地球科学进展 ›› 2021, Vol. 36 ›› Issue (8): 849 -861. doi: 10.11867/j.issn.1001-8166.2021.058

地表蒸散发过程及机理研究 上一篇    下一篇

广义非线性蒸发互补关系研究进展
韩松俊 1( ),田富强 2   
  1. 1.流域水循环模拟与调控国家重点实验室,中国水利水电科学研究院,北京 100038
    2.清华大学水利水电工程系,水沙科学与水利水电工程国家重点实验室,北京 100084
  • 收稿日期:2020-12-20 修回日期:2021-04-22 出版日期:2021-08-10
  • 基金资助:
    国家自然科学基金项目“不同尺度湿润面蒸发的平流影响机制”(52079147);“西南河流源区径流变化机理和未来趋势”(92047301)

Research Progress of the Generalized Nonlinear Complementary Relationships of Evaporation

Songjun HAN 1( ),Fuqiang TIAN 2   

  1. 1.State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research,Beijing 100038,China
    2.Department of Hydraulic Engineering,State Key Laboratory of Hydro-science and Engineering,Tsinghua University,Beijing 100084,China
  • Received:2020-12-20 Revised:2021-04-22 Online:2021-08-10 Published:2021-09-22
  • About author:HAN Songjun (1981-), male, Laohekou County, Hubei Province, Professor of engineering. Research areas include evaporation and hydrological cycle. E-mail: hansj@iwhr.com
  • Supported by:
    the National Natural Science Foundation of China "Mechanisms of advections on wet surface evaporation at different spatial scales"(52079147);"Deciphering changes of river discharge on Tibetan Plateau"(92047301)

互补关系最初以陆面蒸发对大气蒸发能力的线性反馈作用为基础,指能量输入一定的情况下,陆面蒸发量与大气蒸发能力随陆面水分供应条件变化发生的大小相等、方向相反的“互补”变化,基于互补关系能够利用常规气象数据进行实际蒸发量的估算。目前互补关系被拓展为描述陆面蒸发与大气蒸发能力之间非线性相互作用规律的一种本构关系,提出了3种广义非线性蒸发互补关系:韩松俊等的S型函数公式(2012年),Brutsaert的多项式公式(2015年)以及Crago和Szilagyi在多项式公式基础上提出的对自变量进行动态标度的方法(2016年)。3种非线性互补关系采用不同的边界条件,对陆面水分条件的影响具有不同的处理思路,反映了对陆面蒸发与大气蒸发能力之间相互作用规律的不同认识。通过梳理广义非线性互补关系的发展历程和争论,分析争论背后认识和研究思路的差异,以期为蒸发研究的发展提供参考。

The complementary relationship of evaporation was first based on the linear feedbacks of land surface evaporation on the atmospheric evaporative demand. Given that the water availability of the land surface changes with constant available energy, it means that the land surface evaporation and the atmospheric evaporative demand change complementarily with equal amount yet opposite directions. Actual evaporation can be estimated with routinely measured meteorological variables based on the complementary relationship. At present, the complementary relationship is generalized to a constitutive relationship describing the nonlinear interactions between the land surface evaporation and the atmospheric evaporative demand. Three generalized nonlinear complementary relationships were proposed: the sigmoid formulation of Han et al. (2012), the polynomial formulation of Brutsaert (2015), and the rescaling approach on the independent variable of the polynomial formulation of Crago and Szilagyi (2016). The three nonlinear complementary relationships adopt different boundary conditions, and employ different approaches to deal with the influences of the land surface water availability, reflecting different understandings on the interactions between the land surface evaporation and the atmospheric evaporative demand. This review summarizes the historical development of the generalized nonlinear complementary relationships with a specific focus on their controversies, and analyzes the differences of the understandings and research approaches, so as to provide a reference for the development of evaporation research.

中图分类号: 

