地球科学进展 ›› 2021, Vol. 36 ›› Issue (8): 785 -796. doi: 10.11867/j.issn.1001-8166.2021.044

青藏高原复杂地表蒸散发及其对水塔效应影响 上一篇    下一篇

2000年后青藏高原区域气候的一些新变化
王慧 1( ),张璐 1, 2,石兴东 1, 3,李栋梁 1   
  1. 1.南京信息工程大学大气科学学院/气象灾害预报预警与评估协同创新中心/气象灾害教育部重点实验室,江苏 南京 210044
    2.青海省气候中心,青海 西宁 810001
    3.兰州大学大气科学学院,甘肃 兰州 730000
  • 收稿日期:2021-01-31 修回日期:2021-04-28 出版日期:2021-08-10
  • 基金资助:
    第二次青藏高原综合科学考察研究项目“地气相互作用及其气候效应”任务一“西风—季风协同作用及其影响”(2019QZKK0103);国家自然科学基金项目“青海高原草地生态系统对气候变化响应动态机制研究”(U20A2098)

Some New Changes of the Regional Climate on the Tibetan Plateau Since 2000

Hui WANG 1( ),Lu ZHANG 1, 2,Xingdong SHI 1, 3,Dongliang LI 1   

  1. 1.Key Laboratory of Meteorological Disaster,Ministry of Education,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,School of Atmospheric Sciences,Nanjing University of Information Science & Technology,Nanjing 210044,China
    2.Climate Center of Qinghai Province,Xining 810001,China
    3.College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,China
  • Received:2021-01-31 Revised:2021-04-28 Online:2021-08-10 Published:2021-09-22
  • About author:WANG Hui (1982-), female, Cao County, Shandong Province, Associate professor. Research areas include climate dynamics and land-air interactions. E-mail: wanghui123@nuist.edu.cn
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program "Earth-atmosphere interaction and its climatic effects" task 1 "Westerly-monsoon synergy and its effects"(2019QZKK0103);The National Natural Science Foundation of China "Study on dynamic mechanism of grassland ecosystem response to climate change in Qinghai Plateau "(U20A2098)

在全球气候变暖进程中,青藏高原气候也发生了一系列的改变。在综述前人研究成果的基础上,从气温、地表温度、地面风速和地表感热通量等方面重点阐述了2000年后青藏高原气候的一些新变化及其可能原因。研究表明:青藏高原气温和地表温度在2000—2010年显著增温,而在2010年后出现增温变缓的趋势;地面风速在2000年前后发生了显著的趋势转变,由2000年之前的显著减小趋势逐渐转变为2010年后的显著增大趋势;2000年后风速和地气温差的变化共同导致地表感热通量的增强和趋势转折,其中,2000—2010年地温增温率快于气温的增温率,这对地气温差的加大和地表感热的增强具有重要贡献,2010年以后地面风速的快速增大是高原感热增强的主要因素。青藏高原风速的变化可能主要与大尺度的环流调整有关,而高原地温的变化则可能主要是高原局地下垫面要素相互作用的结果。该研究为理解青藏高原气候变化的最新进展提供了重要参考。

In the process of global warming, a series of changes have also occurred in the climate of Tibetan Plateau. On the basis of summarizing the previous research results, some new climatic changes and their possible causes in the Tibetan Plateau after 2000 were discussed from the aspects of air temperature, 0 cm ground temperature, surface wind speed and surface sensible heat flux.

Results

showed that: on the basis of the significant warming of air temperature and 0 cm ground temperature on the Tibetan Plateau during 2000-2010, their warming slowed down after 2010. The wind speed on the Tibetan Plateau had a significant trend change around 2000, which gradually changed from a significant decreasing trend before 2000 to a significant increasing trend after 2010. The changes of wind speed and air-ground temperature difference after 2000 jointly led to the enhancement and trend transition of the sensible heat flux on the Plateau, among which, the increase rate of ground temperature during 2000-2010 was faster than that of air temperature, which contributed significantly to the increase of air-ground temperature difference and the enhancement of surface sensible heat flux. The rapid increase of surface wind speed after 2010 was the main cause for the enhancement of surface sensible heat flux on the Tibetan Plateau. The variation of wind speed over the Tibetan Plateau may be mainly related to the adjustment of large-scale circulation, while the variation of ground temperature may be mainly the results of the interaction of local underlying surface elements over the Tibetan Plateau.

