地球科学进展 ›› 2001, Vol. 16 ›› Issue (2): 238 -243. doi: 10.11867/j.issn.1001-8166.2001.02.0238

综述与评述 上一篇    下一篇

断层带中超压流体及其在地震和成矿中的作用
刘亮明   
  1. 中南大学地质系,湖南 长沙  410083
  • 收稿日期:2000-05-19 修回日期:2000-09-18 出版日期:2001-04-01
  • 通讯作者: 刘亮明(1964-),男,湖南新邵人,副教授,主要事矿床学和构造地质学方面的教学与科研工作. E-mail:limliu@263.net
  • 基金资助:

    教育部博士学科点基金项目“逆冲构造中力学—化学耦合作用与硫化物改造成矿”(编号:98053302)资助.

OVERPRESSURED FLUIDS IN FAULT ZONES AND THEIR ROLES IN EARTHQUAKE AND HYDROTHERMAL METALLOGENY

LIU Liang-ming   

  1. Department of Geology,Central South University,Changsha410083,China
  • Received:2000-05-19 Revised:2000-09-18 Online:2001-04-01 Published:2001-04-01

地震断层带中局部存在对其力学和化学过程有着重要影响的超压流体,对这种超压流体的证据、超压机制及其在地震活动和成矿中的作用等进行了探讨。流体超压是在断层带中渗透性构造发生强烈时空变化的前提下产生的,其主要原因是构造加压及深源高压流体的注入。当流体压力升至一临界值时,断层发生灾难性破裂,即地震,增加断层的渗透性,超压流体快速向低压带(室或域)流动,同时因减压流体所携载水溶物种(包括成矿物质)大量沉淀析出,降低断层带的渗透性。地震泵吸和流体超压机制的交替作用使得这一过程得以周期性地进行。

The influences of overpressured fluids on mechanical and chemical processes in faults are very important. Based on the summary of the former research accomplishments, discussion is given in this paper on evidences and mechanism for overpressure of fluids in faults and their relation to earthquake and hydrothermal metallogeny. The following conclusions are induced from the present related information and theory knowledge. The overpressured fluids located in faults are formed by tectonic compaction of country rock sourced fluids and injection of high pressured fluids from depth, under the precondition that the permeability structures are varied greatly in time and space. When the fluid pressures rise to a threshold, the catastrophic ruptures are broken out, that is earthquake, creating high permeability in the fault zone. Simultaneously, the overpressured fluids quickly flow to low pressured places, and a lot of aqueous soluble species, including metallogenic materials, are precipitated from the flowing fluids, resulting from dramatically dropping of fluid pressures and resulting in decreasing of permeability of the fault zone. These processes can be circulated by alternatively running of the seismic pumping and the fluid overpressure mechanism.

中图分类号: 

