地球科学进展 ›› 2005, Vol. 20 ›› Issue (8): 863 -870. doi: 10.11867/j.issn.1001-8166.2005.08.0863

综述与评述 上一篇    下一篇

海洋初级生产力的卫星遥感
檀赛春 1,2,石广玉 1   
  1. 1.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029;2.中国科学院研究生院,北京 100039
  • 收稿日期:2005-01-25 修回日期:2005-05-08 出版日期:2005-08-25
  • 通讯作者: 檀赛春
  • 基金资助:

    国家自然科学基金重大项目“上层海洋—低层大气生物地球化学与物理过程耦合研究”(编号:40490260)资助.

SATELLITE REMOTE SENSING FOR OCEANIC PRIMARY PRODUCTIVITY

TAN Saichun 1,2;SHI Guangyu 1   

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;    2. Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
  • Received:2005-01-25 Revised:2005-05-08 Online:2005-08-25 Published:2005-08-25

从海水的光学特性入手,依据卫[JP2]星探测海洋初级生产力的基本原理,详细讨论了大气校正过程,并较为全面地阐述了现有的一些海洋初级生产力模式。通过列举个例对这些模式进行分类讨论,并对模式应用中的一些问题作出了分析和讨论,在此基础上指出了其存在的问题和发展的方向。

Based on the introduction of optical properties and the classification for ocean water, the fundamental principles of satellite measuring oceanic primary productivity (OPP) were illuminated and the processes of atmospheric correction were discussed in detail in this paper; in addition, some extant oceanic primary productivity models were reviewed completely. At present, many scientists are engaged in the research on satellite remote sensing for OPP, and most OPP models are based on chlorophyll. Firstly, these models are discussed by classifying via given some specific examples. These productivity models are often delineated into empirical, semi-analytical, and analytical models; they can also be classified into wavelength-resolved models (WRMs), wavelength-integrated models (WIMs), time-integrated models (TIMs) and depth-integrated models (DIMs) based upon the implicit levels of integration. Meanwhile, some problems relevant to the application of these models have also been discussed.

中图分类号: 