中图分类号: 

图1 19822018年青藏高原不同地面要素四季和年平均距平值变化
1 19822018年不同时段青藏高原四季和年平均地表 0 cm温度 (T s )1.5 m空气温度 (T a )、地气温差 (T s - T a )、地面风速 (V)和地表感热通量 (SH)的气候倾向率 (单位: 10a - 1)
Fig. 1 Seasonal and annual mean anomalies of different surface elements in the Tibetan Plateau during 1982-2018
Table 1 Climate tendency rates of four seasons and annual average 0 cm ground temperature (T s ), air temperature (T a ) air-ground temperature difference (T s - T a ), surface wind speed (V) and surface sensible heat flux (SH) on the Tibetan Plateau at different time periods during 1982-2018 (unit:10a - 1)
图2 不同时段青藏高原70 个地面观测站年平均气温气候倾向率分布
Fig. 2 The distribution of climate trend rates of annual average air temperature at 70 surface observation stations on the Tibet Plateaux>0 代表增温(红色);x<0 代表降温(蓝色);实心圆形表示该站气温气候倾向率变化通过95% 置信水平t检验x>0 represents air temperature increasingred);x<0 represents air temperature decreasingblue);The solid circle represents the change of climate trend rates of air temperature passing the t test at 95% confidence level
图3 东亚副热带地区(范围:25°~45°N80°~120°E)四季500 hPa纬向风序列(实线)及其11点平滑趋势线(虚线)
Fig. 3 500 hPa zonal wind time series solid line and its 11 years moving average line dashed line in the East Asian subtropics region range 25°~45°N 80°~120°E
图4 19822018年青藏高原四季及年平均地表感热的距平序列
Fig. 4 Anomaly series of seasonal and annual mean surface sensible heat flux on the Tibetan Plateau during 1982-2018
1 WU Guoxiong, LIU Yimin, LIU Xin, et al. How the heating over the Tibetan Plateau affects the Asian climate in summer[J]. Chinese Journal of Atmospheric Science,2005,29(1):49-56.
吴国雄,刘屹岷,刘新,等.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学, 2005, 29(1):49-56.
2 ZHOU Xiuji, ZHAO Ping, CHEN Junming, et al. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate[J]. Science in China (Series D),2009,39(11):1 473-1 486.
周秀骥,赵平,陈军明,等.青藏高原热力作用对北半球气候影响的研究[J].中国科学:D辑,2009,39(11):1 473-1 486.
3 DUAN Anmin, WU Guoxiong. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dynamics,2005,24:793-807.
4 DUAN A, LI F, WANG M, et al. Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon[J]. Journal of Climate, 2011,24 (21): 5 671-5 682.
5 XU Xiangde, ZHAO Tianliang, SHI Xiaohui, et al. A study of the role of the Tibetan Plateau's thermal forcing in modulating rainband and moisture transport in eastern China[J]. Acta Meteorologica Sinica, 2015,73(1): 20-35.
徐祥德,赵天良,施晓晖,等. 青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J].气象学报,2015,73(1):20-35.
6 CAI Ying, LI Dongliang, TANG Maocang, et al. Decadal temperature changes over Qinghai-Xizang Plateau recent 50 years[J]. Plateau Meteorology,2003,22(5): 464-470.
蔡英,李栋梁,汤懋苍,等.高原近50年来气温的年代际变化[J].高原气象,2003,22(5): 464-470.
7 FENG Song, YAO Tandong, JIANG Hao, et al. Temperature variations over Qinghai-Xizang Plateau in the past 600 years[J]. Plateau Meteorology,2001,20(1):105-108.
冯松,姚檀栋,江灏,等.青藏高原近600年的温度变化[J].高原气象,2001,20(1):105-108.
