地球科学进展 ›› 2021, Vol. 36 ›› Issue (8): 862 -879. doi: 10.11867/j.issn.1001-8166.2021.001

地表蒸散发过程及机理研究 上一篇    

干旱区稀疏树木冠层降雨截留蒸发的研究进展与展望
赵文玥 1, 2( ),吉喜斌 1( )   
  1. 1.中国科学院西北生态环境资源研究院,临泽内陆河流域研究站,中国科学院生态水文与流域 科学重点实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
  • 收稿日期:2020-11-07 修回日期:2021-02-07 出版日期:2021-08-10
  • 通讯作者: 吉喜斌 E-mail:zhaowenyue@nieer.ac.cn;xuanzhij@lzb.ac.cn
  • 基金资助:
    国家自然科学基金面上项目“干旱区绿洲—荒漠过渡带能水交换及其组分拆分研究”(41771041);国家自然科学基金重点项目“荒漠绿洲非饱和土壤水分运移及对地下水补给作用”(41630861)

A Review of Research Advances and Future Perspectives of Evaporation of Intercepted Rainfall from Sparse Tree Canopy in Drylands

Wenyue ZHAO 1, 2( ),Xibin JI 1( )   

  1. 1.Linze Inland River Basin Research Station,Key Laboratory of Ecohydrology and Watershed Science,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2020-11-07 Revised:2021-02-07 Online:2021-08-10 Published:2021-09-22
  • Contact: Xibin JI E-mail:zhaowenyue@nieer.ac.cn;xuanzhij@lzb.ac.cn
  • About author:ZHAO Wenyue (1996-), female, Xuzhou City, Jiangsu Province, Master student. Research areas include ecohydrology and micrometeorology. E-mail: zhaowenyue@nieer.ac.cn
  • Supported by:
    the National Natural Science Foundation of China "Study on energy-water exchange and its composition in oasis-desert transition zone in arid region"(41771041);"Moisture migration in the vadose zone of desert oasis and recharge effects on groundwater dynamics"(41630861)

冠层截留蒸发作为冠层降水再分配和地表蒸散发的重要组分,对以稀疏植被为典型覆盖特征的干旱区生态系统的局地水文循环和水量平衡产生不可忽略的影响,并对该区域生态植被保护、植被与降水关系、生态水文过程等研究具有重要科学意义。较为系统地总结了干旱区稀疏树木冠层截留蒸发的主要观测试验方法和关键模型,具体分析了稀疏树木冠层结构(空间分布、叶片倾角和叶面积指数等)、降雨特征(降雨量、降雨强度和降雨历时)以及大气环境条件(风速、气温和饱和差等)等对冠层截留蒸发的影响机理,并对改进和完善目前稀疏树木冠层截留蒸发的观测试验和估算模型方面提出了建议。

Canopy interception is an important component of canopy rainfall partitioning and land surface evapotranspiration,having a non-negligible effect on the local hydrologic cycle and water balance,especially for the arid ecosystem characterized typically by sparse vegetation cover. Therefore, quantifying the mechanic formation of canopy rainfall interception can improve our understanding of the water and energy balance in arid ecosystems,as well as the ecohydrological effect of sparse vegetation on local hydrological process,and can provide an important implication for vegetation conservation management in drylands. The main objective of this review is to make a systematic summary of the observation methods in experimental studies and principle models for sparse canopy interception loss in drylands, and specifically put our focus on the effects of canopy structure traits (spatial distribution,leaf orientation,and leaf area index, etc.),rainfall regime (i.e.,rainfall amount,intensity,and duration),and atmospheric conditions (e.g.,wind speed,air temperature,vapor pressure deficit) on sparse canopy interception. We also make suggestions to improve and consummate the experiments and models for present sparse canopy interception loss.

中图分类号: 

表1 干旱区不同类型稀疏树木冠层截留蒸发率
Table 1 The various sparse trees' canopy interception loss percentage in drylands
研究地点 观测时间 总降雨量/mm 植被类型 冠层截留 蒸发率/% 树干茎流产生阈值/mm 参考文献
Chihuahuan desert(美国) 1990—1992年 394.10

三齿拉雷亚

Larrea tridentata

34.00 1.3~1.8o 69

美洲焦油灌木

Flourensia cernua

36.00 1.3~1.8o

La Rambla de perea basin

(西班牙)

1994—1995年 231.60

大果刺柏

Juniperus oxycedrus

36.50 N 64
289.60

迷迭香

Rosmarinus officinalis

25.20 N
289.60

普通百里香

Thymus vulgaris

33.00 N
Linares(墨西哥) 1997—1998年 481.60

塔毛利帕斯灌丛

(Tamaulipan thornscrub)

18.90±2.80 N 70

Siera Madre Oriental mountain

(墨西哥)

1999—2001年

生长季

394.80 地中海硬叶有刺灌丛 (Matorral community) 8.20±2.70 N 10
San Luis(阿根廷)

2016—2017年

生长季

475.00

极叉开拉瑞阿

Larrea divaricata

9.40 0.92r 55
Castelo Branco(葡萄牙) 2011年8月至2013年4月 1 078.30 橄榄树(Olive tree) 18.00 0.09r 59
沙坡头

2004—2014年

(除2007年)

1 862.00

柠条

(Caragana korshinskii)

