[1] Steemann Nielsen E. Use of radioactive carbon (14C) for measuring organic production in the sea[J]. Journal du conseil/Conseil International pour l' Exploration de la Mer, 1952, 18: 117-40. [2] International Ocean Colour Coordinating Group. IOCCG Report No 1: Minimum Requirements for an Operational Ocean Colour Sensor for the Open Ocean[R]. Dartmouth, Canada: IOCCG Project Office, 1998. 46. [3] International Ocean Colour Coordinating Group. IOCCG Report No 2: Status and Plans for Satellite Ocean color Missions: Considerations for Complementary Missions[R]. Dartmouth, Canada: IOCCG Project Office, 1999. 43. [4] Wu Peizhong. Satellite measuring for ocean primary productivity[J]. Remote Sensing for Land & Resources, 2000, 3: 7-15. [吴培中. 海洋初级生产力的卫星探测[J]. 国土资源遥感,2000,3:7-15.] [5] Fei Zunle, Tree C C, Li Baohua. Estimating primary productivity using chlorophyll data[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1997, 15(1): 35-47. [费尊乐,Trees C C,李宝华. 利用叶绿素资料计算初级生产力[J]. 黄渤海海洋,1997,15(1):35-47.] [6] Shang Shaoling, Hong Huasheng. Ocean primary production model and algorithms for remote sensing[J]. Journal of Xiamen University (Natural Science),2001, 40(3): 647-652. [商少凌,洪华生. 海洋初级生产力模式与遥感应用研究进展[J]. 厦门大学学报(自然科学版),2001,40 (3):647-652.] [7] Preisendorfer R W. Hydrologic Optics, Volume I, Introduction[M]. Honolulu: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, 1976. 209. [8] Wells N. The Atmosphere and Ocean: A Physical Introduction[M]. London: Taylor and Francis, 1986. [9] International Ocean Colour Coordinating Group. IOCCG Report No 3: Remote Sensing of Ocean Color in Coastal, and Other Optically-Complex, Waters[R]. Dartmouth, Canada: IOCCG Project Office, 2000. 5-46. [10] Morel A, Prieur L. Analysis of variations in ocean color[J]. Limnology and Oceanography, 1977, 22: 709-722. [11] Gordon H R, Morel A. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imag1ery—A review[M]. New York: Springer-Verlag, 1983. 114. [12] Wu Peizhong. The study of remote sensing for ocean color in China during 1981-1991[J]. Remote Sensing For Land and Resources, 1994, 2: 5-14. [吴培中. 中国海洋水色遥感十年[J]. 国土资源遥感,1994,2:5-14.] [13] Clark D K. Phytoplankton algorithms for the Nimbus-7 CZCS[A]. In: Gower J R F. Oceanography from Space[C]. New York: Plenum Press, 1981. 227-238. [14] Li Sihai,Wang Hong,Xu Weidong. Research and progress in satellite ocean color remote sensing[J]. Advances in Earth Science, 2000, 15 (2): 190-196. [李四海,王宏,许卫东. 海洋水色卫星遥感研究与进展[J].地球科学进展, 2000,15(2):190-196.] [15] Evans R H, Gordon H R. Coastal zone color scanner “system calibration”: A retrospective examination [J]. Journal of Geophysical Research, 1994, 99(C4): 7 293-7 308. [16] Gordon H R. Atmospheric correction of ocean color imagery in the Earth Observing System era[J]. Journal of Geophysical Research, 1997, 102(D14): 17 081-17 106. [17] Esaias W E, Abbott M R, Brown O B, et al. An overview of MODIS capabilities for ocean science observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1 250-1 265. [18] Ruddick K G, Fabrice O, Machteld R. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters[J]. Applied Optics, 2000, 39(6): 897-912. [19] Campbell J W, Antoine D, Armstrong R, et al. Comparison of algorithms for estimating ocean primary productivity from surface chlorophyll, temperature, and irradiance[J]. Global Biogeochemical Cycles, 2002, 16(3): 1-15. [20] Antoine D, Morel A. Oceanic primary production: I. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations[J]. Global Biogeochemical Cycles, 1996, 10: 43-55. [21] Antoine D, Andre J M, Morel A. Oceanic primary production: II. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll[J]. Global Biogeochemical Cycles, 1996, 10: 57-69. [22] Behrenfeld M J, Falkowski P G. A consumer's guide to phytoplankton primary productivity models[J]. Limnology and Oceanography, 1997, 42(7): 1 479-1 491. [23] Behrenfeld M J, Falkowski P G. Photosynthetic rates derived from satellite-based chlorophyll concentration[J]. Limnology and Oceanography, 1997, 42(7): 1-20. [24] Smith R C, Eppley R W, Baker K S. Correlation of primary production as measured aboard ship in southern California coastal waters and as estimated from satellite chlorophyll images[J]. Marine Biology, 1982, 66:281-288. [25] Iverson R L, Esaias W E, Turpie K. Ocean annual phytoplankton carbon and new production, and annual export production estimated with empirical equations and CZCS data[J]. Global Change Biology, 2000, 6(1): 57-72. [26] Balch W M, Abbott M R, Eppley R W. Remote sensing of primary production—I. A comparison of empirical and semi-analytical algorithms[J]. Deep-Sea Research,1989,36:281-295. [27] Balch W M, Eppley R W, Abbott M R. Remote sensing of primary production—II. A semi-analytical algorithm based on pigments, temperature and light[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(8): 1 201-1 217. [28] Morel A, Antoine D, Babin M, et al. Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program): The impact of natural variations in photosynthetic parameters on model predictive skill [J]. Deep Sea Research Part I: Oceanographic Research Papers, 1996, 43 (8): 1 273-1 304. [29] Behrenfeld M J, Boss E. The beam attenuation to chlorophyll ratio: An optical index of phytoplankton photoacclimation in the surface ocean[J]. Deep Sea Research, 2003, 50: 1 537-1 549. |