地球科学进展 ›› 2021, Vol. 36 ›› Issue (9): 922 -936. doi: 10.11867/j.issn.1001-8166.2021.086

综述与评述 上一篇    下一篇

含油气盆地碎屑岩储层异常高孔、渗带成因机制研究进展
陈国松 1( ),孟元林 1,郇金来 2,肖丽华 1,冯丹 3   
  1. 1.东北石油大学地球科学学院,黑龙江 大庆 163318
    2.中海石油(中国)有限公司湛江分公司,广东 湛江 524057
    3.中国石油渤海钻探工程技术研究院油田化学技术中心,河北 任丘 062552
  • 收稿日期:2021-06-05 修回日期:2021-08-07 出版日期:2021-09-10
  • 基金资助:
    国家科技重大专项“典型盆地致密油成藏演化与富集区评价”(2016ZX05046-001-006);国家自然科学基金项目“杂积岩的成因、成岩和成储机制研究——以三塘湖盆地为例”(41572135)

Research Progress on the Origin of Anomalously High Porosity and Permeability Zone in Clastics Reservoirs in Petroliferous Basin

Guosong CHEN 1( ),Yuanlin MENG 1,Jinlai HUAN 2,Lihua XIAO 1,Dan FENG 3   

  1. 1.School of Earth Sciences,Northeast Petroleum University,Daqing Heilongjiang 163318,China
    2.Zhanjiang Branch of China National Offshore Oil Corporation (CNOOC),Zhanjiang Guangdong 524057,China
    3.Oilfield Chemical Technology Center,Bohai Drilling Engineering Technology,Renqiu Hebei 062552,China
  • Received:2021-06-05 Revised:2021-08-07 Online:2021-09-10 Published:2021-10-15
  • About author:CHEN Guosong (1993-), male, Dalian City, Liaoning Province, Ph.D student. Research areas include reservoir and petroleum geology. E-mail: dydlcgs@163.com
  • Supported by:
    the National Science and Technology Major Project of China "Evaluation of accumulation evolution and enrichment area of tight oil in typical basins"(2016ZX05046-001-006);The National Natural Science Foundation of China "Genesis, diagenesis and reservoir-forming mechanism of hybrid rocks: a case study of Santanghu Basin"(41572135)

为了研究高品质储层形成机理和优势渗流通道的预测,在系统调研国内外高品质储层形成机理研究成果的基础上,讨论了异常高孔、渗带形成机理研究的现存问题和未来趋势。结果表明:①机械和化学压实作用是孔隙度和渗透率降低的主要成因机制;②形成于成岩作用早期阶段,且具有最佳厚度的绿泥石和微晶石英包膜可在一定程度上抑制胶结作用的进行,伊利石包膜次之;③成岩作用早期阶段的流体超压可通过抑制机械压实作用保护储层孔隙度;④早期油气侵位可通过干扰胶结物的来源(物质供应)、运输及沉淀等过程,对石英和碳酸盐等胶结作用产生抑制性;⑤次生溶蚀作用及其所产生的次生孔隙最大值与流体性质、流量、传输机制及岩石矿物类型、含量等因素密切相关。从石油地质学的角度出发,结合交叉学科特色优势和研究手段是定量研究不同地质因素控储作用差异性和互补性的重要发展趋势,为建立有效识别、模拟及预测不同地质因素在不同地质时期差异控储作用的量化模型提供重要支撑,促进了不同学科优势技术方法的交叉融合。

In order to further study the formation mechanism of high-quality reservoirs and the accurate prediction of dominant seepage channels in exploration and development stages, on the basis of systematic investigation of the research results on the anomalously high porosity and permeability reservoirs at home and abroad. the existing problems and future trends of the formation mechanism of abnormally high porosity and permeability zones are discussed.The results show that: ① mechanical and chemical compaction is the main mechanism of porosity and permeability decrease;② the chlorite and microcrystalline quartz coating with optimum thickness formed at the early stage of diagenesis can inhibit the cementation to some extent, followed by illite coating;③ fluid overpressure in the early stage of diagenesis can protect reservoir porosity by inhibiting mechanical compaction; ④ early hydrocarbon emplacement may inhibit the cementation (quartz, carbonate, etc.) by interfering with the source (material supply), transport and precipitation of cements; ⑤ the maximum value of secondary pores caused by secondary dissolution is closely related to fluid properties, flow rate of fluid, transport mechanism of fluid, rock and mineral types, content and other factors. From the perspective of petroleum geology, it is a very important development trend to quantitatively and thoroughly study the difference and complementarity of the effect of different geological factors on reservoir porosity and permeability by combining the interdisciplinary unique advantages and characteristic research methods in the future. It is very important for geologists to finish the establishment of quantitative model of effective identification, simulation and prediction of “Diversity controlling reservoir action” of different geological factors in different geological periods. It can provide important basic theoretical support for the next step in the future. At the same time, it can well promote the intersection and integration of superior technology and methods of different disciplines in the immediate future.