29.10 N 71

油蒿

Artemisia ordosica

17.00 N
黄土高原

2009—2013年

生长季

1 816.00

沙棘

Hippophae rhamnoides

35.20 1.06r 72

柠条

Caragana korshinskii

23.20 2.46r
毛乌素沙地 2016—2017年 N

健康中间锦鸡儿

(healthy Caragana intermedia

26.40 2o 73

衰退中间锦鸡儿

(unhealthy Caragana intermedia

15.30 2o

2016—2017年

生长季

251.00

行生中间锦鸡儿

(planted Caragana intermedia

27.45 N 48

散生中间锦鸡儿

(natural Caragana intermedia

17.35 N
2006年5~10月 174.60

沙柳

Salix psammophila

32.40 1.1 68
巴丹吉林沙漠 2006—2007年 255.30

梭梭

Haloxylon ammodendron

16.60 N 24

怪柳灌丛

Tamarix ramosissima

33.10 N

健康白刺

(healthy Nitraria tangutorum

12.00 N

衰退白刺

(unhealthy Nitraria tangutorum

2.70 N
科尔沁沙地 2009年6~9月 133.40

小叶锦鸡儿

Caragana microphylla

25.10 2~3.9o 57
2012年5~9月 135.32

黄柳

Salix gordejevii

20.25±5.74 0.73o 74
青海湖 2010年7~9月 156.67

具鳞水柏枝

Myricaria squamosa

47.56 1.87r 47
祁连山 2014年6~9月 250.60

鲜黄小檗

Berberis diaphana

48.20 2o 52

甘青锦鸡儿

Caragana tangutica

30.90 2o
表2 单个植株尺度稀疏树木冠层截留蒸发量 /冠层截留蒸发率与降雨特征相关关系的经验模型
Table 2 The empirical model to express the relationship between canopy interception loss or interception loss percentage and individual rainfall characteristics on single tree scale
模型类型 模型表达式 案例
冠层截留蒸发量与降雨量的经验模型 线性模型 10 19 47 52 55 57 68 70 71 I = a + b P g

油蒿 71 I = 0.74 + 0.04 P g R2=0.83)

具鳞水柏枝 47 I = 0.28 + 0.84 P g R2=0.94)

沙柳 68 I = 0.64 + 0.16 P g R2=0.92)

橡树 87 I = 0.05 + 0.12 P g R2=0.69)

对数模型 24 72 88 I = a × l n ? ( P g ) + b

梭梭 24 ? I = 1.41 × l n ? ( P g ) + 0.60 R2=0.76)

怪柳 24 I = 1.65 × l n ? ( P g ) + 0.60 R2=0.87)

白刺 24 I = 0.73 × l n ? ( P g ) + 0.41 R2=0.73)

沙棘 72 I = 22.32 × l n ? P g - 1.64 R2=0.85)

幂函数模型 48 67 I = a × P g ( b )

行生中间锦鸡儿 48 I = 0.26 × P g 0.36 R2=0.22)

散生中间锦鸡儿 48 I = 0.45 × P g 0.32 R2=0.16)

柠条 67 I = 0.42 × P g 0.72 R2=0.75)

指数模型 74 89 I = a × e x p ? ( b × P g ) + c

黄柳 74 ? I = e x p ? ( 0.34 - 0.58 / P g ) R2=0.88)

油蒿 89 I=0.98-1.06exp(Pg/-2.26) (R2=0.81)

柠条 89 I=3.46-3.25exp(Pg/-10.27) (R2=0.81)

冠层截留蒸发率与降雨量的经验模型 线性模型 73 I ( % ) = A + B P g 健康中间锦鸡儿 73 I % = 36.77 - 1.99 P g R2=0.33)
指数模型 47 48 55 57 73 I ( % ) = A × e x p ? ( B × P g ) + c

行生中间锦鸡儿 48 I ( % ) = 17.48 × e x p ? ( - 0.07 × P g ) R2=0.35)

极叉开拉瑞阿 55 I ( % ) = 24.95 × e x p ? ( - 0.11 × P g ) + 4.59 R2=0.33)

黄柳 74 I ( % ) = 0.43 × e x p ? ( - 0.89 × P g ) R2=0.87)

双曲线模型 10 45 68 I ( % ) = A + B / ( P g - C )

沙柳 68 I ( % ) = 17.38 + 46.49 / ( P g - 0.32 ) R2=0.92)

地中海硬叶有刺灌丛 10 I ( % ) = 4.43 + 81.61 / ( P g + 3.88 ) R2=0.87)

刺柏灌丛 45 I ( % ) = ( 105.15 × 7.75 ) / ( P g + 7.75 ) R2=0.87)

幂函数模型 67 I ( % ) = a × P g ( b ) 柠条 67 I ( % ) = 42.33 × P g - 0.28 R2=0.32)
冠层截留蒸发量与降雨特征的经验模型 多元回归模型 9 I = a + b P g + c R + d P D

油蒿 9 I = 0.74 + 0.08 P g + 0.01 R + 0.02 P D R2=0.41)

柠条 9 I = 0.97 + 0.045 P g + 0.06 R + 0.05 P D R2=0.30)

