地球科学进展 ›› 2021, Vol. 36 ›› Issue (9): 911 -921. doi: 10.11867/j.issn.1001-8166.2021.083

综述与评述 上一篇    下一篇

深度不确定性下的灾害风险稳健决策方法评述
单薪蒙 1, 2, 3( ),温家洪 4,王军 1, 2, 3( ),胡恒智 5   
  1. 1.华东师范大学地理信息科学教育部重点实验室,上海 200241
    2.华东师范大学 地理科学学院,上海 200241
    3.华东师范大学上海城市公共安全研究中心,上海 200241
    4.上海师范大学 环境与地理科学学院,上海 200234
    5.上海商学院 酒店管理学院,上海 200235
  • 收稿日期:2021-03-26 修回日期:2021-08-25 出版日期:2021-09-10
  • 通讯作者: 王军 E-mail:xmshan@stu.ecnu.edu.cn;jwang@geo.ecnu.edu.cn
  • 基金资助:
    国家社会科学基金重大项目“多灾种重大灾害风险评价、综合防范与城市韧性研究”(18ZDA105);上海市科委科技攻关项目“极端气候变化下上海多因子洪涝联合概率分析、危险性评估及应对技术研究”(19DZ1201505)

Review of Robust Decision-Making Methods for Disaster Risk Under Deep Uncertainty

Xinmeng SHAN 1, 2, 3( ),Jiahong WEN 4,Jun WANG 1, 2, 3( ),Hengzhi HU 5   

  1. 1.Key Laboratory of Geographic Information Science of Ministry of Education,East China Normal University,Shanghai 200241,China
    2.School of Geographic Sciences,East China Normal University,Shanghai 200241,China
    3.Research Center for Urban Public Security,East China Normal Unirevsity,Shanghai 200241,China
    4.School of Environmental and Geographic Sciences,Shanghai Normal University,Shanghai 200234,China
    5.Department of Hospitality Management,Shanghai Business School,Shanghai 200235,China
  • Received:2021-03-26 Revised:2021-08-25 Online:2021-09-10 Published:2021-10-15
  • Contact: Jun WANG E-mail:xmshan@stu.ecnu.edu.cn;jwang@geo.ecnu.edu.cn
  • About author:SHAN Xinmeng (1994-), female, Zhumadian City, He'nan Province, Ph. D student. Research areas include disaster risk assessment and risk management. E-mail: xmshan@stu.ecnu.edu.cn
  • Supported by:
    the Major Program of National Social Science Foundation of China "Study on risk assessment, comprehensive prevention and urban resilience of multiple major disasters"(18ZDA105);The Shanghai Science and Technology Support Program "Joint probability analysis, risk assessment and response method of floods in Shanghai under climate change"(19DZ1201505)

由于未来气候变化和城市化相互耦合作用,极端气候事件频发,尤其是沿海超大城市所面临的复合洪水风险持续上升。基于稳健决策方法,评估未来潜在适应措施的表现性能及经济效益,提出适应风险的实施路径,可有效管理极端灾害事件,降低灾害风险,增强城市韧性。首先分析了国际上处理深度不确定性的稳健决策方法理论基础,其次评述了被广泛应用于灾害风险领域的稳健决策、多目标稳健决策、动态适应性规划、适应对策路径、动态适应性对策路径及实物期权分析6种稳健决策方法,并进行系统对比分析。最后,提出未来可综合稳健决策和适应对策路径的优点,也可使用多目标稳健决策解决多目标问题、权衡多目标决策。此外,实物期权分析可量化适应措施的决策投资时机。这些稳健决策方法都为解决深度不确定性、降低灾害风险、制定适应气候变化策略提供了方法和工具。

Due to the coupling of future climate change and urbanization, extreme climate events will occur frequently, and the risk of compound flooding faced by coastal megacities continues to increase. Based on robust decision-making methods, evaluate the performance and economic benefit of potential future adaptation measures, and propose an implementation path for adaptation risks, which can effectively manage extreme disaster events, reduce disaster risks, and enhance urban resilience. This sudy first analyzes the theoretical basis of international robust decision-making methods for dealing with deep uncertainty, and secondly reviews the robust decision-making and multi-objective robust decision-making, dynamic adaptive planning, adaptive strategy pathway, dynamic adaptive policy pathway and real option analysis, and approaches that are widely used in the field of disaster risk. The six robust decision-making methods of dynamic adaptive policy pathways are compared and analyzed. Finally, we propose the advantages of integrating robust decision-making and dynamic adaptive policy pathway in the future, and also using many objective robust decision making to solve multi-objective problems and weigh multi-objective decision-making. In addition, real option analysis can quantify the timing of investment decisions for adaptation measures. These robust decision-making methods all provide methods and tools for solving deep uncertainty, reducing disaster risks, and formulating strategies to adapt to climate change.