中图分类号: 

图1 孔隙度随埋深的变化趋势 6 7 11 45 66
(a) 砂岩的压实曲线; (b) 页岩和泥质沉积物的压实曲线; (c) 盐水饱和蒙皂石、高岭石及其混合物的实验压实曲线
Fig. 1 The variation trend of porosity with burial depth 6 7 11 45 66
(a) Compaction curves of sandstones; (b) Compaction curves for shales and argillaceous sediments; (c) Experimentally compacted curves of brine-saturated smectite, kaolinite and their mixtures
图2 有机质成分、类型、含量及其产酸能力等因素的汇总图 20 22 24 144 149 ~ 151
(a) 有机酸浓度与温度关系模型; (b) 国外盆地有机酸浓度与温度关系; (c) 中国东部盆地有机酸浓度随埋深的变化; (d) 中国东北部和西部盆地有机酸浓度随埋深的变化; (e) 有机质成分随埋深的变化; (f) 细粒沉积物中不同类型有机质产气量差异
Fig. 2 Summarizing chart of organic matter composition type content and acid-producing capacity 20 22 24 144 149 ~ 151
(a) Model of relation between organic acid concentration and temperature; (b) Relationship between organic acid concentration and temperature in foreign basins; (c) Variation of organic acid concentration with burial depth in basins of eastern China; (d) Variation of organic acid concentration with burial depth in northeastern and western basins of China; (e) Composition changes of organic matter with burial depth; (f) Differences in gas production of different types of organic matter in fine sediments
1 TAYLOR R T, GILES M R, HATHON L A, et al. Sandstone diagenesis and reservoir quality prediction: models, myths, and reality[J]. American Association of Petroleum Geologists Bulletin, 2010, 94(8): 1 093-1 132.
2 WARREN E A, PULHAM A J. Anomalous porosity and permeability preservation in deeply buried tertiary and mesozoic sandstones in the Cusiana Field, Llanos foothills, Colombia [J]. Journal of Sedimentary Research, 2001, 71(1): 2-14.
3 BLOCH S, LANDER R H, BONNELL L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: origin and predictability [J]. American Association of Petroleum Geologists Bulletin, 2002, 86(2): 301-328.
4 WORDEN R H, ARMITAGE P J, BUTCHER A, et al. Petroleum reservoir quality prediction: overview and contrasting approaches from sandstone and carbonate communities [J]. Geological Society Special Publication, 2018, 435(1): 1-31.
5 FAWAD M, MONDOL N H, JAHREN J, et al. Mechanical compaction and ultrasonic velocity of sands with different texture and mineralogical composition [J]. Geophysical Prospecting, 2011, 59(4): 697-720.
6 MARCUSSEN ?, THYBERG B, JAHREN J, et al. Physical properties of Cenozoic mudstones from the northern North Sea: impact of clay mineralogy on compaction trends [J]. American Association of Petroleum Geologists Bulletin, 2009, 93(1): 127-150.
7 MONDOL N H, BJ?RLYKKE K, JAHREN J, et al. Experimental mechanical compaction of clay aggregates-changes in physical properties of mudstones during burial[J]. Marine and Petroleum Geology, 2007, 24(5): 289-311.
8 MONDOL N H, BJ?RLYKKE K, JAHREN J. Experimental compaction of clays: relationships between permeability and petrophysical properties in mudstones [J]. Petroleum Geoscience, 2008, 14(4): 319-337.
9 PELTONEN C, MARCUSSEN ?, BJ?RLYKKE K, et al. Mineralogical control on mudstone compaction: a study of Late Cretaceous to Early Tertiary mudstones of the V?ring and M?re basins, Norwegian Sea[J]. Petroleum Geoscience, 2008, 14(2): 127-138.
10 ZADEH M K, MONDOL N H, JAHREN J, et al. Experimental mechanical compaction of sands and sand-clay mixtures: a study to investigate evolution of rock properties with full control on mineralogy and rock texture[J]. Geophysical Prospecting, 2016, 64(4): 1-27.
11 BJ?RLYKKE K. Relationships between depositional environments, burial history and rock properties. some principal aspects of diagenetic process in sedimentary basins [J]. Sedimentary Geology, 2014, 301: 1-14.
12 FRENCH M W, WORDEN R H. Orientation of microcrystalline quartz in the Fontainebleau Formation, Paris Basin and why it preserves porosity [J]. Sedimentary Geology, 2013, 284: 149-158.
13 LIN Chengyan, WANG Wenguang, DONG Chunmei, et al. Status Quo of sandstone compaction research and its advancement [J]. Acta Sedimentologica Sinica, 2020, 38(3): 538-552.
林承焰, 王文广, 董春梅, 等. 砂岩压实作用研究现状及进展[J]. 沉积学报, 2020, 38(3):538-552.
14 LI Chao, LUO Xiaorong. Review on mudstone chemical compaction [J]. Journal of Earth Science and Environment, 2017, 39(6): 761-772.
李超, 罗晓容. 泥岩化学压实作用研究进展[J]. 地球科学与环境学报, 2017, 39(6): 761-772.
15 COULTY N R, SARGENT C, ANDRAS P, et al. Compaction of diagenetically alteres mudstones-Part 1: mechanical and chemical constributions[J]. Marine and Petroleum Geology, 2016, 77: 703-713.
16 AJDUKIEWICZ J M, LANDER R H. Sandstone reservoir quality prediction: the state of the art [J]. American Association of Petroleum Geologists Bulletin, 2010, 94(8): 1 083-1 091.
17 CHARLAFTIS D, JONES S J, DOBSON K J, et al. Experimental study of chlorite authigenesis and influence on porosity maintenance sandstones[J]. Journal of Sedimentary Research, 2021, 91(2): 197-212.
18 SCHMIDT V, MCDONALD D A. Role of secondary porosity in sandstone diagenesis [J]. American Association of Petroleum Geologists Bulletin, 1977, 61(8):1 390-1 391.