图1 Rutter冠层截留模型(a)与Rutter稀疏冠层截留模型(b)流程图对比(据参考文献[ 84 ]修改)
Fig. 1 The comparison of conceptual framework between the original Rutter model a and the sparse Rutter model b) (modified after reference 84 ])
表3 Gash冠层截留模型与 Gash稀疏冠层截留模型中截留要素的表达方式
Table 3 The expression of canopy interception components in original and sparse Gash model
表4 不同稀疏树木冠层截留模型特征比较 (据参考文献[ 66 ]修改 )
Table 4 The comparison of different sparse canopy interception models' characteristics (modified after reference [ 66 ])
1 SCHIMEL D S. Drylands in the Earth System [J]. Science,2010,327(5 964): 418-419.
2 D'ODORICO P,LAIO F,RIDOLFI L. Patterns as indicators of productivity enhancement by facilitation and competition in dryland vegetation [J]. Journal of Geophysical Research—Biogeosciences,2006,111(G3): 1-10.
3 FATHIZADEH O,HOSSEINI S M,ZIMMERMANN A,et al. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands [J]. Science of the Total Environment,2017,601/602: 1 824-1 837.
4 LLORENS P,DOMINGO F. Rainfall partitioning by vegetation under Mediterranean conditions: a review of studies in Europe [J]. Journal of Hydrology,2007,335(1/2): 37-54.
5 LI Xiaoyan. Mechanism of coupling,response and adaptation between soil,vegetation and hydrology in arid and semiarid regions [J]. Scientia Sinica: Terrae, 2011, 41(12): 1 721-1 730.
李小雁.干旱地区土壤—植被—水文耦合、响应与适应机制[J]. 中国科学:地球科学, 2011, 41(12): 1 721-1 730.
6 PEREIRA F L,GASH J H C,DAVID J S,et al. Modelling interception loss from evergreen oak Mediterranean savannas: application of a tree-based modelling approach [J]. Agricultural and Forest Meteorology,2009,149(3/4): 680-688.
7 LI Xinrong,ZHAO Yang,HUI Rong,et al. Progress and trend of development of restoration ecology research in the arid regions of China [J]. Progress in Geography,2014,33(11): 1 435-1 443.
李新荣,赵洋,回嵘,等. 中国干旱区恢复生态学研究进展及趋势评述[J]. 地理科学进展,2014,33(11):1 435-1 443.
8 CHENG Guodong, XIAO Duning, WANG Genxu. On the characteristics and building of landscape ecology in arid area [J]. Advances in Earth Science, 1999, 14(1): 3-5.
程国栋,肖笃宁,王根绪.论干旱区景观生态特征与景观生态建设[J].地球科学进展, 1999, 14(1): 3-5.
9 ZHANG Y F,WANG X P,HU R,et al. Rainfall partitioning into throughfall,stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem,northwestern China [J]. Journal of Hydrology,2015,527: 1 084-1 095.
10 CARLYLE-MOSES D E. Throughfall,stemflow,and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community [J]. Journal of Arid Environments,2004,58(2): 181-202.
11 DUNKERLEY D. Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies [J]. Hydrological Processes,2000,14(4): 669-678.
12 LEVIA D F,FROST E E. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems [J]. Journal of Hydrology,2003,274(1/4): 1-29.
13 YANG Zhipeng,LI Xiaoyan,YI Wanjuan. Review on stemflow of desert shrubs-research methods and eco-hydrological effects [J]. Journal of Desert Research,2010,30(2): 303-311.
杨志鹏,李小雁,伊万娟. 荒漠灌木树干茎流及其生态水文效应研究进展[J]. 中国沙漠,2010,30(2): 303-311.
14 LEVIA D F,GERMER S. A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands [J]. Reviews of Geophysics,2015,53(3): 673-714.
15 LI X Y,LIU L Y,GAO S Y,et al. Stemflow in three shrubs and its effect on soil water enhancement in semiarid loess region of China [J]. Agricultural and Forest Meteorology,2008,148(10): 1 501-1 507.
16 ZHENG C,JIA L. Global canopy rainfall interception loss derived from satellite Earth observations [J]. Ecohydrology,2020,13(2): 1-13.
17 FAN Cairui,LI Changyou,JIA Keli,et al. Grass canopy interception of Hulun watershed under different grazing systems [J]. Acta Ecologica Sinica,2015,35(14): 4 716-4 724.
樊才睿,李畅游,贾克力,等.不同放牧制度下呼伦湖流域草原植被冠层截留[J]. 生态学报,2015,35(14): 4 716-4 724.
18 DINGMAN S L. Physical hydrology[M]. Long Grove: Waveland Press,2015: 285.
19 WANG Xinping,KANG Ersi,ZHANG Jingguang,et al. Comparison of interception loss in shrubby and sub-shrubby communities in the Tengger Desert of Northwest China [J]. Journal of Glaciology and Geocryology,2004,26(1): 89-94.
王新平,康尔泗,张景光,等. 荒漠地区主要固沙灌木的降水截留特征[J]. 冰川冻土,2004,26(1): 89-94.
20 GARCIA-ESTRINGANA P, ALONSO-BLáZQUEZ N, ALEGRE J. Water storage capacity,stemflow and water funneling in Mediterranean shrubs [J]. Journal of Hydrology,2010,389 (3/4): 363-372.
21 CROUSE R P,CORBETT E S,SEEGRIST D W. Methods of measuring and analyzing rainfall interception by grass [J]. International Association of Entific Hydrology Bulletin,2010,11(2): 110-120.
