地球科学进展 ›› 2021, Vol. 36 ›› Issue (8): 836 -848. doi: 10.11867/j.issn.1001-8166.2021.079

气候变化及人类活动对地表蒸散发影响 上一篇    下一篇

40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析
马宁 1, 2( )   
  1. 1.中国科学院地理科学与资源研究所 陆地水循环及地表过程重点实验室,北京 100101
    2.中国科学院冰冻圈科学国家重点实验室,甘肃 兰州 730000
  • 收稿日期:2021-03-29 修回日期:2021-05-26 出版日期:2021-08-10
  • 基金资助:
    国家自然科学基金项目“青藏高原典型高寒草原和草甸蒸散发对植被变化的响应研究”(41801047);冰冻圈科学国家重点实验室开放基金项目“暖湿化背景下青藏高原地表蒸散发时空动态过程”(SKLCS-OP-2020-11)

Comparison of Variations in Land Surface Evapotranspiration Between Typical Alpine Steppe and Wetland Ecosystems on the Tibetan Plateau over the Last Four Decades

Ning Ma 1, 2( )   

  1. 1.Key Laboratory of Water Cycle and Related Land Surface Processes,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China
    2.State Key Laboratory of Cryospheric Science,Chinese Academy of Sciences,Lanzhou 730000,China
  • Received:2021-03-29 Revised:2021-05-26 Online:2021-08-10 Published:2021-09-22
  • About author:MA Ning (1989-), male, Mengcheng County, Anhui Province, Assistant professor. Research areas include observation and modeling of terrestrial evapotranspiration. E-mail: ma.n2007@aliyun.com
  • Supported by:
    the National Natural Science Foundation of China "Impact of vegetation changes on the evapotranspiration over the typical alpine steppe and meadow ecosystems in the Tibetan Plateau"(41801047);The Open Research Program of State Key Laboratory of State Key Laboratory of Cryospheric Science "Spatio-temporal variations in land surface evapotranspiration across Tibetan Plateau under the background of warming and wetting"(SKLCS-OP-2020-11)

青藏高原地表蒸散发是决定亚洲水塔水储量变化的关键要素。在快速升温背景下,长时间尺度的青藏高原地表蒸散发如何响应气候变化亟需深入探讨。以青藏高原两种典型高寒生态系统(草原和湿地)为研究对象,以野外观测和互补蒸散发模型为研究手段,利用常规气象资料驱动互补蒸散发模型,应用于青藏高原的典型资料稀缺地区,并就模拟结果进行验证评估,揭示了两种典型高寒生态系统近40年的蒸散发变化特征。结果表明,校正参数后的非线性互补蒸散发模型可较为准确地模拟两种下垫面的蒸散发,亦即该模型在青藏高原资料稀缺区具有较好的应用潜力。1973—2013年,青藏高原典型高寒草原蒸散发呈不显著的增大趋势,而高寒湿地则以2.0 mm/a的速率显著增大。相关分析表明,高寒草原和湿地蒸散发的年际变化主要与水汽压(即空气湿度)有关。阶段性分析发现,1970s至1990s末期,两种生态系统蒸散发皆在波动中逐渐增大;而1997年以后,高寒草原和高寒湿地蒸散发的变化模式表现出明显差异:前者在波动中逐渐减小,后者则持续增大至2000s中期。造成这种差异的原因可归结为高寒湿地受冰川融水的影响,土壤含水量可维持在较高的水平,加之2000s高寒湿地的水汽压和日照时数增大,使得该时段内地表蒸散发仍呈增大之势,亦即上游的冰川融水对下游的湿地蒸散发有重要影响。结果表明,空间距离较近的两种典型高寒生态系统,由于所受水源补给不同,局地蒸散发对气候变化的响应模式可能有较大差异。