19 SCHMIDT V, MCDONALD D A. Texture and recognition of secondary porosity in sandstones[M]// SCHOLLE P A, SCHLUGER P R. Aspects of diagenesis. Denver, Colorado, United States: SEPM Society for Sedimentary Geology, 1979.
20 SURDAM R C, BOESE S W, CROSSEY L J. The chemistry of secondary porosity [M]. Clastic Diagenesis, 1984: 127-149.
21 MENG Y L, LIANG H W, MENG F J, et al. Distribution and genesis of the anomalously high porosity zones in the middle-shallow horizons of the northern Songliao Basin[J]. Petroleum Science, 2010, 7(3): 302-310.
22 YUAN Guanghui, CAO Yingchang, JIA Zhenzhen, et al. Research progress on anomalously high porosity zones in deeply buried clastic reservoirs in petroliferous basin [J]. Natural Gas Geoscience, 2015, 26(1):28-42.
远光辉, 操应长, 贾珍臻, 等. 含油气盆地中深层碎屑岩储层异常高孔带研究进展[J]. 天然气地球科学,2015, 26(1): 28-42.
23 YUAN Guanghui, CAO Yingchang, YANG Tian, et al. Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir [J]. Earth Science Frontiers, 2013, 20(5): 207-219.
远光辉, 操应长, 杨田, 等. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力 [J]. 地学前缘, 2013, 20(5): 207-219.
24 MENG Yuanlin, LIU Wenhui, MENG Fanjin, et al. Distribution and origin of anomalously high porosity zones of the Xujiaweizi fault depression in Songliao Basin [J]. Journal of Palaeogeography, 2011, 13(1): 75-84.
孟元林, 刘文慧, 孟凡晋, 等. 松辽盆地徐家围子断陷深层异常高孔带分布特征与成因分析[J]. 古地理学报, 2011, 13(1): 75-84.
25 STORVOLL V, BJ?RLYKKE K, KARLSEN D, et al. Porosity preservation in reservoir sandstones due to grain-coating illite: a study of the Jurassic Garn Formation from the Kristin and Lavrans fields, offshore Mid-Norway [J]. Marine and Petroleum Geology, 2002, 19(6): 767-781.
26 TIAN Jianfeng, CHEN Zhenlin, FAN Yuanfang, et al. The occurrence, growth mechanism and distribution of authigenic chlorite in sandstone [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(2): 200-206.
田建锋, 陈振林, 凡元芳, 等. 砂岩中自生绿泥石的产状、形成机制及其分布规律[J]. 矿物岩石地球化学通报, 2008, 27(2): 200-206.
27 CHEN Baoyun, LI Rongxi, LIANG Jiwei, et al. Authigenic chlorite and its impaction on reservoir physical properties: an example from the Yanchang Formation of the Southwest Ordos Basin[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2014, 33(3): 389-394.
陈宝赟, 李荣西, 梁积伟, 等. 自生绿泥石及其对储集层物性影响研究: 以鄂尔多斯盆地西南缘延长组为例[J]. 矿物岩石地球化学通报, 2014, 33 (3): 389-394.
28 DING Xiaoqi, ZHANG Shaonan, GE Pengli, et al. Relationship between reservoir properties and chlorite rims: a case study from Yanchang Formation of South Ordos Basin, North China [J]. Geological Journal of China Universities, 2010, 16(2): 247-254.
丁晓琪, 张哨楠, 葛鹏莉, 等. 鄂南延长组绿泥石环边与储集性能关系研究 [J]. 高校地质学报, 2010, 16(2) : 247-254.
29 CHEN Guosong, MENG Yuanlin, HUAN Jinlai, et al. Qualitative evalution of impact of authigenic chlorite on reservoir quality: a case study of the Member 3 of Weizhou Formation in Weixinan Sag, Beibu Gulf Basin[J]. Journal of Palaeogeography, 2021, 23(3): 639-650.
陈国松, 孟元林, 郇金来, 等. 自生绿泥石对储集层质量影响的定量评价: 以北部湾盆地涠西南凹陷涠洲组三段为例[J]. 古地理学报, 2021, 23(3): 639-650.
30 WORDEN R H, GRIFFITHS J, WOOLDRIDGE L J, et al. Chlorite in sandstones [J]. Earth-Science Reviews, 2020, 204: 103105.
31 AJDUKIEWICZ J M, LARESE R E. How clay grain coats inhibit quartz cement and preserve porosity in deeply buried sandstones: observations and experiments [J]. American Association of Petroleum Geologists Bulletin, 2012, 96(11): 2 091-2 119.
32 BECKER S P, EICHHUBL S E, LAUBACH R M, et al. A 48 m.y. history of fracture opening, temperature, and fluid pressure: cretaceous Travis Peak Formation, East Texas Basin [J]. Geological Society of America Bulletin, 2010, 122(7/8): 1 081-1 093.
33 NGUYEN B T T, JONES S J, GOULTY N R, et al. The role of fluid pressure and diagenetic cements for porosity preservation in Triassic fluvial reservoirs of the Central Graben, North Sea [J]. American Association of Petroleum Geologists Bulletin, 2013, 97(8): 1 273-1 302.
34 SATHAR S, JONES S. Fluid overpressure as a control on sandstone reservoir quality in a mechanical compaction dominated setting: Magnolia Field, Gulf of Mexico [J]. Terra Nova, 2016, 28(3): 155-162.
