1 |
QIU J. China: the third pole[J]. Nature, 2008, 454(7 203): 393-396.
|
2 |
YE Duzheng, WU Guoxiong. The role of the heat source of the Tibetan Plateau in the general circulation[J]. Meteorology and Atmospheric Physics, 1998, 67: 181-198.
|
3 |
IMMERZEEL W, BEEK L P VAN, BIERKENS M F. Climate change will affect the Asian Water Towers[J]. Science, 2010, 328(5 984): 1 382-1 385.
|
4 |
YAO T, MASSON-DELMOTTE V, GAO J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations[J]. Reviews of Geophysics, 2013, 51(4): 525-548.
|
5 |
YAO T, XUE Y, CHEN D, et al. Recent Third Pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
|
6 |
YANG K, WU H, QIN J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review[J]. Global and Planetary Change, 2014, 112: 79-91.
|
7 |
YANG M, NELSON F E, SHIKLOMANOV N I, et al. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research [J]. Earth-Science Reviews, 2010, 103(1/2): 31-44.
|
8 |
ZHU Z, PIAO S L, MYNENI R B, et al. Greening of the Earth and its drivers[J]. Nature Climate Change, 2016, 6: 791-795.
|
9 |
ZHAO P, XU X, CHEN F, et al. The third atmospheric scientific experiment for understanding the Earth-atmosphere coupled system over the Tibetan Plateau and its effects[J]. Bulletin of the American Meteorological Society, 2018, 99(4): 757-776.
|
10 |
MA Yaoming, YAO Tandong, WANG Jiemin. Experimental study of energy and water cycle in Tibetan Plateau—the progress introduction on the study of GAME/Tibet and CAMP/Tibet [J]. Plateau Meteorology, 2006, 25(2): 344-351.
|
|
马耀明, 姚檀栋, 王介民. 青藏高原能量和水循环试验研究——GAME/Tibet与CAMP/Tibet研究进展[J]. 高原气象, 2006, 25(2): 344-351.
|
11 |
MA Y, KANG S, ZHU L, et al. Roof of the world: Tibetan observation and research platform: atmosphere-land Interaction over a heterogeneous landscape[J]. Bulletin of the American Meteorological Society, 2008, 89(10): 1 487-1 492.
|
12 |
YAO T, THOMPSON L G, MOSBRUGGER V, et al. Third Pole Environment (TPE)[J]. Environmental Development, 2012, 3: 52-64.
|
13 |
YAO Tandong. A comprehensive study of water-ecosystem-human activities reveals unbalancing Asian Water Tower and accompanying potential risks[J]. Science Bulletin, 2020, 64(27): 2 761-2 762.
|
|
姚檀栋. 青藏高原水—生态—人类活动考察研究揭示“亚洲水塔”的失衡及其各种潜在风险[J]. 科学通报, 2019, 64(27): 2 761-2 762.
|
14 |
SHANG L, ZHANG Y, LV S, et al. Energy exchange of an alpine grassland on the eastern Qinghai-Tibetan Plateau[J]. Science Bulletin, 2015, 60: 435-446.
|
15 |
YOU Q, XUE X, PENG F, et al. Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2017, 232: 48-65.
|
16 |
ZHANG S, LI X, ZHAO G, et al. Surface energy fluxes and controls of evapotranspiration in three alpine ecosystems of Qinghai Lake watershed, NE Qinghai-Tibet Plateau[J]. Ecohydrology, 2016, 9(2): 267-279.
|
17 |
MA N, ZHANG Y, GUO Y, et al. Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe[J]. Journal of Hydrology, 2015, 529: 980-992.
|
18 |
WANG L, LIU H, SHAO Y, et al. Water and CO2 fluxes over semiarid alpine steppe and humid alpine meadow ecosystems on the Tibetan Plateau[J]. Theoretical and Applied Climatology, 2018, 131(1/2): 547-556.
|
19 |
CHEN J, WEN J, KANG S, et al. Assessments of the factors controlling latent heat flux and the coupling degree between an alpine wetland and the atmosphere on the Qinghai-Tibetan Plateau in summer[J]. Atmospheric Research, 2020, 240: 104937.
|
20 |
CAO S, CAO G, HAN G, et al. Comparison of evapotranspiration between two alpine type wetland ecosystems in Qinghai Lake basin of Qinghai-Tibet Plateau[J]. Ecohydrology & Hydrobiology, 2020, 20(2): 215-229.