Land surface evapotranspiration (ETa) is a key element that determines the terrestrial water storage of the Asian Water Tower. However, the long-term variations in ETa and its response to the ongoing climate change remain largely unknown. Here, this study used both in-situ observation and complementary relationship-based (CR) modeling technique to investigate the changes in ETa from typical alpine steppe and alpine wetland on the Tibetan Plateau during the last four decades. The results showed that the CR model was able to accurately simulate ETa once its parameters could be locally calibrated, suggesting that this model has a great potential for understanding the long-term variations in ETa over such a sparsely-instrumented but hydrologically-important region. During 1973-2013, both alpine steppe and alpine wetland showed increasing trends in ETa, but such an increase was only significant for the alpine wetland in which ETa increased with a rate of 2.0 mm/a. Further correlation analysis suggested that the changes in ETa over these two ecosystems was primarily controlled by changes in the vapor pressure over the last 40 years. The ETa consistently increased in both alpine ecosystems before the late 1990s, but their changes in ETa became contrasting after the late 1990s because ETa decreased significantly over the alpine steppe but continued to increase over the alpine wetland until the mid-2000s. The main reason for the increase in ETa at the latter ecosystem was the increase in vapor pressure and sunshine hour during this period. Moreover, the soil moisture of the wetland could be replenished from the glacier melting, which could provide enough water for surface evapotranspiration process. This study shows that while the geographical distance is short, the response of ETa to climate change in these two alpine ecosystems might differ obviously because of the different hydrological cycle regimes.

中图分类号: 

