地球科学进展 ›› 2005, Vol. 20 ›› Issue (8): 856 -862. doi: 10.11867/j.issn.1001-8166.2005.08.0856

综述与评述 上一篇    下一篇

表生环境条件形成的石盐流体包裹体研究进展
刘兴起 1,倪培 2   
  1. 1.中国科学院南京地理与湖泊研究所,江苏 南京 210008;2.南京大学成矿作用国家重点实验室,地质流体研究所,地球科学系,江苏 南京 210093
  • 收稿日期:2004-09-14 修回日期:2005-04-18 出版日期:2005-08-25
  • 通讯作者: 刘兴起
  • 基金资助:

    国家自然科学基金项目“利用内陆盐湖石盐流体包裹体定量反演古气候环境要素”(编号: 40373016)资助.

ADVANCES IN STUDIES OF FLUID INCLUSIONS IN HALITE FORMED IN EARTH’S SURFACE ENVIRONMENTS

LIU Xingqi 1;NI Pei 2   

  1. 1.Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008,China;     2.State Key Laboratory for Mineral Deposit Research,Institute of Geo-Fluid Research,Department of Earth Sciences, Nanjing University, Nanjing 210093,China
  • Received:2004-09-14 Revised:2005-04-18 Online:2005-08-25 Published:2005-08-25

系统介绍了近些年来国外在表生环境条件形成的石盐流体包裹体均一温度、水体组分、δD和δ18O同位素、气体成分及微生物等信息提取和应用方面的研究进展。这些研究进展充分表明表生环境条件形成的石盐流体包裹体是目前利用蒸发盐定量获取古气候环境(温度、湿度)参数、揭示海洋和盐湖水体地质历史时期的长期演化以及丰富和深化成盐成矿理论的良好地质载体。分析了我国目前在这一研究领域同国外相比的差距、潜在优势和发展前景。

Some overseas advanced studies of fluid inclusions in halite formed in Earth's surface environments are introduced. Those advances include not only the method to get information such as homogenization temperature(Th), chemical and isotopic(δD ,δ18O ) composition of water body , gas composition of atmosphere, and biological parameters from fluid inclusions in halite, but also their application . Those studies indicate that fluid inclusion in halite can be regarded as one of reliable materials for quantitative reconstruction of palaeoenvironmental conditions such as moisture budgets and temperature, for quantitative study of secular evolution of ocean and salt lake in the geologic period, and for further developing the theory of salt deposit formation. In this research field, the difference compared with overseas, potential advantage and its foreground in our country were also discussed.

中图分类号: 