8 YAO Yibin, LEI Xiangxu, ZHANG Liang, et al. Analysis of perceptible water vapor and surface temperature variation over Qinghai-Tibetan Plateau from 1979 to 2014[J]. Chinese Science Bulletin, 2016, 61: 1 462-1 477.
姚宜斌,雷祥旭,张良,等.青藏高原地区1979—2014年大气可降水量和地表温度时空变化特征分析[J].科学通报,2016, 61:1 462-1 477.
9 ZHENG Ran, LI Dongliang, JIANG Yuanchun, et al. New characteristics of temperature change over Qinghai-Xizang Plateau on the background of global warming[J]. Plateau Meteorology,2015, 34(4): 1 531-1 539.
郑然,李栋梁,蒋元春,等.全球变暖背景下青藏高原气温变化的新特征[J].高原气象, 2015, 34(4):1 531-1 539.
10 DUAN Anmin, XIAO Zhixiang, WU Guoxiong. Characteristics of climate change over the Tibetan Plateau under the global warming during1979-2014[J]. Climate Change Research,2016,12(5):374-381.
段安民,肖志祥,吴国雄.1979—2014年全球变暖背景下青藏高原气候变化特征[J].气候变化研究进展,2016,12(5):374-381.
11 YANG K, WU H, QIN J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review[J]. Global and Planetary Change, 2014, 112: 79-91.
12 WANG Buwei, ZHANG Xueqin. Change and attribution of reference evapotranspiration over the Tibetan Plateau during the period of1971-2014[J]. Arid Zone Research,2019,36(2):269-279.
汪步惟,张雪芹.1971—2014年青藏高原参考蒸散变化及其归因[J]. 干旱区研究, 2019, 36(2):269-279.
13 YAO Tianci, LU Hongwei, YU Qing, et al. Potential evapotranspiration characteristic and its abrupt change across the Qinghai-Tibetan Plateau and its surrounding areas in the last 50 years[J]. Advances in Earth Science,2020,35(5):534-546.
姚天次,卢宏玮,于庆,等.近50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J].地球科学进展,2020,35(5):534-546.
14 XU W, MA L, MA M, et al. Spatial?temporal variability of snow cover and depth in the Qinghai?Tibetan Plateau[J]. Journal of Climate, 2017,30(4):1 521-1 533.
15 HU Haoran, WU Qing. Interdecadal variations of snow cover and their relations with snowfall and air temperature over East of Qinghai-Tibetan Plateau in last 44 years[J]. Plateau and Mountain Meteorology Research,2016,36(1):38-43.
胡豪然, 伍清. 近44年青藏高原东部积雪的年代际变化特征及其与降雪和气温的关系[J].高原山地气象研究, 2016, 36(1):38-43.
16 JIANG Qi, LUO Siqiong, WEN Xiaohang, et al. Spatial-temporal characteristics of snow and influence factors in the Qinghai-Tibetan Plateau from 1961 to 2014[J]. Plateau Meteorology, 2020, 39(1):24-36.
姜琪,罗斯琼,文小航,等. 1961—2014年青藏高原积雪时空特征及其影响因子[J]. 高原气象, 2020, 39(1): 24-36.
17 WANG Ting, LI Zhaoguo, Shihua Lü, et al. Study on the effects of snow cover on heat transport in land surface processes over Qinghai-Tibetan Plateau[J]. Plateau Meteorology,2019,38(5): 920-934.
王婷,李照国,吕世华,等.青藏高原积雪对陆面过程热量输送的影响研究[J].高原气象,2019,38(5): 920-934.
18 YAO T, PU J, LU A, et al. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions [J]. Arctic Antarctic and Alpine Research,2007,39(4):642-650.
19 KANG S, XU Y, YOU Q, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Lettors,2010,5(1):1-8.
20 GUO Y, ZHANG Y, MA N, et al. Long-term changes in evaporation over Siling Co Lake on the Tibetan and its impact on recent rapid lake expansion[J]. Atmospheric Research, 2019, 216: 141-150.