35 STRICKER S, JONES S J. Enhanced porosity preservation by pore fluid overpressure and chlorite grain coatings in the Triassic Skagerrak. Central Graben,North Sea, UK [M]// ARMITAGE P J, BUTCHER A R, CHURCHILL J M, et al. Reservoir quality of clastic and carbonate rocks: analysis, modelling and prediction. London: The Geological Society of London, 2018:321-341.
36 BRüCH A, GUY N, MAGHOUS S. Overpressure development in sedimentary basins induced by chemo-mechanical compaction of sandstones[J]. Marine and Petroleum Geology, 2019, 104: 217-230.
37 WORDEN R H, BUKAR M, SHELL P. The effect of oil emplacement on quartz cementation in a deeply buried sandstone reservoir [J]. American Association of Petroleum Geologists Bulletin, 2018, 102(1): 49-75.
38 SATHAR S R H, WORDEN D R, FAULKNER D R, et al. The effect of oil saturation on the mechanism of compaction in granular materials: higher oil saturations lead to more grain fracturing and less pressure solution [J]. Journal of Sedimentary Research, 2012, 82(7/8): 571-584.
39 XIA C Y, WILKINSON M, HASZELDINE S. Petroleum emplacement inhibits quartz cementation and feldspar dissolution in a deeply buried sandstone [J]. Marine and Petroleum Geology, 2020, 118: 104449.
40 WEIBEL R, OLIVARIUSA M, JAKOBSENA F C, et al. Thermogenetic degradation of early zeolite cement: an important process for generating anomalously high porosity and permeability in deeply buried sandstone reservoirs [J]. Marine and Petroleum Geology, 2019, 103: 620-645.
41 BERMABé Y B, MOK U, EVAN B. Permeability-porosity relationships in rocks subjected to various evolution processes [J]. Pure and Applied Geophysics, 2003, 160(5/6): 937-960.
42 JAHREN J, RAMM M. The porosity-preserving effects of microcrystalline quartz coatings in arenitic sandstones: examples from the Norwegian continental shelf [J]. International Association of Sedimentologists Special Publication, 2000, 29: 271-280.
43 CARCIONE J M, GEI D, YU T, et al. Effect of clay and mineralogy on permeability [J]. Pure and Applied Geophysics, 2019, 176(6): 2 581-2 594.
44 RAMM M. Porosity-depth trends in reservoir sandstones: theoretical models related to Jurassic sandstones, offshore Norway [J]. Marine and Petroleum Geology, 1992, 9(5): 553-567.
45 ATHY L F. Density, porosity, and compaction of sedimentary rocks [J]. American Association of Petroleum Geologists Bulletin, 1930, 14 (1): 1-24.
46 PROSHLYAKOV B K. Reservoir properties of rocks as a function of their depth and lithology [J]. Geologija Nefti I Gaza, 1960, 12: 24-29.
47 MEADE R H. Factors influencing the early stages of the compaction of clays and sands—review [J]. Journal of Sedimentary Petrology, 1966, 36 (4): 1 085-1 101.
48 ENGELHARDT W V, GAIDA K H. Concentration changes of pore solutions during the compaction of clay sediments [J]. Journal of Sedimentary Petrology, 1963, 33 (4): 919-930.
49 WELLER J M. Compaction of sediments [J]. American Association of Petroleum Geologists Bulletin, 1959, 43 (2): 273-310.
50 LARSEN G, CHILINGAR G V. Diagenesis in sediments and sedimentary rocks:2. introduction, developments in Sedimentology 25B[M]. New York: Elsevier Scientific Publishing Co., 1983.
51 BALDWIN B, BUTLER C O. Compaction curves [J]. American Association of Petroleum Geologists Bulletin, 1985, 69 (4): 622-626.
52 BALDWIN B. Ways of deciphering compacted sediments [J]. Journal of Sedimentary Petrology, 1971, 41 (1): 293-301.
53 GOULTY N R. Relationships between porosity and effective stress in shales [J]. First Break, 1998, 16 (12): 413-419.
54 HEDBERG H D. Gravitational compaction of clays and shales [J]. American Journal of Science, 1936, 31 (184): 241-287.
55 TERZAGHI K. Principles of soil mechanics: I—phenomena of cohesion of clays. IV—settlement and consolidation of clay [J]. Engineering News—Record, 1925, 95 (19): 742-746, 874-878.
56 DICKINSON G. Geological aspects of abnormal reservoir pressures in the Gulf Coast Louisiana [J]. American Association of Petroleum Geologists Bulletin, 1953, 37 (2): 410-432.
57 VASSOEVICH N B. Experiment in constructing typical gravitational compaction curve of clayey sediments [J]. Novosti Neftyan Tekhnnol, Geology Series, 1960, 4: 11-15.
58 DURMISHYAN A G. Compaction of argillaceous rocks [J]. International Geology Review, 1974, 16 (6): 650-653.
59 MAGARA K. Compaction and migration of fluids in Miocene mudstone, Nagaoka Plain, Japan [J]. American Association of Petroleum Geologists Bulletin, 1968, 52 (12): 2 466-2 501.
60 FOWLER S R, WHITE R S, LOUDEN K E. Sediment dewatering in the Makran accretionary prism [J]. Earth and Planetary Science Letters, 1985, 75 (4): 427-438.