[1] Roedder E. Fluid inclusions[J]. Mineralogical Society of America Reviews in Mineralogy, 1984,12:1-644.
[2] Goldstein R H, Reynolds T J. Systematics of fuid inclusions in diagenetic minerals[J].SEPM Short Course, 1994, 31:199.
[3] Goldstein R H, Barker C E. Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer[J]. Geology, 1990, 18(10): 1 003-1 006.
[4] Roedder E, Skinner B J. Experimental evidence that fluid inclusions do not leak [J]. Economic Geology, 1968, 63:715-730.
[5] Roedder E, Belkin H E. Thermal gradient migration of fluid inclusions in single crystals of salt from the Waste. Isolation Pilot Plant site WIPP [A]. In: Nothrup C J M,ed. Scientific Basis for Nuclear Waste Management[C]. New York: Plenum Press, 1980.453-464.
[6] Roedder E. The fluids in salt [J]. American Mineralogist, 1984,69:413-439.
[7] Kovalevich V M. Thermometric studies of inclusions in artificial crystals of halite [J]. Fluid Inclusion Research, 1975, 8: 96.
[8] Kovalevich V M. Halite of the salt deposits of Miocene age from the Forecarpathians [J]. Fluid Inclusion Research, 1976, 9: 72.
[9] Wilcox W R. Removing inclusions from crystals by gradient techniques [J]. Industrial Engineering Chemistry, 1968,60:12-23.
[10] Petrichenko I O. Methods of study of inclusions in minerals in saline deposits [J]. Fluid Inclusion Research, 1979,12:114-274.
[11] Dellwig I F. Origin of the Salina salt of Michigan [J]. Journal of Sedimentary Petrology, 1955,25:83-110.
[12] Arthurton R S. Experimentally produced halite compared with Triassic layered halite-rock from Cheshire, England [J]. Sedimentology, 1973,20:145-160.
[13] Hardie L A, Lowenstein T K, Spencer R J. The problem of distinguishing between primary and secondary features in evaporates[A]. In: Schreiber B C, Harber H I, eds. Sixth International Symposium on Salt[C]. Alexandia, Virginia, USA: The Salt Institute, 1985.11-39.
[14] Casas E, Lowenstein T K. Diagenesis of saline pan halite: Comparison of petrologic features of modern,Quaternary,and Permian Halites[J]. Journal of Sedimentary Petrology,1989,59:724-739.
[15] Lowenstein T K, Hardie L A. Criteria for the recognition of salt-pan evaporates [J]. Sedimentology, 1985,32:627-644.
[16] Sisson V B, Lovelace R W, Maze W B, et al. Direct observation of primary fluid-inclusion formation [J]. Geology, 1993,21:751-754.
[17] Yuan Jianqi,Cai Keqin,Xiao Rongge,et al. The characteristics and genesis of inclusions in salt from Mengyejing potash deposit in Yunnan province [J]. Earth Science—Journal of China University of Geoscience, 1991,2:140-142.[袁见齐,蔡克勤,肖荣阁,等.云南勐野井钾盐矿床石盐中包裹体特征及其成因的讨论[J].地球科学——中国地质大学学报,1991,2:140-142.]
[18] Zhang Fang,Gen Wenhui,Wang Ziping.Studying of salt mineral fluid inclusion at salt evaporite deposits in Lanpin-Simao basin[J].Mineral Resources and Geology, 2001,15(2):113-115.[张芳,耿文辉,王滋平.兰坪—思茅盆地石盐矿床盐矿物包裹体特征[J].矿产与地质, 2001,15(2):113-115.]
[19] Yang Jigen.The preliminary study of fluid inclusions in salt from five halite deposits of four provinces in Southeast China [J]. Journal of Salt Lake Science, 1994,2(3): 1-9. [杨吉根.我国东南四省五个岩盐矿床石盐中流体包裹体的初步研究[J].盐湖研究, 1994,2(3):1-9.]
[20] Roberts S M, Spencer R J. Paleotemperatures preserved in fluid inclusion in halite [J]. Geochimica et Cosmochimica Acta, 1995, 59(19): 3 929-3 942.
[21] Dreyer R M, Garrels R M, Howland A L. Liquid inclusions in halite as a guide of geologic thermometry [J]. American Mineralogist, 1949,34:26-34.
[22] Roedder E, Belkin H E. Application of studies of fluid inclusions in Permian Salado Salt, NM, to problems of sitting the waste isolation pilot plant [A]. In: McCarthy G J ed. Scientific Basis for Nuclear Waste Management[C]. New York: Plenum Press, 1979. 313-321.
[23] McCulloch D S. Vacuole disappearance temperatures of laboratory-grown hopper halite crystals [J]. Journal of Geophysical Research, 1959,64: 849-854.
[24] Wardlaw N C, Hartzell W G. Geothermometry of halite from the Middle Devonian Prairie evaporite formation, Saskatchewan [J]. Canadian Mining and Metallurgical Bulletin, 1963,56:155.
[25] Lowenstein T K, Li J R, Brown C B. Paleotemperatures from fluid inclusions in halite: Method verification and a 100,000 year paleotemperature record, Death Valley, CA [J]. Chemical Geology, 1998, 150:223-245.