22 ZHANG Y F,WANG X P,HU R,et al. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems [J]. Journal of Hydrology,2016,539: 406-416.
23 DEVITT D A,SMITH S D. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem [J]. Journal of Arid Environments,2002,50(1): 99-108.
24 XU Xianying,YAN Ping,GUO Shujiang,et al. The interception loss of rainfall by three sand-fixing shrubs at the fringe of Minqin Oasis [J]. Journal of Desert Research,2013,33(1): 141-145.
徐先英,严平,郭树江,等. 干旱荒漠区绿洲边缘典型固沙灌木的降水截留特征[J]. 中国沙漠,2013,33(1): 141-145.
25 ZHAO Hongyan,WU Qinxiao. Intercepting dynamic processes of artificial pinus tabulaeformis forest canopy on Loess Plateau[J]. Chinese Journal of Ecology,2002,21(6): 20-23.
赵鸿雁,吴钦孝.黄土高原人工油松林林冠截留动态过程研究[J]. 生态学杂志,2002,21(6): 20-23.
26 LI X,NIU J,ZHANG L,et al. A study on crown interception with four dominant tree species: a direct measurement [J]. Hydrology Research,2016,47(4): 857-868.
27 QIAO Yu,XU Xianying. Soil-hydrological effects of physical crusts in arid desert region [J]. Chinese Agricultural Science Bulletin,2015,31(7): 206-211.
乔宇,徐先英.干旱荒漠区物理结皮的土壤水文效应[J]. 中国农学通报,2015,31(7): 206-211.
28 MORGAN R P C. Soil erosion and conservation[M]. Malden: Blackwell Publishing Company,2005: 59.
29 NEWMAN B D,WILCOX B P,ARCHER S R,et al. Ecohydrology of water‐limited environments: a scientific vision [J]. Water Resources Research,2006,42(6): 376-389.
30 CARLYLE-MOSES D E,PRICE A G. An evaluation of the Gash interception model in a northern hardwood stand [J]. Journal of Hydrology,1999,214(1/4): 103-110.
31 DAVID J S,VALENTE F,GASH J H. Evaporation of intercepted rainfall[M]. New Jersey: John Wiley and Sons Inc.,2005: 627-634.
32 GOOD S P,NOONE D,BOWEN G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes [J]. Science,2015,349(6 244): 175-177.
33 SHACHNOVICH Y,BERLINER P R,BAR P. Rainfall interception and spatial distribution of throughfall in a pine forest planted in an arid zone [J]. Journal of Hydrology,2008,349(1/2): 168-177.
34 BARBIER S,BALANDIER P,GOSSELIN F. Influence of several tree traits on rainfall partitioning in temperate and boreal forests: a review [J]. Annals of Forestence,2009,66(6): 1-11.
35 KLINGAMAN N P,LEVIA D F,FROST E E. A comparison of three canopy interception models for a leafless mixed deciduous forest stand in the eastern United States [J]. Journal of Hydrometeorology,2007,8 (4): 825-836.
36 BRYAN B A,GAO L,YE Y,et al. China's response to a national land-system sustainability emergency [J]. Nature,2018,559(7 713): 193-204.
37 LU Qi,LEI Jiaqiang,LI Xiaosong,et al. China's combating desertification: national solusions and global paradigm [J]. Bulletin of Chinese Academy of Sciences,2020,35(6): 656-664.
卢琦,雷加强,李晓松,等. 大国治沙: 中国方案与全球范式[J]. 中国科学院院刊,2020,35(6): 656-664.
38 ZHENG D,YIN Y. Eco-reconstruction in Northwest China[M]. Dordrecht: Springer,2010: 20 103-20 114.
39 WANG X,CHEN F,HASI E,et al. Desertification in China: an assessment [J]. Earth-Science Reviews,2008,88(3/4): 188-206.
40 FU Bojie,CHEN Liding,MA Keming. The effect of land use change on the regional environment in the Yangjuangou catchment in the Loess Plateau of China [J]. Acta Geographica Sinica,1999,66(3): 3-5.
傅伯杰,陈利顶,马克明. 黄土丘陵区小流域土地利用变化对生态环境的影响——以延安市羊圈沟流域为例[J]. 地理学报,1999,66(3): 3-5.
41 GAO Guangyao, FU Bojie, Yihe Lü,et al. The effect of land cover pattern on hillslope soil and water loss in the arid and semi-arid region: a review [J]. Acta Ecologica Sinica, 2013, 33(1): 12-22.
高光耀,傅伯杰,吕一河,等. 干旱半干旱区坡面覆被格局的水土流失效应研究进展[J]. 生态学报, 2013, 33(1): 12-22.
42 WANG Zhiqiang,LIU Baoyuan,LIU Gang,et al. Soil water depletion depth by planted vegetation on the Loess Plateau[J]. Scientia Sinica: Terrae, 2009, 39(9): 1 297-1 303.
王志强,刘宝元,刘刚,等.黄土丘陵区人工林草植被耗水深度研究[J].中国科学:地球科学, 2009, 39(9): 1 297-1 303.
43 WANG Sijia,LIU Hu,ZHAO Wenzhi,et al. Groundwater sustainability in arid and semi-arid environments: a review [J]. Advances in Earth Science,2019,34(2): 210-223.
王思佳,刘鹄,赵文智,等. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展,2019,34(2): 210-223.
44 AN W,LI Z,WANG S,et al. Exploring the effects of the "Grain for Green" program on the differences in soil water in the semi-arid Loess Plateau of China [J]. Ecological Engineering,2017,107: 144-151.
45 OWENS M K,LYONS R K,ALEJANDRO C L. Rainfall partitioning within semiarid juniper communities: effects of event size and canopy cover [J]. Hydrological Processes,2010,20(15): 3 179-3 189.
