphyry intrusions[J]. Economic Geology, 2013, 108(7): 1 523-1 540.
[80] Xiaoming,Wang Ruijiang,Dai Jingjing, et al. Discovery of Xiongmei porphyry copper deposit in middle segment of Bangonghu-Nujiang suture zone and its significance[J]. Mineral Deposits,2012, 31(1): 1-12.[曲晓明,王瑞江,代晶晶,等. 西藏班公湖—怒江缝合带中段雄梅斑岩铜矿的发现及意义[J]. 矿床地质, 2012, 31(1): 1-12.]
[81] Zhi,Tang Juxing,Chen Yuchuan, et al. Skarn mineral characteristics of the Gaerqiong Cu-Au deposit in Bangong Co-Nujiang River suture zone, Tibet[J]. Acta Petrologica et Mineralogica,2013, 32(3): 305-317.[张志,唐菊兴,陈毓川,等. 西藏班—怒结合带尕尔穷铜金矿床矽卡岩矿物学特征及其地质意义[J]. 岩石矿物学杂志, 2013, 32(3): 305-317.]
[82] Juxing,Zhang Zhi,Li Zhijun, et al. The metallogensis, deposit model and prospecting direction of the Ga’erqiong-Galale Copper-gold Ore Field, Tibet[J]. Acta Geoscientica Sinica, 2013, 34(4): 385-394.[唐菊兴,张志,李志军,等. 西藏尕尔穷—嘎拉勒铜金矿集区成矿规律、矿床模型与找矿方向[J]. 地球学报, 2013, 34(4): 385-394.]
[83] Xiaofeng,Tang Juxing,Li Zhijun, et al. The redefinition of the Ore-forming Porphyry’s age in Gaerqiong Skarn-type gold-copper deposit, western Bangong Lake-Nujiang River Metallogenic Belt, Xizang (Tibet)[J]. Geological Review,2013, 59(1): 193-200.[姚晓峰,唐菊兴,李志军,等. 班公湖—怒江带西段尕尔穷矽卡岩型铜金矿含矿母岩成岩时代的重新厘定及其地质意义[J]. 地质论评, 2013, 59(1): 193-200.]
[84] Yuanyi,Song Liang,Fan Xingtao, et al. Re-Os dating of molybdenite from the Shesuo Copper Polymetallic Ore in Shenzha County, Tibet and its geological significance[J]. Acta Geologica Sinica,2009, 83(8): 1 150-1 158.[赵元艺,宋亮,樊兴涛,等. 西藏申扎县舍索铜多金属矿床辉钼矿Re-Os年代学及地质意义[J]. 地质学报, 2009, 83(8): 1 150-1 158.]
[85] Hanxiao,Li Guangming,Chen Huaan, et al. Molybdenite Re-Os isotope age and metallogenic significance of sebuta copper molybdenum deposit in Tibet[J]. Acta Geologica Sinica,2013, 87(2): 240-244.[黄瀚霄,李光明,陈华安,等. 西藏色布塔铜钼矿床中辉钼矿Re-Os定年及其成矿意义[J]. 地质学报, 2013, 87(2): 240-244.]
[86] Li,Zhao Yuanyi,Yang Yongqiang, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of ore-bearing granite in skarn-type iron polymetallic deposits of Duoba area,Baingoin County, Tibet, and their significance[J]. Acta Petrologica et Mineralogica,2012, 31(4): 479-496.[定立,赵元艺,杨永强,等. 西藏班戈县多巴区矽卡岩型铁多金属矿床含矿花岗岩LA-ICP-MS锆石U-Pb定年、地球化学及意义[J]. 岩石矿物学杂志, 2012, 31(4): 479-496.]
[87] Jiangpeng,Zhao Yuanyi,Cui Yubin, et al. LA-ICP-MS zircon U-Pb dating of important skarn type iron (copper)polymetallic deposits in Baingoin County of Tibet and geochemical characteristics of granites[J]. Geological Bulletin of China,2012, 31(9): 1 435-1 450.[王江朋,赵元艺,崔玉斌,等. 西藏班戈地区重要矽卡岩型铁(铜)多金属矿床LA-ICP-MS锆石U-Pb测年与花岗岩地球化学特征[J]. 地质通报, 2012, 31(9): 1 435-1 450.]