[26] Benison K C, Goldstein R H. Permian paleoclimate data from fluid inclusions in halite[J]. Chemical Geology,1999,154: 113-132.
[27] Goldstein R H. Clues from fluid inclusions[J]. Science, 2001, 294(2): 1 009-1 011.
[28] Land L S, Eustice R A, Mack L E, et al. Reactivity of evaporites during burial: An example from the Jurassic of Alabama [J]. Geochimica et Cosmochimica Acta, 1995, 59: 3 765-3 778.
[29] Petrichenko O I,Naukova Dumka, Kiev, 98 [in Ukrainian]. Methods of study of inclusions on minerals of Saline deposits [A]. In: Roedder E,ed. Fluid Inclusion Research Proceeding COFFI[C]. Ann Arbor: University of Michigan Press, 1973.214-274.
[30] Shepherd T J, Chenery S R. Laser ablation ICP-MS elemental analysis of individual fluid inclusions: An evaluation study[J]. Geochimica et Cosmochimica Acta, 1995, 59: 3 997-4 007.
[31] Ghazi A, Mohamad. Trace element determination of single fluid inclusions by laser ablation ICP-MS: Applications for halites from sedimentary basins[J]. The Analyst, 2000,125(1): 205-210.
[32] Shepherd T J, Ayora C, Cendon D I, et al. Quantitative solute analysis of single fluid inclusions in halite by LA-ICP-MS and cryo-SEM-EDS: Complementary microbeam techniques[J]. European Journal of Mineralogy,1998, 10:1 097-1 108.
[33] Ayora C, Fontarnau R. X-ray microanalysis of frozen fluid inclusions[J]. Chemical Geology,1990,89: 135-148.
[34] Ayora C, Garcia-Veigas J, Pueyo J J. X-ray microanalysis of fluid inclusions and its application to the geochemical modeling of evaporite basins [J]. Geochimica et Cosmochimica Acta, 1994, 58: 43-55.
[35] Ayora C, Garcia-Veigas J, Pueyo J J.The chemical and hydrological evolution of an ancient potash- forming evaporite basin in Spain as constrained by mineral sequence, fluid inclusion composition, and numerical simulation [J]. Geochimica et Cosmochimica Acta, 1994, 58: 3 379-3 394.
[36] Timofeeff M N, Blackburn W H, Lowenstein T K. ESEM-EDS: An improved technique for major element chemical analysis of fluid inclusions [J]. Chemical Geology, 2000,164(3~4):171-182.
[37] Pitzer K S. Thermodynamics of electrolytes.1.Theroretical basis and general equations [J]. Journal Physical Chemistry, 1973, 77:268-277.
[38] Harvie C E, Moller N, Weare J H. The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-H2O system to high ionic strengths at 25℃[J]. Geochimica et Cosmochimica Acta, 1984, 48: 723-752.
[39] Harvie C E ,Weare J H,Hardie L W,et al. Evaporate of seawater: Calculated mineral sequences [J]. Science, 1980, 208: 498-500.
[40] Liu Xingqi, Cai Keqin, Yu Shengsong. Geochemical simulation of the formation of brine and salt minerals based on Pitzer model in Caka Salt Lake [J]. Science in China(D), 2004, 47(8):720-726.[刘兴起,蔡克勤,于升松.基于Pitzer模型的茶卡盐湖卤水及盐类矿物形成的地球化学模拟[J].中国科学D辑, 2003, 33(3):247-254.]
[41] Kovalevych V, Peryt T M, Beer W, et al. Geochemistry of early triassic seawater as indicated by study of the rot halite in the Netherlands, Germany, and Poland [J]. Chemical Geology, 2002,182:549-563.
[42] Lowenstein T K, Timofeeff M N, Brennan S T, et al. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions [J]. Science, 2001,294(2): 1 006-1 008.
[43] Horita J, Zimmermann H, Holland H D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates [J]. Geochimica et Cosmochimica Acta, 2002,66(21): 3 733-3 756.
[44] Timofeeff M N, Lowenstein T K, Brennan S T, et al. Evaluating seawater chemistry from fluid inclusions in halite: Examples from modern marine and nonmarine environments [J]. Geochimica et Cosmochimica Acta, 2001,65 (14):2 293-2 300.
[45] Cendo na D I, Ayorab C, Pueyoc J J, et al. The geochemical evolution of the Catalan potash subbasin, South Pyrenean foreland basin (Spain) [J]. Chemical Geology, 2003,200: 339-357.
[46] Horita J, Matsuo S.Extraction and isotopic analysis of fluid inclusions in halites [J]. Geochemical Journal, 1986, 21: 261-272.
[47] Knauth L P,Beeunas M A. Isotope geochemistry of fluid inclusions in Permain halite with implications for the isotope history of ocean water and the origin of saline formation water[J]. Geochimica et Cosmochimica Acta, 1986, 50:419-433.
