地球科学进展 ›› 2018, Vol. 33 ›› Issue (10): 995 -1004. doi: 10.11867/j.issn.1001-8166.2018.10.0995.

综述与评述    下一篇

全球变化背景下半干旱区陆气机制研究综述
管晓丹( ), 石瑞, 孔祥宁, 刘婧晨, 甘泽文, 马洁茹, 罗雯, 曹陈宇   
  1. 兰州大学大气科学学院,半干旱气候变化教育部重点实验室,甘肃 兰州 730000
  • 收稿日期:2018-04-02 修回日期:2018-09-02 出版日期:2018-10-10
  • 基金资助:
    国家自然科学基金优秀青年科学基金项目“全球变化背景下半干旱陆气机制研究”(编号:41722502);国家自然科学基金面上项目“增温停滞对我国干湿变化的影响”(编号:41575006)资助.

An Overview of Researches on Land-Atmosphere Interaction over Semi-Arid Region Under Global Changes

Xiaodan Guan( ), Rui Shi, Xiangning Kong, Jingchen Liu, Zewen Gan, Jieru Ma, Wen Luo, Chenyu Cao   

  1. Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000,China
  • Received:2018-04-02 Revised:2018-09-02 Online:2018-10-10 Published:2018-11-16
  • About author:

    First author:Guan Xiaodan(1983-),female,Tonghua County,Jilin Province,Professor. Research areas include climate in semi-arid region.E-mail:guanxd@lzu.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China "Study on semi-arid land-atmosphere mechanism under the global change" (No.41722502) and "Impact of global warming hiatus on the dry-wet change in China" (No.41575006).

半干旱区作为全球陆地的重要组成部分,在全球气候变化过程中发挥着不可忽视的作用。现代气候变化过程中,半干旱区受局地人类活动影响显著,表现出百年尺度的面积扩张及年代际的干湿周期变化。归纳近年来国内外全球半干旱区气候变化的研究成果,对以往半干旱区主要陆面观测计划进行回顾,重点分类总结陆气相互作用在半干旱气候变化过程中发挥的作用;包括半干旱区陆气相互作用中的能量循环、水循环和碳循环等变化特征,以及模式对半干旱区陆气特征的历史模拟和未来预测。随着半干旱区干旱化的加剧,未来的局地陆气相互作用将出现新的变化特征,需要进一步加强对半干旱区陆气相互作用机制的认识,从多方向推进半干旱区陆气相互作用对区域气候影响的研究。

The semi-arid region, as a key part of global land, plays an important role in climate change. In the process of modern climate change, the semi-arid region is significantly affected by local human activities, showing remarkable expansion and obvious decadal variations. In this paper, we summarized the studies of the land-atmosphere interaction in the semi-arid regions in recent years, and major land surface observation plans. We put emphasis on energy balance, water cycle, carbon cycle in land-atmosphere interaction of climate change, and their performance in historical simulation and future prediction. The prediction results illustrate that new character of land-atmosphere interaction will appear as the drying of drylands in the future. Therefore, it is necessary to deepen the understanding of land-atmosphere interaction and move forward energetically on research in regional climate from different aspects.

中图分类号: 