21 ZHU L, WANG J, JU J, et al. Climatic and lake environmental changes in the Serling Co region of Tibet over a variety of timescales[J]. Science Bulletin, 2019, 64: 422-424.
22 YANG R, ZHU L, WANG J, et al. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013[J]. Climatic Change, 2017, 140(3/4): 621-633.
23 ZHU Liping, JU Jianting, QIAO Baojin, et al. Recent lake changes of the Asia Water Tower and their climate response: progress, problems and prospects[J]. Chinese Science Bulletin, 2019, 64: 2 796-2 806.
朱立平,鞠建廷,乔宝晋,等. “亚洲水塔”的近期湖泊变化及气候响应:进展、问题与展望[J]. 科学通报, 2019, 64:2 796-2 806.
24 MA Yaoming, HU Zeyong, TIAN Lide, et al. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science,2014,29(2): 207-215.
马耀明,胡泽勇,田立德,等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J].地球科学进展,2014,29(2):207-215.
25 PAN Biaotian, LI Jijun. Qinghai Tibet Plateau: the driving force and amplifier of global climate change—Ⅲ. the impact of Qinghai Tibet Plateau uplift on climate change [J]. Journal of Lanzhou University (Natural Sciences),1996,32(1):108-115.
潘保田,李吉均. 青藏高原:全球气候变化的驱动机与放大器——Ⅲ.青藏高原隆起对气候变化的影响[J]. 兰州大学学报:自然科学版,1996,32(1): 108-115.
26 YAO Huiru, LI Dongliang. The interannual variation of wind speed in the Tibetan Plateau in spring and its response to global warming during1971-2012[J]. Acta Meteorologica Sinica, 2016,74(1): 60-75.
姚慧茹, 李栋梁. 1971—2012年青藏高原春季风速的年际变化及对气候变暖的响应[J].气象学报, 2016, 74(1): 60-75.
27 REN Zhihua, YU Yu, ZUO Fengling, et al. Quality detection of surface historical basic meteorological data[J]. Journal of Applied Meteorological Science, 2012, 23(6): 739-747.
任芝花, 余予, 邹凤玲, 等. 部分地面要素历史基础气象资料质量检测[J]. 应用气象学报,2012,23(6):739-747.
28 RANGA B, PIAO S, RAMAKRISHNA R, et al. Global data sets of vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011[J]. Remote Sensing, 2013, 5(2):927-948.
29 YE D Z. Some aspects of the thermal influences of the Qinghai-Tibetan Plateau on the atmospheric circulation[J]. Meteorology Geophysical & Bioclimate (Series A), 1982,31(1): 205-220.
30 DUAN A, WU G. Change of cloud amount and the climate warming on the Tibetan Plateau[J]. Geophysical Research Letters, 2006,33(22):1-5.
31 YANG K, GUO X, WU B. Recent trends in surface sensible heat flux on the Tibetan Plateau[J]. Science in China (Serise D), 2011,54(1):19-28.
32 ZHU L, HUANG G, FAN G, et al. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus[J]. Advances in Atmospheric Sciences, 2017,34(10): 1 249-1 262.
33 DAI Yifei, WANG Hui, LI Dongliang. Characteristics of surface sensible heat flux calculated from satellite remote sensing and field observations in the Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences,2016,40(5):1 009-1 021.
戴逸飞,王慧,李栋梁.卫星遥感结合气象资料计算的青藏高原地面感热特征分析[J]. 大气科学,2016,40(5):1 009-1 021.
34 WANG H, HU Z, LI D, et al. Estimation of the surface heat transfer coefficient over the east-central Tibetan Plateau using satellite remote sensing and field observation data[J]. Theoretical and Applied Climatology,2019,138(1):169-183.
35 Chen L, Pryor S, Wang H, et al. Distribution and variation of the surface sensible heat flux over the central and eastern Tibetan Plateau: comparison of station observations and multireanalysis products[J]. Journal of Geophysical Research: Atmospheres, 2019,124: 6 191-6 206.
36 LI Dongliang, ZHONG Hailing, WU Qingbai, et al. Analyses on changes of surface temperature over Qinghai-Xizang Plateau[J]. Plateau Meteorology,2005,24(3): 291-298.