中图分类号: 

图1 动态适应实施路径示意 23
Fig. 1 Schematic diagram of dynamic adaptation implementation pathways 23
图2 动态适应性对策路径方法 16
Fig. 2 The dynamic adaptive policy pathways approach 16
图3 基于动态规划的实物期权评估的概念和过程
Fig. 3 The concept and process of real options valuation based on dynamic programming
表1 决策方法对比
Table 1 Comparison of the six methods
项目 稳健决策 多目标稳健决策 动态适应性规划 适应对策路径 动态适应性对策路径 实物期权分析
不确定性度量 以未来气候因子和社会经济的变率区间组合未来情景,从而减少不确定性 通过对一组极不确定的参数进行采样来构建各种备选 适应方案 指定一组目标和条件,设计由短期行动组成的初始计划,并建立一个框架分为5步,来指导未来(可能发生的)行动,并保持其 稳健性 使用临界点分析判断适应方案的有效期限,制定不同的适应路径以减少未来气候情景不确定性的影响 以未来气候变化、海平面上升的情景下,适应策略可能失效,但需找到替代适应 策略 进行不确定性建模,考虑了不同海平面上升情景下灾害风险是如何随时间变化,重点关注气候变化因子与风险之间的关系
模型 需特定水文、气候及社会经济等一系列关系模型 需特定模型 定性分析 需特定模型 定性分析 将金融理论、经济分析、管理科学、决策科学、统计学、选择权理论中的经济计量模型运用于评估实物期权价值
方案评价 基于情景探索和权衡分析提供各适应措施在未来情景下表现情况,不提供严格意义的优劣 排序 18 通过不确定性分析、场景发现和交互式可视化,生成多种适应方案,对其进行性能进行评估,并进行权衡分析,找到最优适应方案 DAP是一种在高度不确定条件下的规划方法。它的核心是承认不确定性,即随着世界的变化和信息的可用性,传统(静态)计划需要调整,并在未来的实施中保持 稳健性 适应路径评分板,包含每个适应路径的实施难度和造价排序 18 该方法基于适应性计划的两种互补方法:“适应性决策”和“适应性路径”。寻求决策时机最大限度的灵活性和稳健性 ①可定量评估延续值和终止值两个指标确定措施的投资时机。 ②也可在计算机模型中使用遗传算法,以确定在一系列气候变化情景中保持预期性能的最佳适应路径
主要优点 ① 理论技术基础扎实;② 技术方法完备;③ 定量考虑各适应措施在未来气候情景下的表现情况,提供定量评估结果及现有方案 漏洞 18 ①理论技术基础扎实;②基于系统框架生成多种适应方案;③考量大量组合情景的稳健性;④能识别存在漏洞的方案 ① 相对容易理解和解释;②它明确指出适应是一个随着时间推移而发生的 动态过程 ① 基于临界点分析法可估算各方案的有效期限;② 可提供可选择的多种适应对策路径;③ 通过实施难度、成本和负面效果指标定量化评估各适应对策组合,且通常提供各最优适应 路径 该方法考虑到了由社会、政治、技术、经济和气候变化引起的对未来的深度不确定性 ①提供了一种量化适应措施灵活性价值的方法,以及评估何时实施适应措施。②期权的价值能够简单地定义为收益减去成本,并且它考虑了每个变量发生的概率风险
主要缺点 理解较为困难, 实施难度大, 计算量大 理解较为困难,需要使用一些算法来实现 建立监测系统可能很复杂,成本高 情景分析中未能充分考虑气候经济社会等不确定性 依赖专家判断和 定性分析 确定期权价值还需要符合许多假设条件。为了简化分析,一些因素被认为是恒定的,如:风暴特征和海岸形态
1 IPCC. Climate change2021: the physical science basis, the working group I contribution to the sixth assessment report [R/OL]. [2020-08-10]. .
URL    
2 MARSOOLI R, LIN N, EMANUEL K, et al. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns[J]. Nature Communications, 2019, 10: 3785.
3 YIN J, GENTINE P, ZHOU S. et al. Large increase in global storm runoff extremes driven by climate and anthropogenic changes[J]. Nature Communications, 2018, 9: 4389.
4 VOUSDOUKAS M I, MENTASCHI L, VOUKOUVALAS E, et al. Climatic and socioeconomic controls of future coastal flood risk in Europe[J]. Nature Climate Change, 2018, 8: 776-780.
5 GARNER A J, MANN M E, EMANUEL K A, et al. Impact of climate change on New York City's coastal flood hazard: increasing flood heights from the preindustrial to 2300 CE[J]. Proceedings of the National Academy of Sciences of the United States of American, 2017, 114(45): 11 861-11 866.
6 LIN N, KOPP R E, HORTON B P, et al. Hurricane sandy's flood frequency increasing from year 1800 to 2100[J]. Proceedings of the National Academy of Sciences, 2016, 113(43): 12071.
7 UNISDR. The human cost of natural disasters:a global perspective[R/UL]. Centre for Research on the Epidemiology of Disaster(CRED), 2015. [2020-08-10]. .
URL    
8 DUPUIS E M, GREENBERG M. The right to the resilient city: progressive politics and the green growth machine in New York City[J]. Journal of Environmental Studies and Sciences, 2019, 9(3): 352-363.
9 LAGMAY A M F, AGATON R P, BAHALA M A C, et al. Devastating storm surges of Typhoon Haiyan[J]. International Journal of Disaster Risk Reduction, 2015, 11: 1-12.
10 LIU Xincheng, LU Yongjin, CUI Dong. Evaluation of flood prevention abilities of seawall and countermeasures in Shanghai[J]. China Flood and Drought Management, 2015, 25(6): 48-52.
刘新成, 卢永金, 崔冬. 上海海塘防汛墙防汛能力评估及对策研究[J]. 中国防汛抗旱, 2015, 25(6): 48-52.
11 HAASNOOT M, AALST M V, ROZENBERG J, et al. Investments under non-stationarity: economic evaluation of adaptation pathways[J]. Climatic Change, 2020, 161: 451-463.
12 BARTHOLOMEW A E, KWAKKEL J H. On considering robustness in the search phase of robust decision making: a comparison of many-objective robust decision making, multi-scenario many-objective robust decision making, and many objective robust optimization[J]. Environmental Modelling & Software, 2020, 127: 104699.