61 VELDE B. Compaction trends of clay-rich deep sea sediments [J]. Marine Geology, 1996, 133 (3/4): 193-201.
62 HAM H H. New charts help estimate formation pressures [J]. Oil and Gas Journal, 1966, 65 (51): 58-63.
63 MINSHULL T A, WHITE R. Sediment compaction and fluid migration in the Makran accretionary prism [J]. Journal of Geophysical Research, B, Solid Earth and Planets, 1989, 94 (6): 7 387-7 402.
64 SCLATER J G, CHRISTIE P A F. Continental stretching: an explanation of the post-Mid-Cretaceous subsidence of the central North Sea basin [J]. Journal of Geophysical Research, 1980, 85 (B7): 3 711-3 739.
65 HANSEN S. A compaction trend for Cretaceous and tertiary shales on the Norwegian shelf based on sonic transit times [J]. Petroleum Geoscience, 1996, 2 (2): 159-166.
66 AOYAGI K, KAZAMA T, SEKIGUCHI K, et al. Experimental compaction of Na-montmorillonite clay mixed with crude oil and seawater, water-rock interaction [J]. Chemical Geology, 1985, 49 (1/3): 385-392.
67 WORDEN R H, MORAD S. Quartz cementation in oil field sandstones: a review of the key controversies [J]. International Association of Sedimentologists Special Publication, 2000, 29: 1-20.
68 CHUHAN F A, KJELDSTAD A, BJ?RLYKKE K, et al. Porosity loss in sand by grain crushing experimental evidence and relevance to reservoir quality [J]. Marine and Petroleum Geology, 2002, 19(1): 39-53.
69 CHUHAN F A, KJELDSTAD A, BJ?RLYKKE K, et al. Experimental compression of loose sands: relevance to porosity reduction during burial in sedimentary basins [J]. Canadian Geotechnical Journal, 2003, 40(5): 995-1 011.
70 SWARBRICK R E, OSBORNE M J. Mechanisms that generate abnormal pressures: an overview [J]. American Association of Petroleum Geologists Memoir, 1998, 70: 13-34.
71 JIANG Zaixing, LIANG Chao, WU Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6):1 032-1 039.
姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(6):1 032-1 039.
72 WILSON M D, PITMAN E D. Authigenic clays in sandstones: recognition and influence on reservoir properties and paleoenvironmental analysis [J]. Journal of Sedimentary Research, 1977, 7(1): 3-31.
73 BILLAULT V, BEAUFORT D, BARONNET A, et al. A nanopetrographic and textural study of grain-coating chlorites in sandstone reservoirs [J]. Clay Minerals, 2003, 38(3): 315-328.
74 DOWEY P J, WORDEN R H, UTLEY J, et al. Sedimentary controls on modern sand grain coat formation [J]. Sedimentary Geology, 2017, 353: 46-63.
75 WORDEN R H, MORAD S. Clay minerals in sandstones: controls on formation, distribution and evolution [J]. Special Publication of the International Association of Sedimentologists, 2003, 34: 3-4.
76 ANJOS S, DE ROS L, SILVA C. Chlorite authigenesis and porosity preservation in the Upper Cretaceous marine sandstones of the Santos Basin, Offshore Eastern Brazil [J]. Special Publication of the International Association of Sedimentologists, 2003, 34: 291-316.
77 HEALD M T, LARESE R E. Influence of coatings on quartz cementation [J]. Journal of Sedimentary Petrology, 1974, 44: 1 269-1 274.
78 PITTMAN E D, LARESE R E, HEALD M T. Clay coats: occurrence and relevance to preservation of porosity in sandstones [J]. Special Publications, 1992, 47: 241-255.
79 EHRENBERG S N, BOASSEN T. Factors controlling permeability variation in sandstones of the Garn Formation in Trestakk Field, Norwegian continental shelf[J]. Journal of Sedimentary Research, 1993, 63(5): 929-944.
80 WORDEN R H, MAYAL M, EVANS I J. The effect of ductile-lithic sand grains and quartz cement on porosity and permeability in Oligocene and lower Miocene clastics, South China Sea: prediction of reservoir quality [J]. American Association of Petroleum Geologists Bulletin, 2000, 84(3): 345-359.
81 HILLIER S. Pore-lining chlorites in siliciclastic reservoir sandstones: electron microprobe, SEM and XRD data, and implications for their origin [J]. Clay Minerals, 1994, 29(4): 665-679.
82 AAGAARD P, JAHREN J S, HARSTAD A O, et al. Formation of grain-coating chlorite in sandstones. Laboratory synthesized vs. natural occurrences [J]. Clay Minerals, 2000, 35(1): 261-269.
83 JAHREN J, AAGAARD P. Compositional variations in diagenetic chlorites and illites, and relationships with formation-water chemistry [J]. Clay Minerals, 1989, 24(2): 157-170.
84 IIJIMA A, MATSUMOTO R. Berthierine and chamosite in coal measures of Japan [J]. Clay and Clay Minerals, 1982, 30(4): 264-274.
85 HAILE B G, HELLEVANG H, AAGAARD P, et al. Experimental nucleation and growth of smectite and chlorite coatings on clean feldspar and quartz grain surfaces [J]. Marine and Petroleum Geology, 2015, 68(Part A): 664-674.
86 SUN Z X, SUN Z L, YAO J, et al. Porosity preservation due to authigenic chlorite coatings in deeply buried Triassic Xujiahe Sandstones, Sichuan Basin, Western China [J]. Journal of Petroleum Geology, 2014, 37(3):251-267.