图1 双湖观测站地理位置以及拟研究的典型高寒草原(班戈站)和高寒湿地(申扎站)地理位置图
双湖站下垫面为典型高寒草原;班戈站和申扎站为中国气象局气象站,下垫面分别为高寒草原和高寒湿地
Fig. 1 The geographical location of the Shuanghu observation station as well as the typical alpine steppe Bange and alpine wetland Shenzha ecosystems
The Shuanghu Station is a typical alpine steppe ecosystem, while Bange and Shenzha are two China Meteorological Administration stations with land covers of alpine steppe and alpine wetland, respectively
图2 非线性互补蒸散发模型在高寒草原蒸散发模拟效果的评估
Fig. 2 Evaluation of the effectiveness of non-linear CR model in estimating land evpotranspiration over the alpine steppe ecosystem
图3 非线性互补模型参数扰动后(即参数mn相对变化±10%~±50%)模拟的高寒草原蒸散发的相对变化
Fig. 3 The relative changes in land evapotranspiration from the alpine steppe with perturbations of the parameter m and n within the ranges of ±10% to ±50% for the Nonlinear-CR model
图4 20031月至201212月互补蒸散发模型模拟的申扎站高寒湿地蒸散发与WEB-DHM的蒸散发对比
Fig. 4 Comparison of land evapotranspiration of alpine wetland during January 2003-December 2012 between CR and WBE-DHM
图5 20031月至201212月互补蒸散发模型模拟的班戈站高寒草原蒸散发与GLEAM遥感蒸散发产品的对比
Fig. 5 Comparison of land evapotranspiration of alpine steppe during January 2003-December 2012 between CR and GLEAM
图6 19732013年典型高寒草原和高寒湿地的地表蒸散发变化
Fig. 6 Variations in land evapotranspiration of typical alpine steppe and alpine wetland during 1973-2013
图7 典型高寒草原和高寒湿地蒸散发的年代际距平变化
Fig. 7 The decadal anomalies of land evapotranspiration of alpine steppe and alpine wetland
图8 19732013年典型高寒草原和高寒湿地(a)年均气温、(b)年降水量、(c)年均水汽压、(d)年均风速和(e)年日照时数的距平变化
Fig. 8 Variations in the anomalies of a annual mean air temperature, (b annual precipitation, (c annual mean vapor pressure, (d annual mean wind speed and e annual sunshine hour from typical alpine steppe and alpine wetland during 1973-2013
1 QIU J. China: the third pole[J]. Nature, 2008, 454(7 203): 393-396.
2 YE Duzheng, WU Guoxiong. The role of the heat source of the Tibetan Plateau in the general circulation[J]. Meteorology and Atmospheric Physics, 1998, 67: 181-198.
3 IMMERZEEL W, BEEK L P VAN, BIERKENS M F. Climate change will affect the Asian Water Towers[J]. Science, 2010, 328(5 984): 1 382-1 385.
4 YAO T, MASSON-DELMOTTE V, GAO J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations[J]. Reviews of Geophysics, 2013, 51(4): 525-548.
5 YAO T, XUE Y, CHEN D, et al. Recent Third Pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
6 YANG K, WU H, QIN J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review[J]. Global and Planetary Change, 2014, 112: 79-91.
7 YANG M, NELSON F E, SHIKLOMANOV N I, et al. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research [J]. Earth-Science Reviews, 2010, 103(1/2): 31-44.
8 ZHU Z, PIAO S L, MYNENI R B, et al. Greening of the Earth and its drivers[J]. Nature Climate Change, 2016, 6: 791-795.
9 ZHAO P, XU X, CHEN F, et al. The third atmospheric scientific experiment for understanding the Earth-atmosphere coupled system over the Tibetan Plateau and its effects[J]. Bulletin of the American Meteorological Society, 2018, 99(4): 757-776.
10 MA Yaoming, YAO Tandong, WANG Jiemin. Experimental study of energy and water cycle in Tibetan Plateau—the progress introduction on the study of GAME/Tibet and CAMP/Tibet [J]. Plateau Meteorology, 2006, 25(2): 344-351.
马耀明, 姚檀栋, 王介民. 青藏高原能量和水循环试验研究——GAME/Tibet与CAMP/Tibet研究进展[J]. 高原气象, 2006, 25(2): 344-351.
11 MA Y, KANG S, ZHU L, et al. Roof of the world: Tibetan observation and research platform: atmosphere-land Interaction over a heterogeneous landscape[J]. Bulletin of the American Meteorological Society, 2008, 89(10): 1 487-1 492.
12 YAO T, THOMPSON L G, MOSBRUGGER V, et al. Third Pole Environment (TPE)[J]. Environmental Development, 2012, 3: 52-64.
13 YAO Tandong. A comprehensive study of water-ecosystem-human activities reveals unbalancing Asian Water Tower and accompanying potential risks[J]. Science Bulletin, 2020, 64(27): 2 761-2 762.
姚檀栋. 青藏高原水—生态—人类活动考察研究揭示“亚洲水塔”的失衡及其各种潜在风险[J]. 科学通报, 2019, 64(27): 2 761-2 762.
14 SHANG L, ZHANG Y, LV S, et al. Energy exchange of an alpine grassland on the eastern Qinghai-Tibetan Plateau[J]. Science Bulletin, 2015, 60: 435-446.
15 YOU Q, XUE X, PENG F, et al. Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2017, 232: 48-65.
16 ZHANG S, LI X, ZHAO G, et al. Surface energy fluxes and controls of evapotranspiration in three alpine ecosystems of Qinghai Lake watershed, NE Qinghai-Tibet Plateau[J]. Ecohydrology, 2016, 9(2): 267-279.
17 MA N, ZHANG Y, GUO Y, et al. Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe[J]. Journal of Hydrology, 2015, 529: 980-992.