13 BOTZEN W J W, BOUWER L M, SCUSSOLINI P, et al. Integrated disaster risk management and adaptation[M]// MECHLER R, BOUWER L, SCHINKO T, et al. Loss and damage from climate change. Climate Risk Management, Policy and Governance. Springer, 2019: 287-315.
14 AL-AMIN A Q, NAGY G J, MASUD M M, et al. Evaluating the impacts of climate disasters and the integration of adaptive flood risk management[J]. International Journal of Disaster Risk Reduction, 2019, 39: 101241.
15 SCUSSOLINI P, TRAN T T V, KOKS E, et al. Adaptation to sea level rise: a multidisciplinary analysis for Ho Chi Minh City, Vietnam[J]. Water Resources Research, 2017, 53(12): 10 841-10 857.
16 KWAKKEL J H, HAASNOOT M, WALKER W E. Comparing robust decision-making and dynamic adaptive policy pathways for model-based decision support under deep uncertainty[J]. Environmental Modelling Software, 2016, 86: 168-183.
17 WALKER W E, MARCHAU V A W J, SWANSON D. Addressing deep uncertainty using adaptive policies: introduction to section 2[J]. Technological Forecasting and Social Change, 2010, 77(6): 917-923.
18 HU Hengzhi, GU Tingting, TIAN Zhan. Review for robust decision theories in reducing the flood risk under climate change background[J]. Climate Change Research, 2018, 14(1): 77-85.
胡恒智, 顾婷婷, 田展. 气候变化背景下的洪涝风险稳健决策方法评述[J]. 气候变化研究进展, 2018, 14(1): 77-85.
19 HAASNOOT M, BROWN S, SCUSSOLINI P, et al. Generic adaptation pathways for coastal archetypes under uncertain sea-level rise[J]. Environmental Research Communications, 2019, 1:071006
20 KWAKKEL J H. Is real options analysis fit for purpose in supporting climate adaptation planning and decision making[J]. Wiley Interdiplinary Reviews: Climate Change, 2020, 11(3). DOI:10.1002/wcc.638.
doi: 10.1002/wcc.638    
21 KIM M J, NICHOLLS R J, PRESTON J M, et al. An assessment of the optimum timing of coastal flood adaptation given sea-level rise using real options analysis[J]. Journal of Flood Risk Management, 2019, 12: e12494.
22 WOODWARD M, KAPELAN Z, GOULDBY B. Adaptive flood risk management under climate change uncertainty using real options and optimization[J]. Risk Analysis, 2014, 34(1): 75-92.
23 HAASNOOT M, MIDDELKOOP H, OFFERMANS A, et al. Exploring pathways for sustainable water management in river deltas in a changing environment[J]. Climatic Change, 2013, 115: 795-819.
24 RYU Y, KIM Y O, SEO S B. Application of real option analysis for planning under climate change uncertainty: a case study for evaluation of flood mitigation plans in Korea[J]. Mitigation Adaptation Strategies for Global Change, 2018, 23: 803-819.
25 GINBO T, CORATO L D, HOFFMANN R. Investing in climate change adaptation and mitigation: a methodological review of real-options studies[J]. AMBIO: A Journal of the Human Environment, 2021, 50: 229-241.
26 LEMPERT R,KALRA N,PEYRAUD S, et al. Ensuring robust flood risk management in Ho Chi Minh City[M]// Policy research working paper No. WPS6465. Washington DC: The World Bank, 2013.
27 MINVILLE M, BRISSETTE F, LECONTE R. Uncertainty of the impact of climate change on the hydrology of a nordic watershed[J]. Journal of Hydrology, 2008, 358(1): 70-83.
28 MOBLEY W, ATOBA K O, HIGHFIELD W E. Uncertainty in flood mitigation practices: assessing the economic benefits of property acquisition and elevation in flood-prone communities[J]. Sustainability, 2020, 12: 2098.
29 HERMAN J D, ZEFF H B, REED P M, et al. Beyond optimality: multistakeholder robustness tradeoffs for regional water portfolio planning under deep uncertainty[J]. Water Resource Research, 2014, 50(10): 7 692-7 713.