87 BEARD D C, WEYL P K. In?uence of texture on porosity and permeability of unconsolidated sand [J]. American Association of Petroleum Geologists Bulletin, 1973, 57(2): 349-369.
88 BRYANT S, CADE C, MELLOR D. Permeability prediction from geologic models [J]. American Association of Petroleum Geologists Bulletin, 1993, 77(8): 1 338-1 350.
89 ARMITAGE P J, FAULKNER D R, WORDEN R H. Caprock corrosion [J]. Nature Geoscience, 2013, 6(2):79-80.
90 ARMITAGE P J, FAULKNER D R, WORDEN R H, et al. Experimental measurement of, and controls on, permeability and permeability anisotropy of caprocks from the CO2 storage project at the Krechba Field, Algeria [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B12): 1-18.
91 ARMITAGE P J, WORDEN R H, FAULKNER D R, et al. Diagenetic and sedimentary controls on porosity in Lower Carboniferous fne-grained lithologies, Krechba feld, Algeria: a petrological study of a caprock to a carbon capture site [J]. Marine and Petroleum Geology, 2010, 27 (7): 1 395-1 410.
92 GALLOWAY W E. Diagenetic control of reservoir quality in arc-derived sandstones: implications for petroleum exploration [J]. Special Publications, 1979, 26: 251-262.
93 SEEMAN U, SCHERER M. Volcaniclastics as potential hydrocarbon reservoirs [J]. Clay Minerals, 1984, 19(4): 457-470.
94 MATHISEN M E, MCPHERSON J G. Volcaniclastic deposits: implications for hydrocarbon exploration [J]. Special Publications, 1991, 45: 27-36.
95 RABBANI A, JAMSHIDI S. Specifc surface and porosity relationship for sandstones for prediction of permeability [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71:25-32.
96 DUTTON S P, HUTTON M E, AMBROSE W A, et al. Preservation of reservoir quality by chlorite coats in deep Tuscaloosa sandstones, central Louisiana, U.S.A[J]. Gulf Coast Association of Geological Societies, 2018, 7: 46-58.
97 LANDER R L, WALDERHAUG O. Predicting porosity through simulating sandstone compaction and quartz cementation [J]. American Association of Petroleum Geologists Bulletin, 1999, 83: 433-449.
98 LI Yun, HU Zuowei. Formation of the microcrystalline quartz coatings and its protection of the primary intergranular porosity in the deeply buried sandstone reservoirs [J]. Geological Science and Technology Information, 2014, 33(3): 87-92.
李云, 胡作维. 深层砂岩储层中微晶石英包膜的形成及其对原生粒间孔隙的保存意义[J]. 地质科技情报, 2014, 33(3): 87-92.
99 VAGLE G B, HURST A, DYPVIK H. Origin of quartz cements in some sandstones from the Jurassic of the Inner Moray Firth (UK)[J]. Sedimentology, 1994, 41(2): 363-377.
100 HURST A. The clay mineralogy of Jurassic shales from Brora, NE Scotland [J]. Scottish Journal of Geology, 1985, 21(2): 143-160.
101 MARTENS A K. Organic geochemical and sedimentological investigations of Jurassic shales from Brora, northeast Scotland [D]. Norway: University of Oslo, 1988.
102 WORDEN R H, FRENCH M W, MARIANI E. Amorphous silica nanofilms result in growth of misoriented microcrystalline quartz cement maintaining porosity in deeply buried sandstones [J]. Geology, 2012, 40 (2): 178-182.
103 SUNAGAWA I. Characteristics of crystal growth in nature as seen from the morphology of mineral crystals [J]. Bulletin de Mineralogie, 1981, 104(2/3): 81-87.
104 OHARA M, READ R C. Modelling crystal growth rates from solution [M]. Upper Saddle River, Prentice Hall, 1973.
105 MCBRIDE E F. Quartz cement in sandstones—a review [J]. Earth Science Reviews, 1989, 26(1/3C): 69-112.
106 WILLIAMS L A, CRERAR D A. Silica diagenesis.2. general mechanisms [J]. Journal of Sedimentary Petrology, 1985, 55(3): 312-321.
107 THYBERG B I, JAHREN J. Quartz cementation in mudstones: sheet-like quartz cement from clay mineral reactions during burial [J]. Petroleum Geoscience, 2011, 17(1): 53-63.
108 PELTONEN C, MARCUSSEN ?, BJ?RLYKKE K, et al. Clay mineral diagenesis and quartz cementation in mudstones: the effects of smectite to illite reaction on rock properties [J]. Marine and Petroleum Geology, 2009,26(6): 887-898.
109 LIU Li, WANG Lijuan, YANG Yongzhi, et al. Mineral composition and origin of authigenic quartz crystals in black mudstone, in well HX, Qingshankou Formation, Upper Cretaceous, Songliao Basin[J]. Journal of Jilin University, 2012, 42(5):1 358-1 365.
刘立, 王力娟, 杨永智, 等. 松辽盆地南部HX井上白垩统青山口组黑色泥岩的矿物组成与自生微晶石英成因[J]. 吉林大学学报, 2012, 42(5):1 358-1 365.
110 HEALD M T. Cementation of Triassic arkoses in Connecticut and Massachusetts [J]. Geological Society of America Bulletin, 1956, 67(9): 1 133-1 154.
111 THIRY M. Pedogenic and groundwater silcretes at Stuart Creek Opal field, South Australia [J]. Journal of Sedimentary Research, 1991, 61(1): 111-127.