18 WANG L, LIU H, SHAO Y, et al. Water and CO2 fluxes over semiarid alpine steppe and humid alpine meadow ecosystems on the Tibetan Plateau[J]. Theoretical and Applied Climatology, 2018, 131(1/2): 547-556.
19 CHEN J, WEN J, KANG S, et al. Assessments of the factors controlling latent heat flux and the coupling degree between an alpine wetland and the atmosphere on the Qinghai-Tibetan Plateau in summer[J]. Atmospheric Research, 2020, 240: 104937.
20 CAO S, CAO G, HAN G, et al. Comparison of evapotranspiration between two alpine type wetland ecosystems in Qinghai Lake basin of Qinghai-Tibet Plateau[J]. Ecohydrology & Hydrobiology, 2020, 20(2): 215-229.
21 GUO Y, ZHANG Y, MA N, et al. Quantifying surface energy fluxes and evaporation over a significant expanding endorheic lake in the central Tibetan Plateau[J]. Journal of the Meteorological Society of Japan, 2016, 94(5): 453-465.
22 GUO Y, ZHANG Y, MA N, et al. Long-term changes in evaporation over Siling Co Lake on the Tibetan Plateau and its impact on recent rapid lake expansion [J]. Atmospheric Research, 2019, 216: 141-150.
23 YANG K, CHEN Y, QIN J. Some practical notes on the land surface modeling in the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2009, 13: 687-701.
24 ZHENG D, VELDE R VAN DER, SU Z, et al. Augmentations to the Noah model physics for application to the Yellow River source area. part I: soil water flow[J]. Journal of Hydrometeorology, 2015, 16(6): 2 659-2 676.
25 WANG K X, ZHANG Y S, MA N, et al. Cryosphere evapotranspiration in the Tibetan Plateau: a review[J]. Sciences in Cold and Arid Regions, 2020, 12(6): 355-370.
26 LI J, CHEN F, ZHANG G, et al. Impacts of land cover and soil texture uncertainty on land model simulations over the central Tibetan Plateau[J]. Journal of Advances in Modeling Earth Systems, 2018, 10: 2 121-2 146.
27 BOUCHET R J. Evapotranspiration réelle et potentielle, signification climatique[J]. IAHS Publication, 1963, 62: 134-142.
28 MA N, ZHANG Y, SZILAGYI J, et al. Evaluating the complementary relationship of evapotranspiration in the alpine steppe of the Tibetan Plateau[J]. Water Resources Research, 2015, 51(2): 1 069-1 083.
29 MA N, SZILAGYI J, JOZSA J. Benchmarking large-scale evapotranspiration estimates: a perspective from a calibration-free complementary relationship approach and FLUXCOM[J]. Journal of Hydrology, 2020, 590: 125221.
30 MA N, SZILAGYI J. The CR of evaporation: a calibration-free diagnostic and benchmarking tool for large‐scale terrestrial evapotranspiration modeling[J]. Water Resources Research, 2019, 55(8): 7 246-7 274.
31 HOBBINS M T, RAMIREZ J A, BROWN T C. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: paradoxical or complementary?[J]. Geophysical Research Letters, 2004, 31(13). DOI: 10.1029/2004GL019846.
doi: 10.1029/2004GL019846    
32 MA N, SZILAGYI J, ZHANG Y, et al. Complementary‐relationship—based modeling of terrestrial evapotranspiration across China during 1982-2012: validations and spatiotemporal analyses[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(8): 4 326-4 351.
33 SZILAGYI J, CRAGO R, MA N. Dynamic scaling of the generalized complementary relationship improves long-term tendency estimates in land evaporation[J]. Advance in Atmospheric Sciences, 2020, 37(9): 975-986.
34 HAN S, XU D, WANG S, et al. Similarities and differences of two evapotranspiration models with routinely measured meteorological variables: application to a cropland and grassland in northeast China[J]. Theoretical and Applied Climatology, 2014, 117: 501-510.
35 HAN S, HU H, TIAN F. A nonlinear function approach for the normalized complementary relationship evaporation model[J]. Hydrological Processes, 2012, 26(26): 3 973-3 981.
36 HAN S, TIAN F. A review of the complementary principle of evaporation: from the original linear relationship to generalized nonlinear functions[J]. Hydrology and Earth System Sciences, 2021, 25: 375-386.
37 WANG L, HAN S, TIAN F. At which timescale does the complementary principle perform best in evaporation estimation?[J]. Hydrology and Earth System Sciences, 2020, 24: 2 269-2 285.
38 MIEHE G, MIEHE S, BACH K, et al. Plant communities of central Tibetan pastures in the Alpine Steppe/Kobresia pygmaea ecotone[J]. Journal of Arid Environments, 2011, 75(8): 711-723.
39 LANG Qin, NIU Zhenguo, HONG Xiaoqi, et al. Remote sensing monitoring and change analysis of the Tibet Plateau wetlands[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 230-237.