30 KASPRZYK J R, NATARAJ S, REED P M, et al. Many objective robust decision making for complex environmental systems undergoing change[J]. Environmental Modelling Software, 2013, 42: 55-71.
31 REED P M, HADKA D, HERMAN J D, et al. Evolutionary multiobjective optimization in water resources: the past, present, and future[J]. Advances in Water Resources, 2013, 51: 438-456.
32 EKER S, KWAKKEL J H. Including robustness considerations in the search phase of many-objective robust decision making[J]. Environmental Modelling & Software, 2018, 105: 201-216.
33 HERMAN J D, REED P M, ZEFF H B, et al. How should robustness be defined for water systems planning under change[J]. Journal of Water Resources Planning and Management, 2015, 141(10). DOI: 10.1061/(ASCE)WR. 1943-5452. 0000509.
doi: 10.1061/(ASCE)WR. 1943-5452. 0000509    
34 LEI T E VAN DER, ENSERINK B, THISSEN W A H, et al. How to use a systems diagram to analyse and structure complex problems for policy issue papers[J]. Journal of the Operational Research Society, 2011, 62(7): 1 391-1 403.
35 LEMPERT R J, GROVES D G, POPPER S W, et al. A general, analytic method for generating robust strategies and narrative scenarios[J]. Management Science, 2006, 52(4): 514-528.
36 REED A J, MANN M E, EMANUAL K A, et al. Increased threat of tropical cyclones and coastal flooding to New York City during the anthropogenic era[J]. Proceedings of the National Academy of Sciences of the United States of American, 2015, 112: 12 610-12 615.
37 YAN D, LUDWIG F, HUANG H Q. Many objective robust decision making for water allocation under climate change[J]. Science of the Total Environment, 2017, 607/608: 294-303.
38 KWAKKEL J H, JAXA-ROZENo M. Improving scenario discovery for handling heterogeneous uncertainties and multinomial classified outcomes[J]. Environmental Modelling and Software, 2016, 79: 311-321.
39 KWAKKEL J H, WALKER W E, MARCHAU V A W J. Classifying and communicating uncertainties in model-based policy analysis[J]. International Journal of Technology, Policy and Management, 2010, 10: 299-315.
40 SINGH P, ASHURI B, AMEKUDZI-KENNED A. Application of dynamic adaptive planning and risk-adjusted decision trees to capture the value of flexibility in resilience and transportation planning[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2 674(9): 298-310.
41 WISE R M, FAZEY I, STAFFORD SMITH M, et al. Reconceptualizing adaptation to climate change as part of pathways of change and response[J]. Global Environment Change, 2014, 28: 325-336.
42 KWADIJK J C, HAASNOOT M, MULDER J P, et al. Using adaptation tipping points to prepare for climate change and sea level rise: a case study in the Netherlands[J]. Wiley Interdisciplinary Reviews: Climate Change, 2010, 1(5): 729-740.
43 WALKER W E, HAASNOOT M, KWAKKEL J H. Adapt or perish: a review of planning approaches for adaptation under deep uncertainty[J]. Sustainability, 2013, 5(3): 955-979.
44 DE RUIG L T, BARNARD P L, BOTZEN W J W, et al. An economic evaluation of adaptation pathways in coastal mega cities: an illustration for Los Angeles[J]. Science of the Total Environment, 2019, 678: 647-659.
45 DAVID R T, STEPHEN W C, JOHN W C. Strategic adaptation pathway planning to manage sea-level rise and changing coastal flood risk[J]. Environmental Science & Policy, 2018, 87: 92-101.
46 LAWRENCE J, BELL R, BLACKETT P, et al. National guidance for adapting to coastal hazards and sea level rise: anticipating change, when and how to change pathway[J]. Environmental Science Policy, 2018, 82: 100-107.
47 ROSENZWEIG C, SOLECKI W. Hurricane Sandy and adaptation pathways in New York: lessons from a first-responder city[J]. Global Environment Change, 2014, 28: 395-408.
48 AALST M VAN, SCHASFOORT F. Guideline for economic analysis of adaptation investment decisions under uncertainty in the Philippines[R]. Delft, Deltares Report, 2017: 1230750.