[88] Zhang,Geng Quanru,Peng Zhimin, et al. Geochemistry and geochronology of the Caima granites in the western part of the Bangong Lake-Nujiang metallogenic zone, Xizang[J]. Sedimentary Geology and Tethyan Geology,2011, 31(4): 86-96.[张璋,耿全如,彭智敏,等. 班公湖—怒江成矿带西段材玛花岗岩体岩石地球化学及年代学[J]. 沉积与特提斯地质, 2011, 31(4): 86-96.]
[89] Lei, Li Guangming, Huang Hanxiao, et al. Geochemical characteristics, chronology and the significance of Laqing copper polymetallic skarn deposit, Bange County, Tibet[J]. Geological Bulletin of China,2013, 32(5): 767-773.[董磊,李光明,黄瀚霄,等. 西藏班戈县拉青铜多金属矿床地球化学特征和年龄[J]. 地质通报, 2013, 32(5): 767-773.]
[90] Yushuai,Gao Yuan, Yang Zhusen, et al. Zircon LA-ICP-MS U-Pb dating and geochemistry of intrusive rocks from Gunjiu iron deposit in the Nixiong ore field, Coqen, Tibet[J]. Acta Petrologica Sinica,2011, 27(7): 1 949-1 960.[于玉帅,高原,杨竹森,等. 西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征[J]. 岩石学报, 2011, 27(7): 1 949-1 960.]
[91] Yushuai, Yang Zhusen,Liu Yingchao, et al. Mineralogical characteristics and 40Ar-39Ar dating of phlogopite from the Gunjiu iron deposit in the Nixiong Ore Field, Coqen, Tibet[J]. Acta Petrologica et Mineralogica,2012, 31(5): 681-690.[于玉帅,杨竹森,刘英超,等. 西藏措勤尼雄矿田滚纠铁矿金云母矿物学特征及40Ar-39Ar年代学[J]. 岩石矿物学杂志, 2012, 31(5): 681-690.]
[92] Run. Research on Metallogenic Regularities and Prospecting Directions of Gold Deposits at Gaize District, Tibet[D]. Beijing: China University of Geosciences, 2003.[肖润. 西藏改则地区金矿成矿规律和找矿方向研究[D]. 北京: 中国地质大学, 2003.]
[93] Chuanquan,Zhao Jianmin,Liu Zhenhong, et al. The discovery of Zhagla gold deposit in Dingqing,Tibet and its effects for the geochemical prospecting[J]. Geology and Mineral Resources of South China,2006, (1): 22-27.[刘传权,赵建敏,刘振宏,等. 西藏丁青县扎格拉金矿的发现及地球化学找矿效果[J]. 华南地质与矿产, 2006, (1): 22-27.]
[94] Zhihua,Wu Xingquan,Wang Keqiang, et al. Stable isotope and ore genesis of Jiagangshan Mo-Bi polymetallic deposit, Shenzha County, Tibet[J]. Geology and Prospecting,2007, 43(3): 6-10.[王治华,吴兴泉,王科强,等. 西藏申扎县甲岗雪山钨、钼、铋多金属矿床稳定同位素地球化学特征及矿床成因探讨[J]. 地质与勘探, 2007, 43(3): 6-10.]
[95] Zhiming, Li Guangming, Zhang Hui, et al. The formation and its geologic significance of Late Triassic-Jurassic accretionary complexes and constraints on metallogenic and geological settings in Duolong porphyry copper gold ore concentration area,northern Bangong Co-Nujiang suture zone, Tibet[J]. Geological Bulletin of China,2013, 32(5): 742-750.[段志明,李光明,张晖,等. 西藏班公湖—怒江缝合带北缘多龙矿集区晚三叠世—侏罗纪增生杂岩结构及其对成矿地质背景的约束[J]. 地质通报, 2013, 32(5): 742-750.]