[48] Koehler G D, Kyser T K. Measurement of the hydrogen and oxygen isotopic compositions of concentrated chloride brines and brines from fluid inclusions in halite [J]. Chemical Geology (Isotope Geoscience Section), 1991,94:45-54.
[49] Yang W B, Krouse H R, Spencer R J. Improved techniques for stable isotope analyses of microlitre quantities of water from fluid inclusions in halite and concentrated brines [J]. Chemical Geology, 1996, 130: 139-145.
[50] Horita J. Stable isotope paleoclimatology of brine inclusions in halite: Modeling and application to Searles Lake,California[J]. Geochimica et Cosmochimica Acta, 1990,54:2 059-2 073.
[51] Yang W B, Spencer R J, Krouse H R. Stable isotopes of lake and fluid inclusion brines, Dabusun Lake, Qaidam Basin, western China: Hydrology and paleoclimatology in arid environments [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995,117:279-290.
[52] Godfrey L V, Jordan T E, Lowenstein T K, et al. Stable isotope constraints on the transport of water to the Andes between 22 and 26 S during the last glacial cycle [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2003,194:299-317.
[53] Freyer H D. Degradation products of organic matter in evaporites containing trapped atmospheric gases [J]. Chemical Geology, 1978,23:293-307.
[54] Freyer H D, Wagener K. Review on present results on fossil atmospheric gases trapped in evaporates [J]. Pure Applied Geophys, 1975,113: 403-418.[55] Gerling P, Whiticar M J, Faber E. Extreme isotope fractionation of hydrocarbon gases in permian salts[J]. Organic Geochemistry, 1987,13: 335-341.[56] Grishina S N, Dubessy J, Kontorovich A E. Inclusions in cambrian salts of the bakhta megahorst as an index of conditions of formation and preservation of oil and gas deposits [J]. Soviet Geology and Geophysics, 1987, 28: 26-33.
[57] Grishina S, Dubessy J, Kontorovich A,et al. Inclusions in salt beds resulting from thermal metamorphism by dolerite sills eastern Siberia, Russia[J]. European Journal of Mineralogy, 1992,4:1 187-1 202.
[58] Wilkins R W T, Jenatton L. Multichannel micro-raman spectroscopy of fluid inclusion gases in mineral exploration [J]. Journal of Geochemical Exploration, 1991,42:157-166.
[59] Rosso K M, Bodnar R J. Microthermometric and raman spectroscopic detection limits of CO2 in fluid inclusions and the raman spectroscopic characterization of CO2[J]. Geochimica et Cosmochimica Acta, 1995, 59: 3 961-3 975.
[60] Siemann M G, Ellendorff B. The composition of gases in fluid inclusions of late Permian (Zechstein) marine evaporites in Northern Germany [J]. Chemical Geology, 2001,173: 31-44.
[61] McGenity T J, Gemmell R T,Grant W D,et al. Origins of halophilic microorganisms in ancient salt Deposits[J]. Environmental Microbiology, 2000, 2(3): 243-250.
[62] Vreeland R H, Rosenzweig W D, Powers D W. Isolation of a 250 million-year-halotolerant bacterium from a primary salt crystal [J]. Nature, 2000, 407: 897-900.
[63] Cano R J, Borucki M. Revival and identification of bacterial spores in 25 to 40 million year old Dominican amber [J]. Science, 1995,268:1 060-1 064.[64] Hazen R M, Roedder E. Biogeology: How old are bacteria from the Permian age? [J]. Nature, 2001, 411:155.
[65] Yuan Jianqi,Yang Qian,Sun Dapeng,et al. The Conditions for Formation of Potash Deposit in Qarhan Salt Lake [M]. Beijing: Geological publishing house, 1995.11-15. [袁见齐,杨谦,孙大鹏,等.察尔汗盐湖钾盐矿床的形成条件[M].北京:地质出版社,1995.11-15.]
[66] Zheng Mianping. On saline lakes of China [J]. Mineral Deposits, 2001,20(2): 181-189. [郑绵平.论中国盐湖[J].矿床地质,2001,20(2):181-189.]
[67] Zhang Pengxi,Zhang Baozhen,Lowenstein T K ,et al. Origin of Ancient Potash Evaporites: Examples from the Formation of Potash of Qarhan Salt Lake in Qardam Basin[M].Beijing: Science Press,1993.58-98.[张彭熹,张保珍,T.K.洛温斯坦,等.古代异常钾盐蒸发岩的成因——以柴达木盆地察尔汗钾盐的形成为例[M].北京: 科学出版社, 1993.58-98.]
[68] Zhang Baozheng,Fan Haibo,Zheng Pengxi. Hydrogen and oxygen stable isotope analyses of fluid inclusions in halite in Charhan Salt Lake with geochemical implications [J]. Acta Sedimentologica Sinica, 1990,8(1): 9-15. [张保珍,范海波,张彭熹.察尔汗盐湖石盐的流质包裹体氢氧同位素分析及其地球化学意义[J].沉积学报,1990,8(1): 9-15.]

[1] 王九一, 刘成林. 石盐流体包裹体中古嗜盐菌的研究进展[J]. 地球科学进展, 2016, 31(12): 1220-1227.
阅读次数
全文


摘要