46 RAZ-YASEEF N,ROTENBERG E,YAKIR D. Effects of spatial variations in soil evaporation caused by tree shading on water flux partitioning in a semi-arid pine forest [J]. Agricultural and Forest Meteorology,2010,150(3): 454-462.
47 MA Yujun,GAO Shangyu,LI Xiaoyan,et al. Rainfall canopy partitioning and its influencing factors of riparian shrub in the alpine region [J]. Journal of Desert Research,2012,32(4): 963-971.
马育军,高尚玉,李小雁,等.高寒河谷灌丛冠层降雨再分配特征及影响因素[J]. 中国沙漠,2012,32(4): 963-971.
48 TIAN Na,GU Junlong,YANG Xinguo,et al. Characteristics of canopy interception by Caragana intermedia in desert grasslands [J]. Acta Ecologica Sinica,2019,39(14): 5 279-5 287.
田娜,古君龙,杨新国,等.荒漠草原中间锦鸡儿冠层截留特征[J]. 生态学报,2019,39(14): 5 279-5 287.
49 CAO S,CHEN L,SHANKMAN D,et al. Excessive reliance on afforestation in China's arid and semi-arid regions: lessons in ecological restoration[J]. Earth-Science Reviews,2011,104(4): 240-245.
50 LI Zongshan,YANG Lei,WANG Guoliang,et al. The management of soil and water conservation in the Loess Plateau of China: present situations,problems,and counter solutions [J]. Acta Ecologica Sinica,2019,39(20): 7 398-7 409.
李宗善,杨磊,王国梁,等.黄土高原水土流失治理现状、问题及对策[J]. 生态学报,2019,39(20): 7 398-7 409.
51 PRICE A G,CARLYLE-MOSES D E. Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand,southern Ontario,Canada [J]. Agricultural and Forest Meteorology,2003,119(1/2): 69-85.
52 WAN Yanfang,LIU Xiande,MA Rui,et al. Characteristics of rainfall canopy partitioning for Berberis diaphana and Caragana tangutica shrub in the Qilian Mountains [J]. Journal of Soil and Water Conservation,2016,30(6): 162-167.
万艳芳,刘贤德,马瑞,等.祁连山鲜黄小檗和甘青锦鸡儿灌丛冠层降雨再分配特征[J]. 水土保持学报,2016,30(6): 162-167.
53 WANG Wen,ZHUGE Xuxia,ZHOU Xuan. Methods for plant interception measurement [J]. Journal of Hohai University (Natural Sciences),2010,38(5): 495-504.
王文,诸葛绪霞,周炫. 植物截留观测方法综述[J].河海大学学报:自然科学版,2010,38(5): 495-504.
54 DAVID T S,GASH J H C,VALENTE F,et al. Rainfall interception by an isolated evergreen oak tree in a Mediterranean savannah [J]. Hydrological Processes,2006,20(13): 2 713-2 726.
55 MAGLIANO P N,WHITWORTH‐HULSE J I,FLORIO E L,et al. Interception loss,throughfall and stemflow by Larrea divaricata: the role of rainfall characteristics and plant morphological attributes [J]. Ecological Research,2019,34(6): 753-764.
56 DANG Hongzhong,ZHOU Zefu,ZHAO Yusen. Study on forest interception of picea crassifolia [J]. Journal of Soil and Water Conservation,2005,19(4): 60-64.
党宏忠,周泽福,赵雨森. 青海云杉林冠截留特征研究[J]. 水土保持学报,2005,19(4): 60-64.
57 LI Yanqing,ZHANG Tonghui,ZHAO Xueyong,et al. Rainfall interception and stemflow for caragana microphllain Horqin Sandy Land,northern China [J]. Acta Prataculturae Sinica,2010,19(5): 267-272.
李衍青,张铜会,赵学勇,等.科尔沁沙地小叶锦鸡儿灌丛降雨截留特征研究[J]. 草业学报,2010,19(5): 267-272.
58 WAN Yanfang,LIU Xiande,YU Pengtao,et al. Characteristics of the throughfall of Berberis diaphana and the factors influencing it in the Qilian Mountain [J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2017,41(2): 97-102.
万艳芳,刘贤德,于澎涛,等. 祁连山鲜黄小檗灌丛穿透雨特征及其影响因素[J]. 南京林业大学学报:自然科学版,2017,41(2): 97-102.
59 VALENTE F,GASH J H,NOBREGA C,et al. Modelling rainfall interception by an olive-grove/pasture system with a sparse tree canopy [J]. Journal of Hydrology,2020,581: 1-13.
60 MA C,LI X,LUO Y,et al. The modelling of rainfall interception in growing and dormant seasons for a pine plantation and a black locust plantation in semi-arid Northwest China [J]. Journal of Hydrology,2019,577: 1-16.
61 LI X Y,YANG Z P,LI T Y,et al. Connecting ecohydrology and hydropedology in desert shrubs: stemflow as a source of preferential flow in soils [J]. Hydrology and Earth System Enceslslam,2009,13(7): 1 133-1 144.
62 GU Junlong. Canopy hydrological process of caragana intermedia in desert steppe [D]. Yinchuan: Ningxia University,2018.
古君龙. 荒漠草原中间锦鸡儿冠层水文过程研究[D]. 银川: 宁夏大学,2018.
63 ZHOU Zefu,ZHANG Guangcan,LIU Xia,et al. Review on research methods of stemflow [J]. Journal of Soil and Water Conservation,2004,18(3): 137-140,145.
周择福,张光灿,刘霞,等. 树干茎流研究方法及其述评[J]. 水土保持学报,2004,18(3): 137-140,145.
64 SERRATO F B,DIAZ A R. A simple technique for measuring rainfall interception by small shrub: "Interception flow collection box" [J]. Hydrological Processes,1998,12(3): 471-481.