[1]  Hobbs B E. Deformation of rocks and fluids in the Crust[J].Geological Science and Technology Information. 1987,6(1):38~44.[Hobbs B E.地壳中的流体与岩石变形[J].地质科技情报, 1987, 6(1): 38~44.]
[2]  Etheridge M A, Wall V J, Cox S F. High fluid pressures during regional metamorphism and deformation: implication for mass transport and deformation mechanism[J]. J Geophys Res, 1984, 89(B6): 4 344~4 357.
[3]  Harrison W J, Summa L L. Palehydrogeology of Gulf of Mexico basin[J]. American Journal of Science. 1991, 291:19~176.
[4]  Main D M, Mackenzie A A. Prediction of pore fluid pressures in sedimentary basin [J]. Marine and Petroleum Geology,1990, 7:55~68.
[5]  Moore J C, Vrolijk P. Fluids in accretionary prisms[J]. Reviews of Geophysics, 1992, 30: 113~136.
[6]  Bolton A J, Clennel M B, Maltman A J. Nonlinear stress dependence of permeability: A mechanism for episodic fluid flow in accretionary wedges[J]. Geology, 1999, 27: 239~248.
[7]  Sibson R H. Fluid flow accompanying faulting: Field evidence and models[A]. In: Simpson D W, Richard P G, eds. Earthquake Prediction—An International Review[C]. Maurice Ewing: American Geophysical Union, 1981. 593~603.
[8]  Hippler S J. Deformation microstructures and diagenesis in sandstone adjacent to an extensional fault: Implication for the flow and entrapment of hydrocarbons[J]. American Association of Petroleum Geologists Bulletin, 1993, 77:625~637.
[9]  Rice J R. Fault stress states, pore pressure distributions and the weakness of the San Andereas fault[A]. In: Evans B,Wang T-F, eds. Earthquake Mechanics and Transport Properties of Rocks[C]. London: Academic Press, 1992. 475~503.
[10]  Scholz C H, Anders M H. The permeability of faults in the mechanical involvement of fluids in faulting: Open-File Report 94-228[M]. Denver: U S Geological Survey, 1994. 247~253.
[11]  Caine J S, Evans J P, Foster C B. Fault zone architecture and permeability structure[J]. Geology, 1996,24: 1 025~1 028.
[12]  Parry W T, Bruhn R L. Pore fluid and seismogenic characteristics of fault rock at depth on the Wasatch fault, Utah[J]. J Geophys Res, 1986,91: 730~744.
[13]  Parry W T, Bruhn R L. Fluid pressure transients on seismogenic normal faults[J]. Tectonophysics, 1990, 179:335~344.
[14]  Hubbert M K, Rubey W W. Role of fluid pressure in mechanics of overthrust faulting[J]. Geol Soc Am Bull, 1959,70:115~205.
[15]  Cox S F. Faulting processes at high fluid pressures: An example of fault valve behavior from the Wattle Gully Fault,Victoria, Australia[J]. J Geophys Res, 1995,100:1 284~12 860.
[16]  Fenoglio M A, Johnston M J S, Byerlee J D. Magnetic and electric associated changes in high pore pressure in fault zones: Application to the Loma Ptieta ULF emissions[J]. J Geophys Res, 1995,100:12 951~12 958.
[17]  Magee M E, Zoback M D. Evidence for a weak interplate thrust faulting and fluid expulsion[J]. Geology, 1993, 21:809~812.
[18]   Sibson R H. Rupture nucleation on unfavorably oriented faults[J]. Bull Seis Soc Am, 1990, 81:2 493~2 497.
[19]  Byerlee J. Model for episodic flow of high-pressure water in fault zones before earthquakes[J]. Geology, 1993, 21:303~306.
[20]  Phillips R. Hydraulic fracturing and mineralization[J]. J Geol Soc London, 1972, 123:337~359.
[21]  Cox S F, Etheridge M A, Wall J V. The role of fluids in syntectonic mass transport and localization of metamorphic vein-type ore deposits[J]. Ore Geol Rev, 1986, 2:65~86.
[22]  Hickman S, Sibson R H, Bruhn R. Introduction to special section: mechanical involvement of fluid in faulting[J]. J Geophys Res, 1995, 100: 12 831~12 840.
[23]  Sibson R H. Implication of fault-valve behavior for rupture nucleation and recurrence[J]. Tectonophysics,1992, 211:283~293.