|
21 |
GUO Y, ZHANG Y, MA N, et al. Quantifying surface energy fluxes and evaporation over a significant expanding endorheic lake in the central Tibetan Plateau[J]. Journal of the Meteorological Society of Japan, 2016, 94(5): 453-465.
|
22 |
GUO Y, ZHANG Y, MA N, et al. Long-term changes in evaporation over Siling Co Lake on the Tibetan Plateau and its impact on recent rapid lake expansion [J]. Atmospheric Research, 2019, 216: 141-150.
|
23 |
YANG K, CHEN Y, QIN J. Some practical notes on the land surface modeling in the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2009, 13: 687-701.
|
24 |
ZHENG D, VELDE R VAN DER, SU Z, et al. Augmentations to the Noah model physics for application to the Yellow River source area. part I: soil water flow[J]. Journal of Hydrometeorology, 2015, 16(6): 2 659-2 676.
|
25 |
WANG K X, ZHANG Y S, MA N, et al. Cryosphere evapotranspiration in the Tibetan Plateau: a review[J]. Sciences in Cold and Arid Regions, 2020, 12(6): 355-370.
|
26 |
LI J, CHEN F, ZHANG G, et al. Impacts of land cover and soil texture uncertainty on land model simulations over the central Tibetan Plateau[J]. Journal of Advances in Modeling Earth Systems, 2018, 10: 2 121-2 146.
|
27 |
BOUCHET R J. Evapotranspiration réelle et potentielle, signification climatique[J]. IAHS Publication, 1963, 62: 134-142.
|
28 |
MA N, ZHANG Y, SZILAGYI J, et al. Evaluating the complementary relationship of evapotranspiration in the alpine steppe of the Tibetan Plateau[J]. Water Resources Research, 2015, 51(2): 1 069-1 083.
|
29 |
MA N, SZILAGYI J, JOZSA J. Benchmarking large-scale evapotranspiration estimates: a perspective from a calibration-free complementary relationship approach and FLUXCOM[J]. Journal of Hydrology, 2020, 590: 125221.
|
30 |
MA N, SZILAGYI J. The CR of evaporation: a calibration-free diagnostic and benchmarking tool for large‐scale terrestrial evapotranspiration modeling[J]. Water Resources Research, 2019, 55(8): 7 246-7 274.
|
31 |
HOBBINS M T, RAMIREZ J A, BROWN T C. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: paradoxical or complementary?[J]. Geophysical Research Letters, 2004, 31(13). DOI: 10.1029/2004GL019846.
doi: 10.1029/2004GL019846
|
32 |
MA N, SZILAGYI J, ZHANG Y, et al. Complementary‐relationship—based modeling of terrestrial evapotranspiration across China during 1982-2012: validations and spatiotemporal analyses[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(8): 4 326-4 351.
|
33 |
SZILAGYI J, CRAGO R, MA N. Dynamic scaling of the generalized complementary relationship improves long-term tendency estimates in land evaporation[J]. Advance in Atmospheric Sciences, 2020, 37(9): 975-986.
|
34 |
HAN S, XU D, WANG S, et al. Similarities and differences of two evapotranspiration models with routinely measured meteorological variables: application to a cropland and grassland in northeast China[J]. Theoretical and Applied Climatology, 2014, 117: 501-510.
|
35 |
HAN S, HU H, TIAN F. A nonlinear function approach for the normalized complementary relationship evaporation model[J]. Hydrological Processes, 2012, 26(26): 3 973-3 981.
|
36 |
HAN S, TIAN F. A review of the complementary principle of evaporation: from the original linear relationship to generalized nonlinear functions[J]. Hydrology and Earth System Sciences, 2021, 25: 375-386.
|
37 |
WANG L, HAN S, TIAN F. At which timescale does the complementary principle perform best in evaporation estimation?[J]. Hydrology and Earth System Sciences, 2020, 24: 2 269-2 285.
|
38 |
MIEHE G, MIEHE S, BACH K, et al. Plant communities of central Tibetan pastures in the Alpine Steppe/Kobresia pygmaea ecotone[J]. Journal of Arid Environments, 2011, 75(8): 711-723.
|
39 |
LANG Qin, NIU Zhenguo, HONG Xiaoqi, et al. Remote sensing monitoring and change analysis of the Tibet Plateau wetlands[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 230-237.