65 DEGUCHI A,HATTORI S,PARK H T. The influence of seasonal changes in canopy structure on interception loss: application of the revised Gash model [J]. Journal of Hydrology,2006,318(1/4): 80-102.
66 MUZYLO A,LLORENS P,VALENTE F,et al. A review of rainfall interception modelling [J]. Journal of Hydrology,2009,370(1/4): 191-206.
67 SHE Dongli,LIU Yingying,SHAO Ming'an,et al. Simulated effects and adaptive evaluation of different canopies rainfall interception models in Loess Plateau [J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(16): 115-120.
佘冬立,刘营营,邵明安,等. 黄土坡面不同植被冠层降雨截留模型模拟效果及适用性评价[J]. 农业工程学报,2012,28(16): 115-120.
68 YANG Zhipeng,LI Xiaoyan,SUN Yongliang,et al. Characteristic of rainfall interception and stemflow for Salix psammophila in Maowusu sandland,Northwest China [J]. Advances in Water Science,2008,19(5): 693-698.
杨志鹏,李小雁,孙永亮,等. 毛乌素沙地沙柳灌丛降雨截留与树干茎流特征[J]. 水科学进展,2008,19(5): 693-698.
69 MARTINEZ-MEZA E,WHITFORD W G. Stemflow,throughfall and channelization of stemflow by roots in three Chihuahuan desert shrubs [J]. Journal of Arid Environments,1996,32(3): 271-287.
70 NAVAR J,CHARLES F,JURADO E. Spatial variations of interception loss components by Tamaulipan thornscrub in northeastern Mexico [J]. Forest Ecology and Management,1999,124(2/3): 231-239.
71 ZHANG Z S,ZHAO Y,LI X R,et al. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert [J]. Scientific Reports,2016,6(1): 1-10.
72 JIAN S,HU C,ZHANG G,et al. Study on the throughfall,stemflow,and interception of two shrubs in the semiarid Loess region of China[J]. Agricultural and Forest Meteorology,2019,279: 1-10.
73 YANG X G,CHEN L,WANG L,et al. Dynamic rainfall-partitioning relationships among throughfall,stemflow,and interception loss by Caragana intermedia [J]. Journal of Hydrology,2019,574: 980-989.
74 YUE Xiangfei,CUI Jianyuan,ZHANG Tonghui,et al. Characteristics of rainfall interception and redistribution for Salix gordejevii in Horqin Sandy Land,Northeast China [J]. Acta Prataculturae Sinica,2013,22(6): 46-52.
岳祥飞,崔建垣,张铜会,等. 科尔沁沙地黄柳灌丛降雨截留与再分配特征[J]. 草业学报,2013,22(6): 46-52.
75 CROCKFORD R H,RICHARDSON D P. Partitioning of rainfall into throughfall,stemflow and interception: effect of forest type,ground cover and climate [J]. Hydrological Processes,2000, 14(16/17): 2 903-2 920.
76 LIU Zhangwen,CHEN Renshen,SONG Yaoxuan. Characteristics of stemflow for typical alpine shrubs in Qilian Mountain [J]. Chinese Journal of Applied Ecology,2011,22(8): 1 975-1 981.
刘章文,陈仁升,宋耀选. 祁连山典型高山灌丛树干茎流特征[J]. 应用生态学报,2011,22(8): 1 975-1 981.
77 LLORENS P,GALLART F. A simplified method for forest water storage capacity measurement [J]. Journal of Hydrology,2000,240(1/2): 131-144.
78 WANG X P,ZHANG Y F,WANG Z N,et al. Influence of shrub canopy morphology and rainfall characteristics on stemflow within a revegetated sand dune in the Tengger Desert,NW China [J]. Hydrological Processes,2013,27(10): 1 501-1 509.
79 KLAASSEN W,BOSVELD F,WATER E D. Water storage and evaporation as constituents of rainfall interception [J]. Journal of Hydrology,1998,212(1/4): 36-50.
80 MAGLIANO P N,WHITWORTH-HULSE J I,BALDI G,et al. Interception,throughfall and stemflow partition in drylands: global synthesis and meta-analysis [J]. Journal of Hydrology,2019,568: 638-645.
81 WANG X P,ZHANG Y F,HU R,et al. Canopy storage capacity of xerophytic shrubs in Northwestern China [J]. Journal of Hydrology,2012,454: 152-159.
82 KEIM R F,SKAUGSET A E,WEILER M. Storage of water on vegetation under simulated rainfall of varying intensity [J]. Advances in Water Resources,2006,29(7): 974-986.
83 GASH J H C. Estimating sparse forest rainfall interception with an analytical model [J]. Journal of Hydrology,1995,170(1): 79-86.
84 VALENTE F,DAVID J S,GASH J H C. Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models [J]. Journal of Hydrology,1997,190(1/2): 141-162.
85 TEKLEHAIMANOT Z,JARVIS P G,LEDGER D C. Rainfall interception and boundary layer conductance in relation to tree spacing [J]. Journal of Hydrology,1991,123(3/4): 261-278.
86 XIAO Q,MCPHERSON E G,USTIN S L,et al. A new approach to modeling tree rainfall interception [J]. Journal of Geophysical Research Atmospheres,2000,105(D23): 29 173-29 188.
87 FATHIZADEH O,HOSSEINI S M,KEIM R F,et al. A seasonal evaluation of the reformulated Gash interception model for semi-arid deciduous oak forest stands [J]. Forest Ecology and Management,2018,409: 601-613.