李栋梁,钟海玲,吴青柏,等.青藏高原地表温度的变化分析[J].高原气象, 2005,24(3): 291-298.
37 ZHANG Lu, WANG Hui, SHI Xingdong, et al. Characteristics and causes of surface sensible heat trend transition in central and Eastern Qinghai-Xizang Plateau[J]. Plateau Meteorology,2020,39(5): 912-924.
张璐,王慧,石兴东,等.青藏高原中东部地表感热趋势转折特征及成因分析[J]. 高原气象,2020,39(5): 912-924.
38 HU Jie, GONG Yuanfa. The Characteristics of spatiotemporal changes of the Tibetan Plateau ground-air temperature difference from 1984 to 2013[J]. Journal of Chengdou University of Information Technology,2020,35(4):455-463.
胡洁,巩远发. 1984—2013年青藏高原地气温差的时空变化特征[J].成都信息工程大学学报,2020,35(4):455-463.
39 DUAN A, XIAO Z. Does the climate warming hiatus exist over the Tibetan Plateau?[J]. Scientific Reports, 2015,5(1):13711.
40 YOU Q, MIN J, KANG S. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades[J]. International Journal of Climatology, 2016, 36(6): 2 660-2 670.
41 YANG X, ZHANG Y, LIU L, et al. Sensitivity of surface air temperature change to land types in China[J]. Science in China (Series D), 2009,52(8):1 207-1 215.
42 HUA Wenjian, CHEN Haishan, LI Xing. Effects of future land use change on the regional climate in China[J]. Science China: Earth Sciences, 2015, 45: 1 034-1 042.
华文剑,陈海山,李兴. 未来土地利用变化影响中国区域气候的数值模拟[J].中国科学:地球科学, 2015, 45: 1 034-1 042.
43 CHEN L, LI D, PRYOR S C. Wind speed trends over China: auantifying the magnitude and assessing causality[J]. International Journal of Climatology, 2013,33(11): 2 579-2 590.
44 PRYOR S C, LEDOLTER J. Addendum to "wind speed trends over the contiguous United States" [J]. Journal of Geophysical Research: Atmospheres, 2010, 115: D10103.
45 YOU Q, FRAEDRICH K, MIN J, et al. Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes[J]. International Journal of Climatology, 2014, 34: 1 873-1 882.
46 YU L, ZHONG S, BIAN X. Temporal and spatial variability of wind sources in the United States as derived from the climate forecast system reanalysis[J]. Journal of Climate,2015, 28(3): 1 166-1 183.
47 LIN C, YANG K, QIN J, et al. Observed coherent trends of surface and upper-air wind speed over China since 1960[J].Journal of Climate, 2013, 26(9):2 891-2 903.
48 ZHAO Zongci, LUO Yong, JIANG Ying, et al. Possible reasons of wind speed decline in China for the last 50 years[J]. Advances in Meteorological Science and Technology,2016,6(3): 106-109.
赵宗慈,罗勇, 江滢,等.近50年中国风速减小的可能原因[J].气象科技进展,2016,6(3):106-109.
49 ZHANG Zhibin, YANG Ying, ZHANG Xiaoping, et al. Wind speed changes and its influencing factors in Southwestern China[J]. Acta Ecologica Sinica,2014,34 (2):471-481.
张志斌,杨莹,张小平,等. 我国西南地区风速变化及其影响因素[J].生态学报,2014,34(2):471-481.
50 CHEN S, LIU Y, THOMAS A. Climatic change on the Tibetan Plateau: potential evapotranspiration trends from 1961-2000[J]. Climatic Change,2006,76(3/4):291-319.
51 ZHANG X, REN Y, YIN Z, et al. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971-2004[J]. Journal of Geophysical Research: Atmospheres,2009,114: D15105.
52 JIANG Y, LUO Y, ZHAO Z, et al. Changes in wind speed over China during 1956-2004[J]. Theoretical and Applied Climatology, 2010,99(3): 421-430.