[1] Steemann Nielsen E. Use of radioactive carbon (14C) for measuring organic production in the sea[J]. Journal du conseil/Conseil International pour l' Exploration de la Mer, 1952, 18: 117-40.
[2] International Ocean Colour Coordinating Group. IOCCG Report No 1: Minimum Requirements for an Operational Ocean Colour Sensor for the Open Ocean[R]. Dartmouth, Canada: IOCCG Project Office, 1998. 46.
[3] International Ocean Colour Coordinating Group. IOCCG Report No 2: Status and Plans for Satellite Ocean color Missions: Considerations for Complementary Missions[R]. Dartmouth, Canada: IOCCG Project Office, 1999. 43.
[4] Wu Peizhong. Satellite measuring for ocean primary productivity[J]. Remote Sensing for Land & Resources, 2000, 3: 7-15. [吴培中. 海洋初级生产力的卫星探测[J]. 国土资源遥感,2000,3:7-15.]
[5] Fei Zunle, Tree C C, Li Baohua. Estimating primary productivity using chlorophyll data[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1997, 15(1): 35-47. [费尊乐,Trees C C,李宝华. 利用叶绿素资料计算初级生产力[J]. 黄渤海海洋,1997,15(1):35-47.]
[6] Shang Shaoling, Hong Huasheng. Ocean primary production model and algorithms for remote sensing[J]. Journal of Xiamen University (Natural Science),2001, 40(3): 647-652. [商少凌,洪华生. 海洋初级生产力模式与遥感应用研究进展[J]. 厦门大学学报(自然科学版),2001,40 (3):647-652.]
[7] Preisendorfer R W. Hydrologic Optics, Volume I, Introduction[M]. Honolulu: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, 1976. 209.
[8] Wells N. The Atmosphere and Ocean: A Physical Introduction[M]. London: Taylor and Francis, 1986.
[9] International Ocean Colour Coordinating Group. IOCCG Report No 3: Remote Sensing of Ocean Color in Coastal, and Other Optically-Complex, Waters[R]. Dartmouth, Canada: IOCCG Project Office, 2000. 5-46.
[10] Morel A, Prieur L. Analysis of variations in ocean color[J]. Limnology and Oceanography, 1977, 22: 709-722.
[11] Gordon H R, Morel A. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imag1ery—A review[M]. New York: Springer-Verlag, 1983. 114.
[12] Wu Peizhong. The study of remote sensing for ocean color in China during 1981-1991[J]. Remote Sensing For Land and Resources, 1994, 2: 5-14. [吴培中. 中国海洋水色遥感十年[J]. 国土资源遥感,1994,2:5-14.]
[13] Clark D K. Phytoplankton algorithms for the Nimbus-7 CZCS[A]. In: Gower J R F. Oceanography from Space[C]. New York: Plenum Press, 1981. 227-238.
[14] Li Sihai,Wang Hong,Xu Weidong. Research and progress in satellite ocean color remote sensing[J]. Advances in Earth Science, 2000, 15 (2): 190-196. [李四海,王宏,许卫东. 海洋水色卫星遥感研究与进展[J].地球科学进展, 2000,15(2):190-196.]
[15] Evans R H, Gordon H R. Coastal zone color scanner “system calibration”: A retrospective examination [J]. Journal of Geophysical Research, 1994, 99(C4): 7 293-7 308.
[16] Gordon H R. Atmospheric correction of ocean color imagery in the Earth Observing System era[J]. Journal of Geophysical Research, 1997, 102(D14): 17 081-17 106. 
[17] Esaias W E, Abbott M R, Brown O B, et al. An overview of MODIS capabilities for ocean science observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1 250-1 265.
[18] Ruddick K G, Fabrice O, Machteld R. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters[J]. Applied Optics, 2000, 39(6): 897-912.
[19] Campbell J W, Antoine D, Armstrong R, et al. Comparison of algorithms for estimating ocean primary productivity from surface chlorophyll, temperature, and irradiance[J]. Global Biogeochemical Cycles, 2002, 16(3): 1-15. 
[20] Antoine D, Morel A. Oceanic primary production: I. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations[J]. Global Biogeochemical Cycles, 1996, 10: 43-55.
[21] Antoine D, Andre J M, Morel A. Oceanic primary production: II. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll[J]. Global Biogeochemical Cycles, 1996, 10: 57-69.
[22] Behrenfeld M J, Falkowski P G. A consumer's guide to phytoplankton primary productivity models[J]. Limnology and Oceanography, 1997, 42(7): 1 479-1 491. 
[23] Behrenfeld M J, Falkowski P G. Photosynthetic rates derived from satellite-based chlorophyll concentration[J]. Limnology and Oceanography, 1997, 42(7): 1-20.
[24] Smith R C, Eppley R W, Baker K S. Correlation of primary production as measured aboard ship in southern California coastal waters and as estimated from satellite chlorophyll images[J]. Marine Biology, 1982, 66:281-288. 
[25] Iverson R L, Esaias W E, Turpie K. Ocean annual phytoplankton carbon and new production, and annual export production estimated with empirical equations and CZCS data[J]. Global Change Biology, 2000, 6(1): 57-72.
[26] Balch W M, Abbott M R, Eppley R W. Remote sensing of primary production—I. A comparison of empirical and semi-analytical algorithms[J]. Deep-Sea Research,1989,36:281-295.
[27] Balch W M, Eppley R W, Abbott M R. Remote sensing of primary production—II. A semi-analytical algorithm based on pigments, temperature and light[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(8): 1 201-1 217. 
[28] Morel A, Antoine D, Babin M, et al. Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program): The impact of natural variations in photosynthetic parameters on model predictive skill [J]. Deep Sea Research Part I: Oceanographic Research Papers, 1996, 43 (8): 1 273-1 304.
[29] Behrenfeld M J, Boss E. The beam attenuation to chlorophyll ratio: An optical index of phytoplankton photoacclimation in the surface ocean[J]. Deep Sea Research, 2003, 50: 1 537-1 549.

[1] 祝民强,周万蓬,胡全一. 火星快车OMEGA高光谱探测矿物组成的新进展[J]. 地球科学进展, 2010, 25(7): 691-697.
阅读次数
全文


摘要