图1 不同气候区气温趋势对全球气温趋势的贡献 [ 6 ]
Fig.1 The regional contribution of land-surface linear air temperature trend to global as function of climatological mean precipitation [ 6 ]
图2 8个半干旱区气候类型的转变 [ 1 ]
Fig.2 The transitions over the eight semi-arid regions [ 1 ]
图3 干燥度指数(a)与降水(实线)和潜在蒸发量(虚线)(b)的年代际变化 [ 15 ]
Fig.3 Decadal variability of AI(a), precipitation (solid line) and PET (dotted line)(b) [ 15 ]
图4 土壤湿度定义与相应的蒸散机制 [ 22 ]
Fig.4 Definition of soil moisture regimes and corresponding evapotranspiration regimes [ 22 ]
图5 不同气候区年均气温和土壤湿度的趋势 [ 23 ]
Fig.5 The linear trends of annual mean temperature and soil moisture as a function of climatological mean precipitation [ 23 ]
图6 不同区域观测与模拟的潜在蒸散、降水、干燥度指数、气温距平 [ 47 ]
Fig.6 Temporal variations in regionally averaged precipitation, PET, AI, and SAT in hyper-arid, arid, semi-arid,and dry subhumid regions from observations and the CMIP5 MME [ 47 ]
[1] Huang J, Ji M, Xie Y,et al. Global semi-arid climate change over last 60 years[J]. Climate Dynamics, 2016, 46(3/4): 1 131-1 150. DOI:10.1007/s00382-015-2636-8.
doi: 10.1007/s00382-015-2636-8     URL    
[2] Huang Jianping, Ji Mingxia, Liu Yuzhi,et al. An overview of arid and semi-arid climate change[J]. Advances in Climate Change Research, 2013, 9(1):9-14.
[黄建平, 季明霞, 刘玉芝, 等. 干旱半干旱区气候变化研究综述[J]. 气候变化研究进展, 2013, 9(1):9-14.]
doi: 10.3969/j.issn.1673-1719.2013.01.002    
[3] Wang Jiemin.Land surface process experiments and interaction study in China—From HEIFE to IMGRASS and GAME-Tibet/TIPEX[J]. Plateau Meteorology, 1999, 18(3):280-294.
[王介民. 陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象, 1999, 18(3):280-294.]
doi: 10.3321/j.issn:1000-0534.1999.03.005     URL    
[4] Huang J, Li Y, Fu C, et al. Dryland climate change recent progress and challenges[J]. Reviews of Geophysics, 2017, 55: 719-778. DOI:10.1002/2016RG000550.
doi: 10.1002/2016RG000550     URL    
[5] IPCC. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013: 95-123.
[6] Huang J, Guan X, Ji F.Enhanced cold-season warming in semi-arid regions[J]. Atmospheric Chemistry and Physics, 2012, 12(12): 5 391-5 398. DOI:10.5194/acp-12-5391-2012.
doi: 10.5194/acp-12-5391-2012     URL    
[7] Greve P, Orlowsky B, Mueller B, et al. Global assessment of trends in wetting and drying over land[J]. Nature Geoscience, 2014, 7(10):716-721. DOI:10.1038/NGEO2247.
doi: 10.1038/ngeo2247     URL    
[8] Cai W, Cowan T, Thatcher T.Rainfall reductions over southern hemisphere semi-arid regions: The role of subtropical dry zone expansion[J]. Scientific Reports, 2012, 2:702. DOI:10.1038/srep00702.
doi: 10.1038/srep00702     URL     pmid: 23050086
[9] Feng S, Fu Q.Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics, 2013, 13(19): 10 081-10 094. DOI:10.5194/acp-13-10081-2013.
doi: 10.5194/acp-13-10081-2013     URL    
[10] Fu Congbin, Ma Zhuguo.Global change and regional aridification[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4):752-760.
[符淙斌, 马柱国. 全球变化与区域干旱化[J]. 大气科学, 2008, 32(4):752-760.]
doi: 10.3878/j.issn.1006-9895.2008.04.05     URL    
[11] Ma Zhuguo, Fu Congbin.Decadal variations of arid and semi-arid boundary in China[J]. Chinese Journal of Geophysics, 2005, 48(3):519-525.
[马柱国, 符淙斌. 中国干旱和半干旱带的10年际演变特征[J]. 地球物理学报, 2005, 48(3):519-525.]
doi: 10.3321/j.issn:0001-5733.2005.03.008     URL    