53 LI Z, YAN Z, TU K, et al. Changes in wind speed and extremes in Beijing during 1960-2008 based on homogenized observations[J]. Advances in Atmospheric Sciences, 2011,28(2): 408-420.
54 WANG Xiaoling, ZHAI Panmao. The spatial and temporal variations of spring dust storms in China and its associations with surface winds and sea level pressures[J]. Acta Meteorologica Sinica, 2004,62(1): 96-103.
王小玲, 翟盘茂. 中国春季沙尘天气频数的时空变化及其与地面风压场的关系[J].气象学报, 2004,62(1): 96-103.
55 WANG Huijun, FAN Ke. Recent changes in the East Asian monsoon[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(2): 313-318.
王会军, 范可. 东亚季风近几十年来的主要变化特征[J].大气科学, 2013, 37(2): 313-318.
56 DUAN A, WU G. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part II: connection with climate warming[J]. Journal of Climate, 2009,22: 4 197-4 212.
57 LI Dongliang, WEI Li, LI Weijing, et al. The effect of surface sensible heat flux of the Qinghai-Xizang Plateau on general circulation over the northern hemisphere and climatic anomaly of China[J]. Climatic and Environmental Research,2003,18(1): 60-70.
李栋梁,魏丽,李维京,等. 青藏高原地面感热对北半球大气环流和中国气候异常的影响[J].气候与环境研究,2003,18(1):60-70.
58 MA W, MA Y. Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau[J]. Theoretical and Applied Climatology,2016,125(1):45-52.
59 LIU Y, WU G, HONG J, et al. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. change[J]. Climate Dynamics,2012,39(5):1 183-1 195.
60 ZHANG Chao, TIAN Rongxiang, MAO Huiling, et al. Impact of the sensible heat flux anomaly over the Tibetan Plateau in April on summer precipitation in the south of the Yangtze River Region[J]. Transactions of Atmospheric Sciences,2018,41(6): 775-785.
张超,田荣湘,茆慧玲,等.青藏高原4月感热通量异常对长江以南夏季降水的影响[J].大气科学学报,2018,41(6):775-785.
61 XIE Jin, YU Ye, LIU Chuan, et al. Characteristics of surface sensible heat flux over the Qinghai-Tibetan Plateau and its response to climate change[J]. Plateau Meteorology,2018,37(1):28-42.
解晋,余晔,刘川,等.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象,2018,37(1):28-42.
62 YU Wei, LIU Yimin, YANG Xiuqun, et al. The interannual and decadal variation characteristics of the surface sensible heating at different elevations over the Qinghai-Tibetan Plateau and attribution analysis[J]. Plateau Meteorology,2018,37(5):1 161-1 176.
于威,刘屹岷,杨修群,等.青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析[J].高原气象,2018,37(5): 1 161-1 176.
63 MA Y,WANG Y, HAN C. Regionalization of land surface heat fluxes over the heterogeneous landscape: from the Tibetan Plateau to the Third Pole region[J]. International Journal of Remote Sensing, 2018, 39: 5 872-5 890.
64 ZHONG L, MA Y, HU Z, et al. Estimation of hourly land surface heat fluxes over the Tibetan Plateau by the combined use of geostationary and polar-orbiting satellites[J]. Atmospheric Chemistry and Physics,2019, 19: 5 529-5 541.
65 DUAN A, WU G. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. part I: observations[J]. Journal of Climate,2008,21(13):3 149-3 164.
66 YANG K, WU H, CHEN Y, et al. Toward a satellite-based observation of atmospheric heat source over land[J]. Journal of Geophysical Research Atmospheres,2014,119(6):3 124-3 133.
67 WANG Meirong, ZHOU Shunwu, DUAN Anmin. Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: comparison of observations and reanalysis data[J]. Chinese Science Bulletin,2012,57: 178-188.
王美蓉,周顺武,段安民.近30年青藏高原中东部大气热源变化趋势:观测与再分析资料对比[J].科学通报,2012,57:178-188.
68 WANG H, LI D. Decadal variability in summer precipitation over Eastern China and its response to sensible heat over the Tibetan Plateau since the early 2000s[J]. International Journal of Climatology,2019,39(3):1 604-1 617.
