1 |
SHUTTLEWORTH W J. Terrestrial hydrometeorology [M]. Wiley-Blackwell, 2012.
|
2 |
MIRALLES D G, BRUTSAERT W, DOLMAN A J, et al. On the use of the term "evapotranspiration" [J]. Water Resources Research, 2020, 56(11). DOI:10.1002/essoar.10503229.1.
doi: 10.1002/essoar.10503229.1
|
3 |
BRUTSAERT W. Evaporation into the atmosphere: theory, history and applications [M]// Reidel-Kluwer H D. Evaporation into the atomsphere. Springer, 1982.
|
4 |
WANG Jingfeng, LIU Yuanbo, ZHANG Ke. The maximum entropy production approach for estimating evapotranspiration:principle and applications [J]. Advances in Earth Science, 2019, 34(6): 596-605.
|
|
WANG Jingfeng, 刘元波, 张珂. 最大熵增地表蒸散模型:原理及应用综述 [J]. 地球科学进展, 2019, 34(6): 596-605.
|
5 |
HAN S, TIAN F. Integration of Penman approach with complementary principle for evaporation research [J]. Hydrological Processes, 2018, 32(19): 3 051-3 058.
|
6 |
YANG D, FUBAO S, ZHIYU L, et al. Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses [J]. Geophysical Research Letters, 2006, 33: L18402.
|
7 |
HAN Songjun, ZHANG Baozhong. Advances of evapotranspiration research based on the Penman approach and complementary principle [J]. Journal of Hydraulic Engineering, 2018, 48(9): 1 158-1 168.
|
|
韩松俊, 张宝忠. 基于Penman方法和互补原理的蒸散发研究历程与展望 [J]. 水利学报, 2018, 48(9): 1 158-1 168.
|
8 |
BOUCHET R. Evapotranspiration réelle et potentielle, signification climatique [J]. International Association of Hydrological Sciences Publication, 1963, 62: 134-142.
|
9 |
MORTON F I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology [J]. Journal of Hydrology, 1983, 66: 1-76.
|
10 |
BRUTSAERT W, STRICKER H. An advection-aridity approach to estimate actual regional evapotranspiration [J]. Water Resources Research, 1979, 15(2): 443-450.
|
11 |
KAHLER D M, BRUTSAERT W. Complementary relationship between daily evaporation in the environment and pan evaporation [J]. Water Resources Research, 2006, 42: W05413. DOI:10.1029/2005WR004541.
doi: 10.1029/2005WR004541
|
12 |
BRUTSAERT W, PARLANGE M B. Hydrologic cycle explains the evaporation paradox [J]. Nature, 1998, 396: 30.
|
13 |
GRANGER R J. A complementary relationship approach for evaporation from nonsaturated surfaces [J]. Journal of Hydrology, 1989, 111: 31-38.
|
14 |
HAN S, TIAN F. A review of the complementary principle of evaporation: from the original linear relationship to generalized nonlinear functions [J]. Hydrology and Earth System Sciences, 2020, 24(5): 2 269-2 285.
|
15 |
HAN S, XU D, WANG S, et al. Similarities and differences of two evapotranspiration models with routinely measured meteorological variables: application to a cropland and grassland in northeast China [J]. Theoretical and Applied Climatology, 2014, 117(3/4): 501-510.
|
16 |
HAN S, TIAN F, HU H. Positive or negative correlation between actual and potential evaporation? evaluating using a nonlinear complementary relationship model [J]. Water Resources Research, 2014, 50(2): 1 322-1 336. DOI: 10.1002/2013WR014151.
doi: 10.1002/2013WR014151
|
17 |
HAN S, HU H, TIAN F. A nonlinear function approach for the normalized complementary relationship evaporation model [J]. Hydrological Processes, 2012, 26(26): 3 973-3 981.
|
18 |
HAN S, HU H, YANG D. A complementary relationship evaporation model referring to the Granger model and the advection-aridity model [J]. Hydrological Processes, 2011, 25(13): 2 094-2 101.
|
19 |
HAN S, HU H, TIAN F. Evaluating the advection-aridity model of evaporation using data from field-sized surfaces of HEIFE [J]. IAHS Publication, 2008, 322(2): 9-14.
|
20 |
HAN Songjun. Study on complementary relationship of evapotranspiration and its application in Tarim River Basin [D]. Beijing: Tsinghua University, 2008.
|
|
韩松俊. 蒸散发互补相关理论及其在塔里木河流域应用研究[D]. 北京:清华大学, 2008.
|
21 |
BRUTSAERT W. A generalized complementary principle with physical constraints for land-surface evaporation [J]. Water Resources Research, 2015, 51(10): 8 087-8 093. DOI:10.1002/2015WR017720.
doi: 10.1002/2015WR017720
|
22 |
CRAGO R, SZILAGYI J, QUALLS R, et al. Rescaling the complementary relationship for land surface evaporation [J]. Water Resources Research, 2016, 52(11): 8 461-8 471.
|
23 |
CRAGO R, QUALLS R. Evaluation of the generalized and rescaled complementary evaporation relationships [J]. Water Resources Research, 2018, 54: 8 086-8 102.
|
24 |
SZILAGYI J, CRAGO R, QUALLS R. A calibration‐free formulation of the complementary relationship of evaporation for continental‐scale hydrology [J]. Journal of Geophysical Research: Atmospheres, 2017, 122(1): 264-278.
|
25 |
WANG L, TIAN F, HAN S, et al. Determinants of the asymmetric parameter in the complementary principle of evaporation [J]. Water Resources Research, 2020, 56: e2019WR026570.
|
26 |
HAN S, TIAN F. Derivation of a sigmoid generalized complementary function for evaporation with physical constraints [J]. Water Resources Research, 2018, 54(7): 5 050-5 068.
|
27 |
LIU W, ZHOU H, HAN X, et al. Comment on two papers about the generalized complementary evaporation relationships by Cragoet al. [J]. Water Resources Research, 2020, 56: e2019WR026292.
|
28 |
CRAGO R, SZILAGYI J, QUALLS R. Reply to "Comment on 'two papers about the generalized complementary evaporation relationships by Cragoet al.'" [J]. Water Resources Research, 2020, 56: e2019WR026773.
|
29 |
SZILAGYI J, CRAGO R. Comment on "derivation of a sigmoid generalized complementary function for evaporation with physical constraints" by S. Han and F. Tian [J]. Water Resources Research, 2019, 55: 868-869.
|