[12] Li Y, Huang J, Ji M, et al. Dryland expansion in Northern China from 1948 to 2008[J]. Advances in Atmospheric Sciences, 2015, 32(6):870-876.
doi: 10.1007/s00376-014-4106-3     URL    
[13] Huang J, Xie Y, Guan X, et al. The dynamics of the warming hiatus over the Northern Hemisphere[J]. Climate Dynamics, 2017, 48(1/2):429-446. DOI:10.1007/s00382-016-3085-8.
doi: 10.1007/s00382-016-3085-8     URL    
[14] Guan X, Huang J, Guo R, et al. Role of radiatively forced temperature changes in enhanced semi-arid warming in the cold season over east Asia[J]. Atmospheric Chemistry and Physics, 2015, 15(23):13 777-13 786.
doi: 10.5194/acp-15-13777-2015     URL    
[15] Guan X, Huang J, Guo R.Changes in aridity in response to the global warming hiatus[J]. Journal of Meteorological Research, 2017, 31(1):117-125.
doi: 10.1007/s13351-017-6038-1     URL    
[16] Luo Yong, Wang Shaowu, Dang Hongyan, et al. Recent advances in climate models and model intercomparison projects[J]. Advances in Earth Science, 2002, 17(3):372-373.
[罗勇, 王绍武, 党鸿雁, 等. 近20年来气候模式的发展与模式比较计划[J]. 地球科学进展, 2002, 17(3):372-373.]
doi: 10.3321/j.issn:1001-8166.2002.03.012     URL    
[17] Chen Haishan, Sun Zhaobo.Review of land-atmosphere interaction and land surface model studies[J]. Journal of Nanjing Institute of Meteorology, 2002, 25(2):277-288.
[陈海山, 孙照渤. 陆气相互作用及陆面模式的研究进展[J]. 南京气象学院学报, 2002, 25(2):277-288.]
[18] Zhang Qiang, Huang Ronghui, Wang Sheng, et al. NWC-ALIEX and its research advances[J]. Advances in Earth Science, 2005, 20(4):427-441.
[张强, 黄荣辉, 王胜, 等. 西北干旱区陆—气相互作用试验(NWC-ALIEX)及其研究进展[J]. 地球科学进展, 2005, 20(4):427-441.]
doi: 10.3321/j.issn:1001-8166.2005.04.008     URL    
[19] Liu Huizhi, Dong Wenjie, Fu Congbin, et al. The long-term field experiments on aridfication and the ordered human activity in semi-arid area at Tongyu, Northeast China[J]. Climatic and Environmental Research, 2004, 9(2):378-389.
[刘辉志, 董文杰, 符淙斌, 等. 半干旱地区吉林通榆“干旱化和有序人类活动”长期观测实验[J]. 气候与环境研究, 2004, 9(2):378-389.]
doi: 10.3969/j.issn.1006-9585.2004.02.014     URL    
[20] Huang J, Zhang W, Zuo J, et al. An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J]. Advances in Atmospheric Sciences, 2008, 25(6): 1-16. DOI:10.1007/s00376-008-0906-7.
doi: 10.1007/s00376-008-0001-0     URL    
[21] Xiao Xia, Zuo Hongchao, Liu Huizhi, et al. Observational study of the surface energy closure in the semi-arid regions of Loess Plateau in late spring[J]. Journal of Glaciology and Geocryology, 2010, 32(1):70-77.
[肖霞, 左洪超, 刘辉志, 等. 春末黄土高原半干旱区地表能量闭合的观测研究[J]. 冰川冻土, 2010, 32(1):70-77.]
URL    
[22] Seneviratne S I, Corti T, Davin E L, et al. Investigating soil moisture-climate interactions in a changing climate: A review[J]. Earth-Science Reviews, 2010, 99(3/4):125-161.
doi: 10.1016/j.earscirev.2010.02.004     URL    
[23] Cheng S, Guan X, Huang J, et al. Long-term trend and variability of soil moisture over East Asia[J]. Journal of Geophysical Research Atmospheres, 2015, 120(17):8 658-8 670.
doi: 10.1002/2015JD023206     URL    
[24] Bing Longfei, Su Hongbo, Shao Quanqin, et al. Changing characteristic of land surface evapotranspiration and soil moisture in China during the past 30 years[J]. Journal of Geo-Information Science, 2012, 14(1):1-13.
[邴龙飞, 苏红波, 邵全琴, 等. 近30年来中国陆地蒸散量和土壤水份变化特征分析[J]. 地球信息科学学报, 2012, 14(1):1-13.]
doi: 10.3724/SP.J.1047.2012.00001     URL    
[25] Brubaker K L, Entekhabi D, Eagleson P S.Estimation of continental precipitation recycling[J]. Journal of Climate, 1993, 6(6):1 077-1 089.