郎芹, 牛振国, 洪孝琪, 等. 青藏高原湿地遥感监测与变化分析[J].武汉大学学报:信息科学版, 2021, 46(2): 230-237.
40 WEI D, XU R, TRACHEN T, et al. Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau: evidence from two in situ measurements at 4 758 and 4 320?m above sea level[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120: 1 741-1 750.
41 PENMAN H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1948, 193: 120-145.
42 MA Y, MENETI M, FEDDES R, et al. Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths[J]. Journal of Geophysical Research, 2008, 113(D08113). DOI: 10.1029/2007JD009124.
doi: 10.1029/2007JD009124    
43 PRIESTLEY C H B, TAYPLOR R J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly Weather Review, 1972, 100(2): 81-92.
44 ZHANG Q, LI H, ZHAO J. Modification of the land surface energy balance relationship by introducing vertical sensible heat advection and soil heat storage over the Loess Plateau[J]. Science China Earth Sciences, 2011, 55(4): 580-589.
45 ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: guidelines for computing crop water requirements[C]. Rome: Food and Agriculture Organization of the United Nations, 1998.
46 YIN Y, WU S, ZHENG D, et al. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China[J]. Agricultural Water Management, 2008, 95(1): 77-84.
47 LIANG S, CHENG J, JIA K, et al. The Global Land Surface Satellite (GLASS) product suite[J]. Bulletin of the American Meteorological Society, 2021, 102: E323-E337.
48 HAN S, TIAN F. Derivation of a sigmoid generalized complementary function for evaporation with physical constraints[J]. Water Resources Research, 2018, 54(7): 5 050-5 068.
49 ZHOU J, WANG L, ZHANG Y, et al. Spatiotemporal variations of actual evapotranspiration over the Lake Selin Co and surrounding small lakes (Tibetan Plateau) during 2003-2012[J]. Science China Earth Sciences, 2016, 59(12): 2 441-2 453.
50 ZHOU J, WANG L, ZHANG Y, et al. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003-2012 from a basin-wide hydrological modeling[J]. Water Resources Research, 2015, 51(10): 8 060-8 086.
51 MARTENS B, MIRALLES D, LIEVENS H, et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1 903-1 925.
52 LIU W. Evaluating remotely sensed monthly evapotranspiration against water balance estimates at basin scale in the Tibetan Plateau[J]. Hydrology Research, 2018, 49(6): 1 977-1 990.
53 YANG X, YONG B, YIN Y, et al. Spatio-temporal changes in evapotranspiration over China using GLEAM_V3.0a products (1980-2014)[J]. Hydrology Research, 2018, 49(5): 1 330-1 348.
54 QI Y, WEI D, ZHAO H, et al. Carbon sink of a very high marshland on the Tibetan Plateau[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126. DOI: 10.1029/2020JG006235.
doi: 10.1029/2020JG006235    
55 CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau [J]. Chinese Science Bulletin, 2015, 60(32): 3 025-3 035.
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3 025-3 035.
56 ZHANG Y, LIU C, TANG Y, et al. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau[J]. Journal of Geophysical Research, 2007, 112(D12110). DOI: 10.1029/2006JD008161.
doi: 10.1029/2006JD008161    
57 LIN S, WANG G, HU Z, et al. Dynamics of evapotranspiration and variations in different land-cover regions over the Tibetan Plateau during 1961-2014[J]. Journal of Hydrometeorology, 2021, 22: 955-969.
58 SHEN M, ZHANG G, CONG N, et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2014, 189/190: 71-80.
59 LI Lin, LI Fengxia, ZHU Xide, et al. Quantitative identification of driving force on wetland shrinkage over the source region of the Yellow River [J]. Journal of Natural Resources, 2009, 24(7): 1 246-1 255.
李林, 李凤霞, 朱西德, 等. 2009. 黄河源区湿地萎缩驱动力的定量辨识[J]. 自然资源学报,2009,24(7): 1 246-1 255.
60 GUO Jie, LI Guoping. Climate change in Zoige Plateau Marsh Wetland and its impact on wetland degradation [J]. Plateau Meteorology, 2007, 26(2): 422-428.
郭洁, 李国平. 若尔盖气候变化及其对湿地退化的影响[J]. 高原气象, 2007, 26(2): 422-428.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[6] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[7] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[8] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[9] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[10] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[11] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[12] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[13] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[14] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
[15] 王婷. 基于文献计量的青藏高原国际合作研究态势分析[J]. 地球科学进展, 2016, 31(6): 650-662.
阅读次数
全文


摘要