[96] Yuzhen,Li Cai,Xu Mengjing, et al. The discovery of the Jurassic OIB-type rocks in the Bangong Lake-Nujiang River suture zone[J]. Geologcal Bulletin of China,2013, 32(4): 563-566.[巴桑玉珍,李才,徐梦婧,等. 班公湖—怒江板块缝合带发现侏罗纪洋岛型岩石组合[J]. 地质通报, 2013, 32(4): 563-566.]
[97] J P. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits[M]∥Porter T M, ed. Super Porphyry Copper and Gold Deposits: A Global Perspective (Volume 1). Linden Park, South Australia: Porter Geoscience Consulting Publishing, 2005.
[98] M A, Stern C R. Genesis of the giant late miocene to pliocene copper deposits of central chile in the context of andean magmatic and tectonic evolution[J]. International Geology Review, 1995, 37(10): 893-909.
[99] J P, Navez J, Hertogen J, et al. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization[J]. Lithos, 1998, 45(1/4): 1-28.
[100] Jinxiang,Li Guangming,Qin Kezhang, et al. Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt, Tibet: Constraints on metailogenic tectonic settings[J]. Acta Petrologica Sinica,2008, 24(3): 531-543.[李金祥,李光明,秦克章,等. 班公湖带多不杂富金斑岩铜矿床斑岩—火山岩的地球化学特征与时代:对成矿构造背景的制约[J]. 岩石学报, 2008, 24(3): 531-543.]
[101] Xin, Xu Wenyi, Jia Liqiong, et al. Reviews of structural settings of porphyry copper deposits in China[J]. Advances in Earth Science, 2014, 29(2): 250-264.[熊欣,徐文艺,贾丽琼,等. 斑岩铜矿成矿构造背景研究进展[J]. 地球科学进展, 2014, 29(2): 250-264.]
[102] Baodi,Xu Jifeng,Liu Baomin, et al. Geochronology and Ore-forming geological background of ~90 Ma porphyry copper deposit in the Lhasa Terrane, Tibet Plateau[J]. Acta Geologica Sinica,2013, 87(1): 71-80.[王保弟,许继峰,刘保民,等. 拉萨地块北部~90Ma斑岩型矿床年代学及成矿地质背景[J]. 地质学报, 2013, 87(1): 71-80.]
[103] Li’na,Cui Yubin,Song Liang, et al. Geochemical characteristics and zircon LA-ICP-MS U-Pb dating of Galale skarn gold(copper) deposit,Tibet and its significance[J]. Earth Science Frontiers,2011, 18(5): 224-242.[吕立娜,崔玉斌,宋亮,等. 西藏嘎拉勒夕卡岩型金(铜)矿床地球化学特征与锆石的LA-ICP-MS定年及意义[J]. 地学前缘, 2011, 18(5): 224-242.]
[104] Chuanyang,Li Zhijun,Zhang Zhi, et al. Geochemical characteristics and geodynamic significance of the granites in the Ga’erqiong Cu-Au deposit, Tibet[J]. Acta Geoscientica Sinica, 2012, 33(4): 601-612.[雷传扬,李志军,张志,等. 西藏尕尔穷铜金矿床花岗岩类的地球化学特征及其地球动力学意义[J]. 地球学报, 2012, 33(4): 601-612.]
[105] Y L, He J, Wang C S, et al. Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan Plateau?[J]. Lithos, 2013, (160/161):1-13.
[106] R J, Groves D I, Gardoll S. Orogenic gold and geologic time: A global synthesis[J]. Ore Geology Reviews, 2001, 18(1/2): 1-75.
[107] D I, Goldfarb R J, Gebre-Mariam M, et al. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998, 13(4): 7-27.
[108] S H, Nie F J, Hu P, et al. Mayum: An orogenic gold deposit in Tibet, China[J]. Ore Geology Reviews, 2009, 36(1/3): 160-173.