69 YAN Xiaoqiang, HU Zeyong, SUN Genhou, et al. Characteristics of long-term surface heat source and its climate influence factors in Nagqu alpine meadow[J]. Plateau Meteorology,2019,38(2):253-263.
严晓强,胡泽勇,孙根厚,等. 那曲高寒草地长时间地面热源特征及其气候影响因子分析[J]. 高原气象,2019,38(2):253-263.
70 WANG Huan, LI Dongliang. Impacts of decadal variability in sensible heat over the Tibetan Plateau on decadal transition of summer precipitation over dominant regions of monsoon rainfall band in eastern China since the early2000s[J]. Chinese Journal of Geophysics,2020,63(2):412-426.
王欢,李栋梁. 21世纪初青藏高原感热年代际增强对中国东部季风雨带关键区夏季降水年代际转折的影响[J].地球物理学报,2020,63(2):412-426.
71 QIN D, LIU S, Li P. Snow cover distribution, variability, and response to climate change in western China[J]. Journal of Climate, 2006,19(9):1 820-1 833.
72 BO Yue, LI Xiaolan, WANG Chenghai.Seasonal characteristics of the interannual variations center of the Tibetan Plateau snow cover[J]. Journal of Glaciology and Geocryology,2014,36(6):1 353-1 362.
伯玥,李小兰,王澄海.青藏高原地区积雪年际变化异常中心的季节变化特征[J].冰川冻土,2014,36(6):1 353-1 362.
73 WEI Zhigang, HUANG Ronghui, CHEN Wen, et al. Spatial distributions and interdecadal variations of the snow at the Tibetan Plateau weather stations[J]. Journal of Atmospheric Sciences,2002,26(4):496-508.
韦志刚,黄荣辉,陈文,等. 青藏高原地面站积雪的空间分布和年代际变化特征[J].大气科学, 2002, 26(4):496-508.
74 GAO Rong, WEI Zhigang, DONG Wenjie. Analysis of the cause of the differentia in interannual variation between snow cover and seasonal frozen soil in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2004,26(2):153-159.
高荣,韦志刚,董文杰.青藏高原冬春积雪和季节冻土年际变化差异的成因分析[J].冰川冻土, 2004,26(2):153-159.
75 ZHANG Wei, ZHOU Jian, WANG Genxu. Monitoring and modeling the influence of snow cover and organic soil on the active of permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(3):528-540.
张伟,周剑,王根绪.积雪和有机质土对青藏高原冻土活动层的影响[J].冰川冻土, 2013, 35(3):528-540.
76 GUO D, WANG H. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J]. Journal Geophysical Research: Atmospheres,2013,118(11): 5 216-5 230.
77 ZOU D, ZHAO L, SHENG Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere,2017,11(6): 2 527-2 542.
78 CHENG Guodong, ZHAO Lin, LI Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin,2019,64(27):2 783-2 795.
程国栋,赵林,李韧,等. 青藏高原多年冻土特征、变化及影响[J].科学通报,2019,64(27):2 783-2 795.
79 LI R, ZHAO L, DING Y, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet highway in a permafrost region[J]. Chinese Science Bulletin,2012, 57: 4 609-4 616.
80 WU Q, ZHANG T, LIU Y. Permafrost temperatures and thickness on the Qinghai-Tibet Plateau[J]. Global and Planetary Change,2010,72(1/2):32-38.
81 LI G, LU J, JIN B, et al. The effects of anomalous snow cover of the Tibetan Plateau on the surface heating[J]. Advances in Atmospheric Sciences,2001,18(6):1 207-1 214.
82 MA Zhuguo, WEI Helin, FU Congbin. Relationship between regional soil moisture variation and climatic variability over East China[J]. Acta Meteorologica Sinica, 2000, 58(3): 278-287.
马柱国,魏和林,符淙斌.中国东部区域土壤湿度的变化及其气候变率的关系[J].气象学报, 2000, 58(3): 278-287.