doi: 10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2     URL    
[26] Zhang Shuwen, Liu Yuan, Cao Bangjun, et al. Soil moisture-precitation coupling and trends in China, based on GLDAS and CMIP5 products[J]. Climatic and Environmental Research, 2016, 21(2):188-196.
[张述文, 刘源, 曹帮军, 等. GLDAS和CMIP5产品的中国土壤湿度—降水耦合分析及变化趋势[J]. 气候与环境研究, 2016, 21(2):188-196.]
doi: 10.3878/j.issn.1006-9585.2015.15112     URL    
[27] Hohenegger C, Brockhaus P, Bretherton C S, et al. The soil moisture-precipitation feedback in simulations with explicit and parameterized convection[J]. Journal of Climate, 2009, 22(19):5 003-5 020.
doi: 10.1175/2009JCLI2604.1     URL    
[28] Ma Zhuguo, Fu Congbin, Xie Li, et al. Some problems in the study on the relationship between soil moisture and climate change[J]. Advance in Earth Sciences, 2001, 16(4):563-568.
[马柱国, 符淙斌, 谢力, 等. 土壤湿度和气候变化关系研究中的某些问题[J]. 地球科学进展, 2001, 16(4):563-568.]
doi: 10.3321/j.issn:1001-8166.2001.04.019     URL    
[29] Guo Weidong, Ma Zhuguo, Wang Huijun.Soil moisture-an important factor of seasonal precipitation prediction and its application[J]. Climatic and Environmental Research, 2007, 12(1):20-28.
[郭维栋, 马柱国, 王会军. 土壤湿度——一个跨季度降水预测中的重要因子及其应用探讨[J]. 气候与环境研究, 2007, 12(1):20-28.]
doi: 10.3969/j.issn.1006-9585.2007.01.003     URL    
[30] Burba G G, Verma S B, Kim J.Surface energy fluxes of Phragmites Australis, in a prairie wetland[J]. Agricultural and Forest Meteorology, 1999, 94(1):31-51.
doi: 10.1016/S0168-1923(99)00007-6     URL    
[31] Zeng Jian, Zhang Qiang, Wang Sheng.Regional differences in the characteristics of clear sky land surface processes in distinct climatic zones over Northern China[J]. Chinese Journal of Atmospheric Sciences, 2011, 35(3):483-494.
[曾剑, 张强, 王胜. 中国北方不同气候区晴天陆面过程区域特征差异[J]. 大气科学, 2011, 35(3):483-494.]
doi: 10.3878/j.issn.1006-9895.2011.03.09     URL    
[32] Zhang Qiang, Zhang Liang, Huang Jing, et al. Spatial distribution of surface energy fluxes over the Loess Plateau in China and its relationship with climate and the environment[J]. Science in China (Series D), 2014, 57(9): 2 135-2 147.
[张强, 张良, 黄菁, 等. 我国黄土高原地区陆面能量的空间分布规律及其与气候环境的关系[J]. 中国科学:D辑, 2014, 44(9):2 062-2 076.]
[33] Hui Xiaoying, Wang Chenghai, Zuo Hongchao, et al. Abnormal features of sensible and latent heat fluxes in arid region of Northern China[J]. Plateau Meteorology, 2005, 24(3):415-421.
[惠小英, 王澄海, 左洪超, 等. 中国北方干旱区感热及潜热的异常特征[J]. 高原气象, 2005, 24(3):415-421.]
doi: 10.3321/j.issn:1000-0534.2005.03.019     URL    
[34] Meng L, Shen Y.On the relationship of soil moisture and extreme temperatures in East China[J]. Earth Interactions, 2014, 18(1):1-20.
doi: 10.1175/2013EI000551.1     URL    
[35] Chen Qingqiang, Shen Chengde, Yi Weixi, et al. Progresses in soil carbon cycle researches[J]. Advances in Earth Science, 1998, 13(6):555-563.
[陈庆强, 沈承德, 易惟熙, 等. 土壤碳循环研究进展[J]. 地球科学进展, 1998, 13(6):555-563.]
doi: 10.3321/j.issn:1001-8166.1998.06.007     URL    
[36] Maestre F T, Escolar C, Guevara M L D, et al. Changes in biocrust cover drive carbon cycle responses to climate change in drylands[J]. Global Change Biology, 2013, 19(12):3 835.
doi: 10.1111/gcb.12306     URL     pmid: 23818331
[37] Davidson E A, Janssens I A.Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7 081):165.
doi: 10.1038/nature04514     URL    