88 PENG Haiying,LI Xiaoyan,TONG Shaoyu. Effects of shrub (Caragana microphalla Lam.) encroachment on waterr edistribution and utilization in the typical steppe of Inner Mongolia [J]. Acta Ecologica,2014,34(9): 2 256-2 265.
彭海英,李小雁,童绍玉. 内蒙古典型草原小叶锦鸡儿灌丛化对水分再分配和利用的影响[J]. 生态学报,2014,34(9): 2 256-2 265.
89 ZHANG Zhishan,ZHANG Jingguang,LIU Lichao,et al. Interception of artificial vegetation in desert area [J]. Journal of Glaciology and Geocryology,2005,27(5): 761-766.
张志山,张景光,刘立超,等. 沙漠人工植被降水截留特征研究[J]. 冰川冻土,2005,27(5): 761-766.
90 WEST N E,GIFFORD G F. Rainfall interception by cool-desert shrubs [J]. Journal of Range Management, 1976, 29(2): 171-172.
91 RUTTER A J,KERSHAW K A,ROBINS P C. A predictive model of rainfall interception in forest. Ⅱ. generalization of the model and comparison with observations in some coniferous an hardwood standards [J]. Journal of Applied Ecology,1975,12(1): 367-380.
92 CALDER I R. A stochastic model of rainfall interception [J]. Journal of Hydrology,1986,89(1/2): 65-71.
93 CALDER I R. Dependence of rainfall interception on drop size.1. development of the two-layer stochastic model [J]. Journal of Hydrology,1996,185(1/4): 363-378.
94 RUTTER A J,KERSHAW K A,ROBINS P C,et al. A predictive model of rainfall interception in forests.Ⅰ. derivation of the model from observations in a plantation of Corsican pine[J]. Agricultural Meteorology,1972,9(5/6): 367-384.
95 GASH J H C. An analytical model of rainfall interception by forests [J]. Quarterly Journal of the Royal Meteorological Society,1979,105(443): 43-55.
96 HORMANN G,BRANDING A,CLEMEN T,et al. Calculation and simulation of wind controlled canopy interception of a beech forest in northern Germany [J]. Agricultural and Forest Meteorology,1996,79(3): 131-148.
97 MA C,LUO Y,SHAO M. Comparative modeling of the effect of thinning on canopy interception loss in a semiarid black locust (Robinia pseudoacacia) plantation in Northwest China [J]. Journal of Hydrology,2020,590: 1-16.
98 DIJK A VAN,BRUIJNZEEL L A. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. part 1. nodel description [J]. Journal of Hydrology,2001,247(3/4): 230-238.
99 ZHANG S Y,LI X Y,JIANG Z Y,et al. Modelling of rainfall partitioning by a deciduous shrub using a variable parameters Gash model [J]. Ecohydrology,2018,11(7): 1-12.
100 MULDER J P M. Simulating interception loss using standard meteorological data[C]// The forest-atmosphere interaction. Dordrecht: Reidel Publishing Company,1985.
101 LIU S G. A new model for the prediction of rainfall interception in forest canopies [J]. Ecological Modelling,1997,99(2/3): 151-159.
102 LIU S. Evaluation of the Liu model for predicting rainfall interception in forests world-wide [J]. Hydrological Processes,2001,15(12): 2 341-2 360.
103 LINHOSS A C,SIEGERT C M. Calibration reveals limitations in modeling rainfall interception at the storm scale [J]. Journal of Hydrology,2020,584: 1-11.
104 NAVAR J. Modeling rainfall interception loss components of forests [J]. Journal of Hydrology,2020,584: 1-10.
105 SONG Wenlong,YANG Shengtian,LU Jingxuan,et al. Simulation and analysis of vegetation interception at a large scale in the middle reaches of Yellow River [J]. Acta Geographica Sinica,2014,69(1): 80-89.
宋文龙,杨胜天,路京选,等. 黄河中游大尺度植被冠层截留降水模拟与分析[J]. 地理学报,2014,69(1): 80-89.
106 NIESCHULZE J,ERASMI S,DIETZ J,et al. Satellite-based prediction of rainfall interception by tropical forest stands of a human-dominated landscape in Central Sulawesi,Indonesia [J]. Journal of Hydrology, 2009, 364(3/4): 227-235.
107 CUI Y,JIA L. A modified gash model for estimating rainfall interception loss of forest using remote sensing observations at regional scale [J]. Water, 2014, 6(4): 993-1 012.
108 WEI Le,SONG Naiping,FANG Kai. Spatial heterogeneity of plant communities on desert steppe in Ningxia [J]. Pratacultural Science, 2014, 31(5): 826-832.
魏乐,宋乃平,方楷. 宁夏荒漠草原植物群落的空间异质性[J]. 草业科学, 2014, 31(5): 826-832.
109 CHAUBEY I,HAAN C T,GRUNWALD S,et al. Uncertainty in the model parameters due to spatial variability of rainfall [J]. Journal of Hydrology, 1999, 220(1/2): 48-61.
110 ZHOU Z,SMITH J A,WRIGHT D B,et al. Storm Catalog-based analysis of rainfall heterogeneity and frequency in a Complex Terrain [J]. Water Resources Research,2019,55(3): 1 871-1 889.