1 SHUTTLEWORTH W J. Terrestrial hydrometeorology [M]. Wiley-Blackwell, 2012.
2 MIRALLES D G, BRUTSAERT W, DOLMAN A J, et al. On the use of the term "evapotranspiration" [J]. Water Resources Research, 2020, 56(11). DOI:10.1002/essoar.10503229.1.
doi: 10.1002/essoar.10503229.1    
3 BRUTSAERT W. Evaporation into the atmosphere: theory, history and applications [M]// Reidel-Kluwer H D. Evaporation into the atomsphere. Springer, 1982.
4 WANG Jingfeng, LIU Yuanbo, ZHANG Ke. The maximum entropy production approach for estimating evapotranspiration:principle and applications [J]. Advances in Earth Science, 2019, 34(6): 596-605.
WANG Jingfeng, 刘元波, 张珂. 最大熵增地表蒸散模型:原理及应用综述 [J]. 地球科学进展, 2019, 34(6): 596-605.
5 HAN S, TIAN F. Integration of Penman approach with complementary principle for evaporation research [J]. Hydrological Processes, 2018, 32(19): 3 051-3 058.
6 YANG D, FUBAO S, ZHIYU L, et al. Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses [J]. Geophysical Research Letters, 2006, 33: L18402.
7 HAN Songjun, ZHANG Baozhong. Advances of evapotranspiration research based on the Penman approach and complementary principle [J]. Journal of Hydraulic Engineering, 2018, 48(9): 1 158-1 168.
韩松俊, 张宝忠. 基于Penman方法和互补原理的蒸散发研究历程与展望 [J]. 水利学报, 2018, 48(9): 1 158-1 168.
8 BOUCHET R. Evapotranspiration réelle et potentielle, signification climatique [J]. International Association of Hydrological Sciences Publication, 1963, 62: 134-142.
9 MORTON F I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology [J]. Journal of Hydrology, 1983, 66: 1-76.
10 BRUTSAERT W, STRICKER H. An advection-aridity approach to estimate actual regional evapotranspiration [J]. Water Resources Research, 1979, 15(2): 443-450.
11 KAHLER D M, BRUTSAERT W. Complementary relationship between daily evaporation in the environment and pan evaporation [J]. Water Resources Research, 2006, 42: W05413. DOI:10.1029/2005WR004541.
doi: 10.1029/2005WR004541    
12 BRUTSAERT W, PARLANGE M B. Hydrologic cycle explains the evaporation paradox [J]. Nature, 1998, 396: 30.
13 GRANGER R J. A complementary relationship approach for evaporation from nonsaturated surfaces [J]. Journal of Hydrology, 1989, 111: 31-38.
14 HAN S, TIAN F. A review of the complementary principle of evaporation: from the original linear relationship to generalized nonlinear functions [J]. Hydrology and Earth System Sciences, 2020, 24(5): 2 269-2 285.
15 HAN S, XU D, WANG S, et al. Similarities and differences of two evapotranspiration models with routinely measured meteorological variables: application to a cropland and grassland in northeast China [J]. Theoretical and Applied Climatology, 2014, 117(3/4): 501-510.
16 HAN S, TIAN F, HU H. Positive or negative correlation between actual and potential evaporation? evaluating using a nonlinear complementary relationship model [J]. Water Resources Research, 2014, 50(2): 1 322-1 336. DOI: 10.1002/2013WR014151.
doi: 10.1002/2013WR014151    
17 HAN S, HU H, TIAN F. A nonlinear function approach for the normalized complementary relationship evaporation model [J]. Hydrological Processes, 2012, 26(26): 3 973-3 981.
18 HAN S, HU H, YANG D. A complementary relationship evaporation model referring to the Granger model and the advection-aridity model [J]. Hydrological Processes, 2011, 25(13): 2 094-2 101.
19 HAN S, HU H, TIAN F. Evaluating the advection-aridity model of evaporation using data from field-sized surfaces of HEIFE [J]. IAHS Publication, 2008, 322(2): 9-14.
20 HAN Songjun. Study on complementary relationship of evapotranspiration and its application in Tarim River Basin [D]. Beijing: Tsinghua University, 2008.
韩松俊. 蒸散发互补相关理论及其在塔里木河流域应用研究[D]. 北京:清华大学, 2008.
21 BRUTSAERT W. A generalized complementary principle with physical constraints for land-surface evaporation [J]. Water Resources Research, 2015, 51(10): 8 087-8 093. DOI:10.1002/2015WR017720.
doi: 10.1002/2015WR017720    
22 CRAGO R, SZILAGYI J, QUALLS R, et al. Rescaling the complementary relationship for land surface evaporation [J]. Water Resources Research, 2016, 52(11): 8 461-8 471.
23 CRAGO R, QUALLS R. Evaluation of the generalized and rescaled complementary evaporation relationships [J]. Water Resources Research, 2018, 54: 8 086-8 102.
24 SZILAGYI J, CRAGO R, QUALLS R. A calibration‐free formulation of the complementary relationship of evaporation for continental‐scale hydrology [J]. Journal of Geophysical Research: Atmospheres, 2017, 122(1): 264-278.
25 WANG L, TIAN F, HAN S, et al. Determinants of the asymmetric parameter in the complementary principle of evaporation [J]. Water Resources Research, 2020, 56: e2019WR026570.
26 HAN S, TIAN F. Derivation of a sigmoid generalized complementary function for evaporation with physical constraints [J]. Water Resources Research, 2018, 54(7): 5 050-5 068.
27 LIU W, ZHOU H, HAN X, et al. Comment on two papers about the generalized complementary evaporation relationships by Cragoet al. [J]. Water Resources Research, 2020, 56: e2019WR026292.
28 CRAGO R, SZILAGYI J, QUALLS R. Reply to "Comment on 'two papers about the generalized complementary evaporation relationships by Cragoet al.'" [J]. Water Resources Research, 2020, 56: e2019WR026773.
29 SZILAGYI J, CRAGO R. Comment on "derivation of a sigmoid generalized complementary function for evaporation with physical constraints" by S. Han and F. Tian [J]. Water Resources Research, 2019, 55: 868-869.
[1] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[2] 王九一, 刘成林. 石盐流体包裹体中古嗜盐菌的研究进展[J]. 地球科学进展, 2016, 31(12): 1220-1227.
[3] 刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素----以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1): 103-112.
[4] 成印河,周生启,王东晓. 海上大气波导研究进展[J]. 地球科学进展, 2013, 28(3): 318-326.
[5] 徐兴奎. 1970—2000年中国近地层大气热力增强的气候效应[J]. 地球科学进展, 2011, 26(1): 48-56.
[6] 周剑,李新,王根绪,潘小多. 陆面过程模式SIB2与包气带入渗模型的耦合及其应用[J]. 地球科学进展, 2008, 23(6): 570-579.
[7] 王润元,杨兴国,张九林,王德民,梁东升,张立功. 陇东黄土高原土壤储水量与蒸发和气候研究[J]. 地球科学进展, 2007, 22(6): 625-635.
[8] 刘兴起;倪培. 表生环境条件形成的石盐流体包裹体研究进展[J]. 地球科学进展, 2005, 20(8): 856-862.
[9] 马柯阳. 凝析油形成新模式——原油蒸发分馏机制研究[J]. 地球科学进展, 1995, 10(6): 567-571.
阅读次数
全文


摘要