83 WANG Xuejie, YANG Meixue, WAN Guoning. Processes of soil thawing-freezing and features of ground temperature and moisture at D105 on the Northern Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2012,34(1):56-63.
王学佳, 杨梅学,万国宁.藏北高原D105点土壤冻融状况与温湿特征分析[J].冰川冻土, 2012,34(1): 56-63.
84 YANG Meixue, YAO Tandong, HIROSE Nozomu, et al. Diurnal freeze-thaw cycles of surface soils on the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin,2006,51(16):1 974-1 976.
杨梅学,姚檀栋, HIROSE Nozomu,等.青藏高原表层土壤的日冻融循环[J].科学通报,2006,51(16):1 974-1 976.
85 PENG J, LIU Z, LIU Y, et al. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent[J]. Ecological Indicators, 2012,14(1):28-39.
86 ZHONG L, MA Y, SALAMA M, et al. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau[J]. Climatic Change, 2010,103(3/4):519-535.
87 ZHOU D, FAN G, HUANG R. Interannual variability of the normalized difference vegetation index on the Tibetan Plateau and its relationship with climate change[J]. Advances in Atmospheric Sciences,2007,24(3):474-484.
88 WANG Qingxia, Shihua Lü, BAO Yan, et al. Characteristics of vegetation change and its relationship with climate factors in different time-scales on Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2014,33(2): 301-312.
王青霞, 吕世华, 鲍艳,等.青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析[J].高原气象, 2014,33(2): 301-312.
89 ZHUO Ga, CHEN Sirong, ZHOU Bing. Spatio-temporal variation of vegetation coverage over the Tibetan Plateau and its responses to climatic factors[J]. Acta Ecologica Sinica,2018,38(9):3 208-3 218.
卓嘎,陈思蓉,周兵.青藏高原植被覆盖时空变化及其对气候因子的响应[J].生态学报, 2018,38(9):3 208-3 218.
90 ZHOU Ting, ZHANG Yinsheng, GAO Haifeng, et al.Relationship between vegetation index and ground surface temperature on the Tibetan Plateau alpine grassland[J]. Journal of Glaciology and Geocryology,2015,37(1):58-69.
周婷,张寅生,高海峰,等.藏高原高寒草地植被指数变化与地表温度的相互关系[J].冰川冻土, 2015, 37(1):58-69.
91 LIU Zhenyuan, ZHANG Jie, CHEN LI. Effects of vegetation degradation on atmospheric circulation over the Tibetan Plateau and its surrounding areas[J]. Acta Ecologica Sinica,2018,38(1):132-142.
刘振元, 张杰, 陈立.青藏高原植被退化对高原及周边地区大气环流的影响[J].生态学报, 2018,38(1):132-142.
92 CHUNG P, LI T. Interdecadal relationship between the mean state and El Ni?o types[J]. Journal of Climate,2013,26(2):361-379.
93 ZHU Y, WANG H, MA J, et al. Contribution of the phase transition of pacific decadal oscillation to the late 1990s' shift in East China summer rainfall[J]. Journal of Geophysical Research: Atmospheres,2015,120(17):8 817-8 827.
94 ZHU L, HUANG G, FAN G, et al. Elevation-dependent sensible heat flux trend over the Tibetan Plateau and its possible causes[J]. Climate Dynamics, 2019, 52(7/8):3 997-4 009.
95 DENG Wei, ZHAO Wei, LIU Bintao, et al. Water security and the countermeasures in South Asia based on the "Belt and Road" initiative[J]. Advances in Earth Science,2018,33(7):687-701.
邓伟,赵伟,刘斌涛,等.基于“一带一路”的南亚水安全与对策[J].地球科学进展,2018,33(7):687-701.
[1] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[2] 李稚, 李玉朋, 李鸿威, 刘永昌, 王川. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
[3] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[4] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[5] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[6] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[7] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[8] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[9] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[10] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[11] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[12] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[13] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[14] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[15] 汪芋君, 任宏利, 王琳. 第三极地区气温和积雪的季节—年际气候预测研究[J]. 地球科学进展, 2021, 36(2): 198-210.
阅读次数
全文


摘要