111 GOODRICH D C,FAURES J M,WOOLHOSER D A,et al. Measurement and analysis of small-scale convective storm rainfall variability [J]. Journal of Hydrology,1995,173(1/4): 283-308.
112 REN Zhihua,FENG Mingnong,ZHANG Hongzheng,et al. The difference and relativity between rainfall by automatic recording and manual observation [J]. Journal of Applied Meteorological Science, 2007, 22(3): 358-364.
任芝花,冯明农,张洪政,等. 自动与人工观测降雨量的差异及相关性[J]. 应用气象学报,2007, 22(3): 358-364.
113 PUCKETT J L. Spatial variability and collector requirements for sampling throughfall volume and chemistry under a mixed-hardwood canopy [J]. Canadian Journal of Forest Research,1991,21(11): 1 581-1 588.
114 JIAN Shengqi,ZHAO Chuanyan,FANG Shumin,et al. Water storage capacity of the canopy dominated by Caragana korshinskii and Hippophae rhamnoides in hilly and gully region on the Loeaa Plateau of Northwest China [J]. Chinese Journal of Plant Ecology,2013,37(1): 45-51.
荐圣淇,赵传燕,方书敏,等. 黄土高原丘陵沟壑区柠条与沙棘冠层的持水能力[J]. 植物生态学报,2013,37(1): 45-51.
115 WANG X P,LI X R,ZHANG J G,et al. Measurement of rainfall interception by xerophytic shrubs in revegetated sand dunes [J]. Hydrological Sciences Journal—Journal Des Sciences Hydrologiques,2005,50(5): 897-910.
116 PEREIRA F L,GASH J H C,DAVID J S,et al. Evaporation of intercepted rainfall from isolated evergreen oak trees: do the crowns behave as wet bulbs?[J]. Agricultural and Forest Meteorology,2009,149(3/4): 667-679.
117 BASSETTE C,BUSSIèRE F. 3-D modelling of the banana architecture for simulation of rainfall interception parameters [J]. Agricultural and Forest Meteorology,2005,129(1/2): 95-100.
118 DUROCHER M G. Monitoring spatial variability of forest interception [J]. Hydrological Processes,1990,4(3): 215-229.
119 HENNING J G,RADTKE P J. Detailed stem measurements of standing trees from ground-based scanning lidar [J]. Forest Science,2006,52(1): 67-80.
120 LEBLANC S G,CHEN J M,FERNANDES R,et al. Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests [J]. Agricultural and Forest Meteorology,2005,129(3/4): 187-207.
121 PEREIRA F L,VALENTE F,DAVID J S,et al. Rainfall interception modelling: is the wet bulb approach adequate to estimate mean evaporation rate from wet/saturated canopies in all forest types?[J]. Journal of Hydrology,2016,534: 606-615.
122 NEITSCH S L,ARNOLD J G,KINIRY J R,et al. Soil and water assessment tool theoretical documentation version 2009 [R]. Texas: Texas Water Resources Institute,2011: 124.
123 BEVEN K,FREER J. A dynamic topmodel [J]. Hydrological Processes,2001,15(10): 1 993-2 011.
124 ABBOTT M B,BATHURST J C,CUNGE J A,et al. An introduction to the European Hydrological System—Systeme Hydrologique Europeen,"SHE",2: structure of a physically-based,distributed modelling system[J]. Journal of Hydrology,1986,87(1/2): 61-77.
125 LIANG X,LETTENMAIER D P,WOOD E F. One‐dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model [J]. Journal of Geophysical Research: Atmospheres,1996,101(D16): 21 403-21 422.
126 OLESON K W,LAWRENCE D M,GORDON B,et al. Technical description of version 4.0 of the Community Land Model (CLM) [R]. Boulder: National Center for Atmospheric Research,2010: 118-120.
127 LOKUPITIYA E,DENNING S,PAUSTIAN K,et al. Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands [J]. Biogeosciences,2009,6(6): 969-986.
128 VERSEGHY D. CLASS-The Canadian land surface scheme (version 3.6)[R]. Ontario: Environment Canada Science and Technology Branch, 2012: 60-63.
[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[3] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
[4] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[5] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[6] 管晓丹, 石瑞, 孔祥宁, 刘婧晨, 甘泽文, 马洁茹, 罗雯, 曹陈宇. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10): 995-1004.
[7] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
[8] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[9] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[10] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
[11] 邓铭江, 石泉. 内陆干旱区水资源管理调控模式[J]. 地球科学进展, 2014, 29(9): 1046-1054.
[12] 程国栋,赵传燕,许仲林,彭守璋. 生物地理模型研究进展及在干旱半干旱区的应用[J]. 地球科学进展, 2013, 28(1): 17-23.
[13] 王国华,赵文智. 遥感技术估算干旱区蒸散发研究进展[J]. 地球科学进展, 2011, 26(8): 848-858.
[14] 尹飞虎,李晓兰,董云社,谢宗铭,高志建,何帅,刘长勇. 干旱半干旱区CO 2浓度升高对生态系统的影响及碳氮耦合研究进展[J]. 地球科学进展, 2011, 26(2): 235-244.
[15] 蒲阳,张虎才,雷国良,常凤琴,杨明生,庞有智. 西北地区晚第四纪沉积地层一元正脂肪酸酰胺分布特征及古气候意义[J]. 地球科学进展, 2010, 25(5): 533-542.
阅读次数
全文


摘要