112 MILNES A R, THIRY M. Silcretes [J]. Developments in Earth Surface Processes, 1992, 2: 349-377.
113 OELKERS E H, BJORKUM P A, MURPHY W M. A petrographic and computational investigation of quartz cementation and porosity reduction in North Sea sandstones [J]. American Journal of Science, 1996, 296(4): 420-452.
114 ZHANG Shunli, Zhengxiang Lü, XIONG Chenhao, et al. Characteristics and formation mechanism of Jurassic Microcrystalline Quartz Coating in Qikou Sag [J]. Xinjiang Petroleum Geology, 2018, 39(5): 537-541.
章顺利, 吕正祥, 熊晨皓,等. 岐口凹陷侏罗系微晶石英包壳特征及形成机制[J]. 新疆石油地质, 2018, 39(5):537-541.
115 STOKKENDAL J, FRIIS H, SVENDSEN J B, et al. Predictive permeability variations in a Hermod sand reservoir, Stine Segments, Siri Field, Danish North Sea[J]. Marine and Petroleum Geology, 2009, 26(3): 397-415.
116 BUATIERM D, PEACOR D R, O'NEIL J R. Smectite-illite transition in Barbados accretionary wedge sediments: TEM and AEM evidence for dissolution/crystallization at low temperature [J]. Clays and Clay Minerals, 1992, 40(1): 65-80.
117 SCHOONMAKER J, MACKENZIE F T, SPEED R C. Tectonic implications of illite/smectite diagenesis. Barbados accretionary prism [J]. Clays and Clay Minerals, 1986, 34(4): 465-472.
118 BJ?RLYKKE K, AAGAARD P, EGEBERG P K, et al. Geochemical constraints from formation water analyses from the North Sea and the Gulf Coast basins on quartz, feldspar and illite precipitation in reservoir rocks [J]. Geological Society (London) Special Publication, 1995, 86(1): 33-50.
119 MORAD S, ISMAIL H N BEN, DE ROS L F, et al. Diagenesis and formation-water chemistry of Triassic reservoir sandstones from southern Tunisia[J]. Sedimentology, 1994, 41(6): 1 253-1 272.
120 DE ROS L F, MORAD S, BROMAN C, et al. Influence of uplift and magmatism on distribution of quartz and illite cementation: evidence from Siluro-Devonian sandstones of the Paraná Basin, Brazil [M]// WORDEN R H,MORAD S. Quartz cementation in sandstones. Wiley, 2009:231-252.
121 THOMSON A. Pressure solution and porosity [J]. Special Publications, 1959, 7: 92-110.
122 WEYL P K. Pressure solution and the force of crystallization—a phenomenological theory [J]. Journal of Geophysical Research, 1959, 64(11): 2 001-2 025.
123 BJ?RKUM P A. How important is pressure in causing dissolution of quartz in sandstones [J]. Journal of Sedimentary Research, 1996, 66(1): 147-154.
124 OSBORNE M J, SWARBRICK R E. Diagenesis in North Sea HPHT clastic reservoirs-consequences for porosity and overpressure prediction [J]. Marine and Petroleum Geology, 1999, 16(4): 337-353.
125 PAXTON S, SZABO J, AJDUKIEWICZ J, et al. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigidgrain sandstone reservoirs[J]. American Association of Petroleum Geologists Bulletin, 2002, 86(12): 2 047-2 067.
126 MAAST T E. Overpressure preventing quartz cementation?comment to Strickeret al. (2016) (Note) [J]. Marine and Petroleum Geology, 2017, 79: 335-336.
127 SHELDON H A, WHEELER J, WORDEN R H, et al. An analysis of the roles of stress, temperature, and pH in chemical compaction of sandstones:reply [J]. Journal of Sedimentary Research, 2004, 73(3): 449-450.
128 WALDERHAUG O, OELKERS E H, BJ?RKUM P A. An analysis of the roles of stress, temperature, and pH in chemical compaction of sandstones-discussion [J]. Journal of Sedimentary Research, 2004, 73(3): 447-449.
129 WALDERHAUG O. Kinetic modelling of quartz cementation and porosity loss in deeply buried sandstone reservoirs [J]. American Association of Petroleum Geologists Bulletin, 1996, 80 (5): 731-745.
130 RENARD F, BROSSE E, SOMMER F. The different processes involved in the mechanism of pressure solution in quartz-rich rocks and their interactions [J]. Special Publication International Association of Sedimentologists, 2009, 29:67-78.
131 RUTTER E H, ELLIOTT D. The kinetics of rock deformation by pressure solution [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1976, 283: 203-219. DOI:10.1098/rsta.1976.0079.
doi: 10.1098/rsta.1976.0079    
132 ENGELDER T. A natural example of the simultaneous operation of free face dissolution and pressure solution [J]. Geochimica and Cosmochimica Acta, 1982, 46(1): 69-74.
133 TADA R, MALIVA R, SIEVER R. A new mechanism for pressure solution in porous quartzose sandstone [J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2 295-2 301.
134 MARCHAND A M E, SMALLEY P C, HASZELDINE R S, et al. Note on the importance of hydrocarbon fill for reservoir quality prediction in sandstones [J]. American Association of Petroleum Geologists Bulletin, 2002, 86(9): 1 561-1 571.
135 WORDEN R H, OXTOBY N H, SMALLEY P C. Can oil emplacement prevent quartz cementation in sandstones? [J]. Petroleum Geoscience, 1998, 4(2): 129-137.