[38] Poulter B, Frank D, Ciais P, et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle[J]. Nature, 2014, 509(7 502):600-603.
doi: 10.1038/nature13376     URL     pmid: 24847888
[39] Rotenberg E, Yakir D.Contribution of semi-arid forests to the climate system[J]. Science, 2010, 327(5 964):451.
doi: 10.1126/science.1179998     URL    
[40] Grace J, Jose J S, Meir P, et al. Productivity and carbon fluxes of tropical savannas[J]. Journal of Biogeography, 2010, 33(3):387-400.
doi: 10.1111/j.1365-2699.2005.01448.x     URL    
[41] Wang Xinyuan, Li Yulin, Zhao Xueyong, et al. Responses of soil respiration to different factors in semi-arid and arid areas[J]. Acta Ecologica Sinica, 2012, 32(15):4 890-4 901.
[王新源, 李玉霖, 赵学勇, 等. 干旱半干旱区不同环境因素对土壤呼吸影响研究进展[J]. 生态学报, 2012, 32(15):4 890-4 901.]
doi: 10.5846/stxb201107281108     URL    
[42] Fu Y, Yu G, Wang Y, et al. Effect of water stress on ecosystem photosynthesis and respiration of a Leymus chinensis, steppe in Inner Mongolia[J]. Science in China (Series D), 2006, 49(Suppl.2):196-206.
[43] Zhou Ping, Liu Guobin, Xue Sha.Review of soil respiration and the impact factors on grassland ecosystem[J]. Acta Prataculturae Sinica, 2009, 18(2):184-193.
[周萍, 刘国彬, 薛萐. 草地生态系统土壤呼吸及其影响因素研究进展[J]. 草业学报, 2009, 18(2):184-193.]
doi: 10.3321/j.issn:1004-5759.2009.02.027     URL    
[44] Wang Wei, Zhang Ying.Advances in research on land surface processes model[J]. Meteorology and Disaster Reduction Research, 2010, 33(3): 1-6.
[汪薇, 张瑛. 陆面过程模式的研究进展简介[J]. 气象与减灾研究, 2010, 33(3):1-6.]
[45] Huang J, Yu H, Guan X, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016,6:166-171. DOI:10.1038/nclimate2837.
doi: 10.1038/nclimate2837     URL    
[46] Zhao T, Dai A.Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes[J]. Climatic Change, 2017, 144:535-548. DOI:10.1007/s10584-016-1742-x.
doi: 10.1007/s10584-016-1742-x     URL    
[47] Ji M, Huang J, Xie Y, et al. Comparison of dryland climate change in observations and CMIP5 simulations[J]. Advances in Atmospheric Sciences, 2015, 32(11):1 565-1 574. DOI: 10.1007/s00376-015-4267-8.
[48] Scheff J, Frierson D M W. Terrestrial aridity and its response to greenhouse warming across CMIP5 Climate Models[J]. Journal of Climate, 2015, 28(14):150427110053004.
[49] Feng S, Hu Q, Huang W, et al. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations[J]. Global and Planetary Change, 2014, 112(1):41-52.
[50] Scheff J, Frierson D M W. Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones[J]. Geophysical Research Letters, 2012, 39(18):18 704.
[51] Schlaepfer D R, Bradford J B, Lauenroth W K, et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils[J]. Nature Communications, 2017, 8:14 196.
[52] Huang J, Huang J, Liu X, et al. The global oxygen budget and its future projection[J]. Science Bulletin, 2018.DOI:10.1016/j.scib.2018.07.023.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[8] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[9] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[10] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[11] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[12] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[13] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[14] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[15] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
阅读次数
全文


摘要