|
|
郎芹, 牛振国, 洪孝琪, 等. 青藏高原湿地遥感监测与变化分析[J].武汉大学学报:信息科学版, 2021, 46(2): 230-237.
|
40 |
WEI D, XU R, TRACHEN T, et al. Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau: evidence from two in situ measurements at 4 758 and 4 320?m above sea level[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120: 1 741-1 750.
|
41 |
PENMAN H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1948, 193: 120-145.
|
42 |
MA Y, MENETI M, FEDDES R, et al. Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths[J]. Journal of Geophysical Research, 2008, 113(D08113). DOI: 10.1029/2007JD009124.
doi: 10.1029/2007JD009124
|
43 |
PRIESTLEY C H B, TAYPLOR R J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly Weather Review, 1972, 100(2): 81-92.
|
44 |
ZHANG Q, LI H, ZHAO J. Modification of the land surface energy balance relationship by introducing vertical sensible heat advection and soil heat storage over the Loess Plateau[J]. Science China Earth Sciences, 2011, 55(4): 580-589.
|
45 |
ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: guidelines for computing crop water requirements[C]. Rome: Food and Agriculture Organization of the United Nations, 1998.
|
46 |
YIN Y, WU S, ZHENG D, et al. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China[J]. Agricultural Water Management, 2008, 95(1): 77-84.
|
47 |
LIANG S, CHENG J, JIA K, et al. The Global Land Surface Satellite (GLASS) product suite[J]. Bulletin of the American Meteorological Society, 2021, 102: E323-E337.
|
48 |
HAN S, TIAN F. Derivation of a sigmoid generalized complementary function for evaporation with physical constraints[J]. Water Resources Research, 2018, 54(7): 5 050-5 068.
|
49 |
ZHOU J, WANG L, ZHANG Y, et al. Spatiotemporal variations of actual evapotranspiration over the Lake Selin Co and surrounding small lakes (Tibetan Plateau) during 2003-2012[J]. Science China Earth Sciences, 2016, 59(12): 2 441-2 453.
|
50 |
ZHOU J, WANG L, ZHANG Y, et al. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003-2012 from a basin-wide hydrological modeling[J]. Water Resources Research, 2015, 51(10): 8 060-8 086.
|
51 |
MARTENS B, MIRALLES D, LIEVENS H, et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1 903-1 925.
|
52 |
LIU W. Evaluating remotely sensed monthly evapotranspiration against water balance estimates at basin scale in the Tibetan Plateau[J]. Hydrology Research, 2018, 49(6): 1 977-1 990.
|
53 |
YANG X, YONG B, YIN Y, et al. Spatio-temporal changes in evapotranspiration over China using GLEAM_V3.0a products (1980-2014)[J]. Hydrology Research, 2018, 49(5): 1 330-1 348.
|
54 |
QI Y, WEI D, ZHAO H, et al. Carbon sink of a very high marshland on the Tibetan Plateau[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126. DOI: 10.1029/2020JG006235.
doi: 10.1029/2020JG006235
|
55 |
CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau [J]. Chinese Science Bulletin, 2015, 60(32): 3 025-3 035.
|
|
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3 025-3 035.
|
56 |
ZHANG Y, LIU C, TANG Y, et al. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau[J]. Journal of Geophysical Research, 2007, 112(D12110). DOI: 10.1029/2006JD008161.
doi: 10.1029/2006JD008161
|
57 |
LIN S, WANG G, HU Z, et al. Dynamics of evapotranspiration and variations in different land-cover regions over the Tibetan Plateau during 1961-2014[J]. Journal of Hydrometeorology, 2021, 22: 955-969.
|
58 |
SHEN M, ZHANG G, CONG N, et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2014, 189/190: 71-80.
|
59 |
LI Lin, LI Fengxia, ZHU Xide, et al. Quantitative identification of driving force on wetland shrinkage over the source region of the Yellow River [J]. Journal of Natural Resources, 2009, 24(7): 1 246-1 255.
|
|
李林, 李凤霞, 朱西德, 等. 2009. 黄河源区湿地萎缩驱动力的定量辨识[J]. 自然资源学报,2009,24(7): 1 246-1 255.
|
60 |
GUO Jie, LI Guoping. Climate change in Zoige Plateau Marsh Wetland and its impact on wetland degradation [J]. Plateau Meteorology, 2007, 26(2): 422-428.
|
|
郭洁, 李国平. 若尔盖气候变化及其对湿地退化的影响[J]. 高原气象, 2007, 26(2): 422-428.
|