[1] Hobbs B E. Deformation of rocks and fluids in the Crust[J].Geological Science and Technology Information. 1987,6(1):38~44.[Hobbs B E.地壳中的流体与岩石变形[J].地质科技情报, 1987, 6(1): 38~44.] [2] Etheridge M A, Wall V J, Cox S F. High fluid pressures during regional metamorphism and deformation: implication for mass transport and deformation mechanism[J]. J Geophys Res, 1984, 89(B6): 4 344~4 357. [3] Harrison W J, Summa L L. Palehydrogeology of Gulf of Mexico basin[J]. American Journal of Science. 1991, 291:19~176. [4] Main D M, Mackenzie A A. Prediction of pore fluid pressures in sedimentary basin [J]. Marine and Petroleum Geology,1990, 7:55~68. [5] Moore J C, Vrolijk P. Fluids in accretionary prisms[J]. Reviews of Geophysics, 1992, 30: 113~136. [6] Bolton A J, Clennel M B, Maltman A J. Nonlinear stress dependence of permeability: A mechanism for episodic fluid flow in accretionary wedges[J]. Geology, 1999, 27: 239~248. [7] Sibson R H. Fluid flow accompanying faulting: Field evidence and models[A]. In: Simpson D W, Richard P G, eds. Earthquake Prediction—An International Review[C]. Maurice Ewing: American Geophysical Union, 1981. 593~603. [8] Hippler S J. Deformation microstructures and diagenesis in sandstone adjacent to an extensional fault: Implication for the flow and entrapment of hydrocarbons[J]. American Association of Petroleum Geologists Bulletin, 1993, 77:625~637. [9] Rice J R. Fault stress states, pore pressure distributions and the weakness of the San Andereas fault[A]. In: Evans B,Wang T-F, eds. Earthquake Mechanics and Transport Properties of Rocks[C]. London: Academic Press, 1992. 475~503. [10] Scholz C H, Anders M H. The permeability of faults in the mechanical involvement of fluids in faulting: Open-File Report 94-228[M]. Denver: U S Geological Survey, 1994. 247~253. [11] Caine J S, Evans J P, Foster C B. Fault zone architecture and permeability structure[J]. Geology, 1996,24: 1 025~1 028. [12] Parry W T, Bruhn R L. Pore fluid and seismogenic characteristics of fault rock at depth on the Wasatch fault, Utah[J]. J Geophys Res, 1986,91: 730~744. [13] Parry W T, Bruhn R L. Fluid pressure transients on seismogenic normal faults[J]. Tectonophysics, 1990, 179:335~344. [14] Hubbert M K, Rubey W W. Role of fluid pressure in mechanics of overthrust faulting[J]. Geol Soc Am Bull, 1959,70:115~205. [15] Cox S F. Faulting processes at high fluid pressures: An example of fault valve behavior from the Wattle Gully Fault,Victoria, Australia[J]. J Geophys Res, 1995,100:1 284~12 860. [16] Fenoglio M A, Johnston M J S, Byerlee J D. Magnetic and electric associated changes in high pore pressure in fault zones: Application to the Loma Ptieta ULF emissions[J]. J Geophys Res, 1995,100:12 951~12 958. [17] Magee M E, Zoback M D. Evidence for a weak interplate thrust faulting and fluid expulsion[J]. Geology, 1993, 21:809~812. [18] Sibson R H. Rupture nucleation on unfavorably oriented faults[J]. Bull Seis Soc Am, 1990, 81:2 493~2 497. [19] Byerlee J. Model for episodic flow of high-pressure water in fault zones before earthquakes[J]. Geology, 1993, 21:303~306. [20] Phillips R. Hydraulic fracturing and mineralization[J]. J Geol Soc London, 1972, 123:337~359. [21] Cox S F, Etheridge M A, Wall J V. The role of fluids in syntectonic mass transport and localization of metamorphic vein-type ore deposits[J]. Ore Geol Rev, 1986, 2:65~86. [22] Hickman S, Sibson R H, Bruhn R. Introduction to special section: mechanical involvement of fluid in faulting[J]. J Geophys Res, 1995, 100: 12 831~12 840. [23] Sibson R H. Implication of fault-valve behavior for rupture nucleation and recurrence[J]. Tectonophysics,1992, 211:283~293. [24] Robert F. Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting[J]. J Geophys Res, 1995, 100:12 861~12 879. [25] Wilkinson J J, Johnston J D. Pressure fluctuations,phase separation and gold precipitation during seismic fracture propagation[J]. Geology, 1996, 24: 395~398. [26] Moore J C, Moore G F, Cochrane G R, Tobin H J. Negative-polarity seismic reflections along faults of the Oregon accretionary prism: Indication of overpressuring[J]. J Geophys Res, 1995,100:12 895~12 906. [27] Eberhart-Phillips D, Stanley W D, Rodriguez B D,et al.Surface seismic and electrical methods to detect fluids related to faulting[J]. J Geophys Res, 1995, 100:12 919~12 936. [28] Tobin H T, Moore J C, Moore J F. Fluid pressure in the frontal thrust of Oregon accretionary prism: Experimental constraints[J]. Geology, 1994, 22: 979~982. [29] Davis D, Suppe J, Dahlen F A. Mechanics of fold-and-thrust belts and accretionary wedges[J]. J Geophys Res, 1983,88:1 151~1 172. [30] Hickman S. Stress in the lithosphere and the strength of active faults[J]. Rev Geophys, 1991, 29:759~775. [31] Morrow C, Randey B, Byerlee J. Frictional strength and the effective pressure law of montrnorillonite and illite clays[A].In: Evans B, Wang T-F, eds. Fault Mechanics and Transport Properties of Rocks[C]. San Diego: Academic Press,1992. 69~88. [32] Sleep N H, Blarpied M L. Creep, compaction and weak rheology of major faults[J]. Nature, 1992, 359:687~692. [33] Gudmundsson A. Emplacement of dikes, sills and crustal magma chamber at divergent plate boundaries[J]. Tectonophysics, 1990, 176: 257~275. [34] Gudmundsson A. Fluid overpressure and stress drop inn fault zones[J]. Geophys Res Letters, 1999, 26:115~118. [35] Gold T. Terrestrial sources of carbon and earthquake outgassing[J]. J Petroleum Geol, 1979, 1(3): 3~19. [36] Gold T, Soter S. Fluid ascent through the solid lithosphere and its relation to earthquake[J]. Pure and Applied Geophysics, 1984/85,122:492~530. [37] Talwani P, Acree S. Pore pressure diffusion and the mechanism of reservoir induced seismicity[J]. Pure and Applied Geophysics, 1985,122:947~965. [38] Nicholso C, Wesson R L. Earthquake hazard associated with deep well injection-A report to the US Environmental Protection Agency[J]. US Geol Surv Bull, 1990, 1951:1~74. [39] Boulier A M, Robert F. Paleseimic events recorded in Archean gold-quartz vein networks, Val d' Or Abitibi, Quebec[J]. Journal of Structural Geology, 1992, 14:161~179. [40] Sibson R H, Robert F, Poulsen K H. High-angle reverse faults, fluid pressure cycling and mesothermal gold deposits[J]. Geology, 1988, 16:551~555. [41] Jébrak M. Hydrothermal breccia in vein-type ore deposits: A review of mechanism, morphology and size distribution[J].Ore Geology Review, 1997, 12:111~134. [42] Hobbs B E. Principles involved in mobilization and remobilization[J]. Ore Geology Review, 1987, 2:37~45. [43] Liu Liangming, Wu Yanzhi. Mechanical-chemical interactions during mobilized mineralization of disperse elements in metamorphic rocks[J]. Geological Science and Technology Information. 1994, 13(4):59~64.[刘亮明,吴延之.变质岩中分散元素的活化转移成矿过程中的力学—化学相互作用[J].地质科技情报, 1994, 13(4):59~64.] [44] Ridey J. The relations between mean rock stress and fluid flow in the crust: With reference to vein-and lode-style gold deposits[J]. Ore Geology Review, 1993, 8: 23~37. |