49 KUIJKEN W. The delta programme in the Netherlands: the delta works of the future[EB/OL]. .
URL    
50 RANGER N, REEDER T, LOWE J. Addressing 'deep' uncertainty over long-term climate in major infrastructure projects: four innovations of the Thames Estuary 2100 Project[J]. EURO Journal on Decision Process, 2013, 1: 233-262.
51 Delta Programme. Working on the delta. The decisions to keep the Netherlands safe and liveable[Z]. Delta Programme, The Hague, 2015.
52 HAASNOOT M, KWAKKEL J H, WALKER W E, et al. Dynamic adaptive policy pathways: a new method for crafting robust decisions for a deeply uncertain world[J]. Global Environment Change, 2013, 23 (2): 485-498.
53 DE NEUFVILLE R. Real options: dealing with uncertainty in systems planning and design[J]. Integrated Assess, 2003, 4: 26-34.
54 DIXIT A K, PINDYCK R S. Investment under uncertainty[M]. Princeton N J: Princeton University Press, 1994.
55 BELLMAN R. On the theory of dynamic programming. In proceedings of the National Academy of Sciences of the United [J]. PNAS, 1952, 38: 716-719.
56 YANG M, BLYTH W. Modeling investment risks and uncertainties with real options approach[R]. International Energy Agency. Working Paper LTO/2007/WP01, 2007.
57 WREFORD A, DITTRICH R, VAN DER POL T D. The added value of real options analysis for climate change adaptation[J]. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11(3). DOI: 10.1002/wcc. 642.
doi: 10.1002/wcc. 642    
58 HINO M, HALL J W. Real options analysis of adaptation to changing flood risk: structural and nonstructural measures[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2017, 3(3). DOI: 10. 1061/AJRUA60000905.
doi: 10. 1061/AJRUA60000905    
59 LIU H, WANG Y, ZHANG C, et al. Assessing real options in urban surface water flood risk management under climate change[J]. Natural Hazards, 2018, 94: 1-18.
60 MARU Y T, STAFFORD SMITH M. GEC special edition- reframing adaptation pathways[J]. Global Environment Change, 2014, 28: 322-324.
61 HADKA D, HERMAN J D, REED P M, et al. Open MORDM: an open source framework for many objective robust decision making[J]. Environmental Modelling Software, 2015, 74: 114-129.
62 GERSONIUS B, ASHLEY R, JEUKEN A. Accounting for uncertainty and flexibility in flood risk management: comparing real in options optimisation and adaptation tipping points[J]. Journal of Flood Risk Management, 2015, 8: 135-144.
63 GERSONIUS B, ASHLEY R, PATHIRANA A, et al. Climate change uncertainty: building flexibility into water and flood risk infrastructure[J]. Climatic Change, 2013, 116: 411-423.
64 LAWRENCE J, BELL R, STROOMBERGEN A. A hybrid process to address uncertainty and changing climate risk in coastal areas using dynamic adaptive pathways planning, multi-criteria decision analysis & real options analysis: a New Zealand application[J]. Sustainability, 2019, 11(2). DOI: 10. 3390/su11020406.
doi: 10. 3390/su11020406    
65 DAVID R T, STEPHEN W C, JOHN W C. Strategic adaptation pathway planning to manage sea-level rise and changing coastal flood risk[J]. Environmental Science & Policy, 2018, 87: 92-101.
[1] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[2] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[6] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[7] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[8] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[9] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[10] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[11] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[12] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[13] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[14] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
[15] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
阅读次数
全文


摘要