136 WORDEN R, BARCLAY S. The effect of oil emplacement on diagenetic clay mineralogy: the upper jurassic magnus sandstone member, North Sea [J]. Special Publication of the International Association of Sedimentologists, 2003, 34:453-469.
137 WANG Y Z, XIE Q W, CAO Y C, et al. In?uence of multistage oil emplacement on carbonate cementation in the Eocene Shahejie Formation, Dongying Sag, Bohai Bay Basin, China [J]. Marine and Petroleum Geology, 2020, 112: 104063.
138 KOLCHUGIN A N, IMMENHAUSER A, WALTER B F, et al. Diagenesis of the palaeo-oil-water transition zone in a Lower Pennsylvanian carbonate reservoir: constraints from cathodoluminescence microscopy, microthermometry, and isotope geochemistry[J]. Marine and Petroleum Geology, 2016, 72: 45-61.
139 BJ?RKUM P A, OELKERS E H, NADEAU P H, et al. Porosity prediction in quartzose sandstones as a function of time, temperature, depth, stylolite frequency, and hydrocarbon saturation[J]. American Association of Petroleum Geologists Bulletin, 1998, 82(4): 637-648.
140 GILES M R. Mass transfer and the problems of secondary porosity creation in deeply buried hydrocarbon reservoirs [J]. Marine and Petroleum Geology, 1987, 4(3): 188-204.
141 GILES M R, DE BOER R B. Origin and significance of redistributional secondary porosity [J]. Marine and Petroleum Geology, 1990, 7(4): 377-397.
142 TAYLOR T R, LAND L S. Association of allochthonous waters and reservoir enhancement in deeply buried Miocene sandstones: Picaroon Field, Corsair Trend, Offshore Texas [J]. Special Publication, 1996, 55: 37-48.
143 ZHONG Dakang, ZHU Xiaomin, ZHANG Zhihuan, et al. Origin of secondary porosity of Paleogene sandstone in the Dongying Sag [J]. Petroleum Exploration and Development, 2003, 30(6): 51-53.
钟大康, 朱筱敏, 张枝焕, 等. 东营凹陷古近系砂岩次生孔隙成因与纵向分布规律[J]. 石油勘探与开发, 2003, 30(6): 51-53.
144 XIAO Lihua, MENG Yuanlin, NIU Jiayu, et al. Diagenetic History and diagenetic stages prediction of shahejie formation in the Qikou Sag [J]. Chinese Journal of Geology, 2005, 40(3): 346-362.
肖丽华, 孟元林, 牛嘉玉, 等. 歧口凹陷沙河街组成岩史分析和成岩阶段预测[J]. 地质科学, 2005, 40(3): 346-362.
145 YANG Xianghua, SUN Yongchuan, LI Huisheng, et al. The impact on reservoir quality due to mass balance of feldspar dissolution [J]. Petroleum Exploration and Development, 1998, 25(3): 35-37.
杨香华, 孙永传, 李慧生, 等. 长石溶解质量平衡对储集层质量的影响[J]. 石油勘探与开发, 1998, 25(3): 35-37.
146 HIGGS K E, ZWINGMANN H, REYES A G, et al. Diagenesis, porosity evolution, and petroleum emplacement in tight gas reservoirs, Taranaki Basin, New Zealand[J]. Journal of Sedimentary Research, 2007, 77(12): 1 003-1 025.
147 OLIVARIUS M, WEIBEL R, HJULER M L, et al. Diagenetic effects on porosity-permeability relationships in red beds of the Lower Triassic Bunter Sandstone Formation in the North German Basin[J]. Sedimentary Geology, 2015, 321: 139-153.
148 WEIBEL R, OLIVARIUS M, KRISTENSEN L, et al. Predicting permeability of low enthalpy geothermal reservoirs: a case study from the Upper Triassic-Lower Jurassic Gassum Formation, Norwegian-Danish Basin[J]. Geothermics, 2017, 65(1): 135-157.
149 MENG Yuanlin, GAO Jianjun, LIU Delai, et al. Diagenetic facies analysis and anomalously high porosity zone predication of the Yuanyanggou area in the Liaohe Depression [J]. Journal of Jilin University, 2006, 36(2): 227-233.
孟元林, 高建军, 刘德来, 等. 辽河坳陷鸳鸯沟地区成岩相分析与异常高孔带预测[J]. 吉林大学学报, 2006, 36(2): 227-233.
150 GU Tuan. Characteristics of abnormally high porosity zone and favorable reservoir facies prediction in deep cenozoic horizon of Qingshui Sag [J]. Natural Gas Geoscience, 2008, 19(3): 327-333.
谷团. 辽河盆地西部凹陷清水洼陷新生界深层异常高孔带特征与有利储集相预测研究[J]. 天然气地球科学, 2008, 19(3): 327-333.
151 CAI Chunfang, MEI Bowen, MA Ting, et al. The source, distribution of organic acids in oilfield waters and their effects on mineral diagenesis in Tarim Basin[J]. Acta Sedimentologica Sinca, 1997,15(3): 103-109.
蔡春芳, 梅博文, 马亭, 等. 塔里木盆地有机酸来源、分布及对成岩作用的影响[J]. 沉积学报, 1997,15(3): 103-109.
[1] 刘亮明. 断层带中超压流体及其在地震和成矿中的作用[J]. 地球科学进展, 2001, 16(2): 238-243.
阅读次数
全文


摘要