[109] G M, Li J X, Qin K Z, et al. Geology and hydrothermal alteration of the Duobuza Gold-Rich Porphyry Copper district in the Bangongco Metallogenetic Belt, Northwestern Tibet[J]. Resource Geology, 2012, 62(1): 99-118.
[110] Xiangping,Chen Huaan,Ma Dongfang, et al. Re-Os dating for the molybdenite from Bolong porphyry copper-gold deposit in Tibet, China and its geological significance[J]. Acta Petrologica Sinica,2011, 27(7): 2 159-2 164.[祝向平,陈华安,马东方,等. 西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义[J]. 岩石学报, 2011, 27(7): 2 159-2 164.]
[111] Yuanyi,Cui Yubin,Lü Li’na, et al. Chronology, geochemical characteristics and the significance of Shesuo copper polymetallic deposit, Tibet[J]. Acta Petrologica Sinica, 2011, 27(7): 2 132-2 142.[赵元艺,崔玉斌,吕立娜,等. 西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义[J]. 岩石学报, 2011, 27(7): 2 132-2 142.]
[112] Weizheng. Geological characteristics and their prospecting significance of Fuye iron deposit in Ritu county, Tibet[J]. Resources Survey & Environment,2013, 34(1): 29-37.[胡为正. 西藏日土县弗野铁矿床地质特征及找矿意义[J]. 资源调查与环境, 2013, 34(1): 29-37.]
[113] Hongbo,Qu Xiaoming. Geological characteristics and ore-forming epoch of Ri’a copper deposit related to bimodal rock series in Coqen County, western Tibet[J]. Mineral Deposits,2006, 25(4): 477-482.[辛洪波,曲晓明. 藏西措勤县日阿与斑(玢)岩有关的铜矿床的矿床地质特征与成矿时代[J]. 矿床地质, 2006, 25(4): 477-482.]
[1] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[2] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
[3] 王婷. 基于文献计量的青藏高原国际合作研究态势分析[J]. 地球科学进展, 2016, 31(6): 650-662.
[4] 游超, 姚檀栋, 邬光剑. 雪冰中生物质燃烧记录研究进展[J]. 地球科学进展, 2014, 29(6): 662-673.
[5] 马耀明, 胡泽勇, 田立德, 张凡, 段安民, 阳坤, 张镱锂, 杨永平. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.
[6] 熊欣, 徐文艺, 贾丽琼, 李骏. 斑岩铜矿成矿构造背景研究进展[J]. 地球科学进展, 2014, 29(2): 250-264.
[7] 马巍,牛富俊,穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11): 1185-1191.
[8] 王雪梅,李 新,马明国,张志强. 青藏高原科研文献地理信息空间分析研究[J]. 地球科学进展, 2012, 27(11): 1288-1294.
[9] 张云国, 周朝宪. 斑岩铜矿床研究进展[J]. 地球科学进展, 2011, 26(11): 1173-1190.
[10] 王澄海,吴永萍,崔 洋. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.
[11] 马耀明,姚檀栋,胡泽勇,王介民. 青藏高原能量与水循环国际合作研究的进展与展望[J]. 地球科学进展, 2009, 24(11): 1280-1284.
[12] 许强,陈伟,张倬元. 对我国西南地区河谷深厚覆盖层成因机理的新认识[J]. 地球科学进展, 2008, 23(5): 448-456.
[13] 吴青柏,程国栋. 多年冻土区天然气水合物研究综述[J]. 地球科学进展, 2008, 23(2): 111-119.
[14] 郑洪波,汪品先,刘志飞,杨守业,王家林,李前裕,周祖翼,贾军涛,李上卿,贾健宜,JohnChappell,YoshikiSaito,TakahiroInoue. 东亚东倾地形格局的形成与季风系统演化历史寻踪——综合大洋钻探计划683号航次建议书简介[J]. 地球科学进展, 2008, 23(11): 1150-1160.
[15] 姚海涛,赵志中,王书兵,乔彦松,李朝柱,傅建利,王燕,蒋复初. 攀西地区晚新生代沉积研究回顾与问题讨论[J]. 地球科学进展, 2007, 22(5): 504-514.