[24]  Robert F. Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting[J]. J Geophys Res, 1995, 100:12 861~12 879.
[25]  Wilkinson J J, Johnston J D. Pressure fluctuations,phase separation and gold precipitation during seismic fracture propagation[J]. Geology, 1996, 24: 395~398.
[26]  Moore J C, Moore G F, Cochrane G R, Tobin H J. Negative-polarity seismic reflections along faults of the Oregon accretionary prism: Indication of overpressuring[J]. J Geophys Res, 1995,100:12 895~12 906.
[27]  Eberhart-Phillips D, Stanley W D, Rodriguez B D,et al.Surface seismic and electrical methods to detect fluids related to faulting[J]. J Geophys Res, 1995, 100:12 919~12 936.
[28]  Tobin H T, Moore J C, Moore J F. Fluid pressure in the frontal thrust of Oregon accretionary prism: Experimental constraints[J]. Geology, 1994, 22: 979~982.
[29]  Davis D, Suppe J, Dahlen F A. Mechanics of fold-and-thrust belts and accretionary wedges[J]. J Geophys Res, 1983,88:1 151~1 172.
[30]  Hickman S. Stress in the lithosphere and the strength of active faults[J]. Rev Geophys, 1991, 29:759~775.
[31]  Morrow C, Randey B, Byerlee J. Frictional strength and the effective pressure law of montrnorillonite and illite clays[A].In: Evans B, Wang T-F, eds. Fault Mechanics and Transport Properties of Rocks[C]. San Diego: Academic Press,1992. 69~88.
[32]  Sleep N H, Blarpied M L. Creep, compaction and weak rheology of major faults[J]. Nature, 1992, 359:687~692.
[33]  Gudmundsson A. Emplacement of dikes, sills and crustal magma chamber at divergent plate boundaries[J]. Tectonophysics, 1990, 176: 257~275.
[34]  Gudmundsson A. Fluid overpressure and stress drop inn fault zones[J]. Geophys Res Letters, 1999, 26:115~118.
[35]  Gold T. Terrestrial sources of carbon and earthquake outgassing[J]. J Petroleum Geol, 1979, 1(3): 3~19.
[36]  Gold T, Soter S. Fluid ascent through the solid lithosphere and its relation to earthquake[J]. Pure and Applied Geophysics, 1984/85,122:492~530.
[37]  Talwani P, Acree S. Pore pressure diffusion and the mechanism of reservoir induced seismicity[J]. Pure and Applied Geophysics, 1985,122:947~965.
[38]  Nicholso C, Wesson R L. Earthquake hazard associated with deep well injection-A report to the US Environmental Protection Agency[J]. US Geol Surv Bull, 1990, 1951:1~74.
[39]  Boulier A M, Robert F. Paleseimic events recorded in Archean gold-quartz vein networks, Val d' Or Abitibi, Quebec[J]. Journal of Structural Geology, 1992, 14:161~179.
[40]  Sibson R H, Robert F, Poulsen K H. High-angle reverse faults, fluid pressure cycling and mesothermal gold deposits[J]. Geology, 1988, 16:551~555.
[41]  Jébrak M. Hydrothermal breccia in vein-type ore deposits: A review of mechanism, morphology and size distribution[J].Ore Geology Review, 1997, 12:111~134.
[42]  Hobbs B E. Principles involved in mobilization and remobilization[J]. Ore Geology Review, 1987, 2:37~45.
[43]  Liu Liangming, Wu Yanzhi. Mechanical-chemical interactions during mobilized mineralization of disperse elements in metamorphic rocks[J]. Geological Science and Technology Information. 1994, 13(4):59~64.[刘亮明,吴延之.变质岩中分散元素的活化转移成矿过程中的力学—化学相互作用[J].地质科技情报, 1994, 13(4):59~64.]
[44]  Ridey J. The relations between mean rock stress and fluid flow in the crust: With reference to vein-and lode-style gold deposits[J]. Ore Geology Review, 1993, 8: 23~37.

[1] 陈国松, 孟元林, 郇金来, 肖丽华, 冯丹. 含油气盆地碎屑岩储层异常高孔、渗带成因机制研究进展[J]. 地球科学进展, 2021, 36(9): 922-936.
[2] 安伟,曹志敏,郑建斌,刘激,陈敏. 古代与现代火山成因块状硫化物矿床研究进展[J]. 地球科学进展, 2003, 18(5): 773-782.
[3] 刘建明,赵善仁,刘伟,储雪蕾,常旭. 成矿地质流体体系的主要类型[J]. 地球科学进展, 1998, 13(2): 161-165.
[4] 张德会. 浅成热液成矿系统模型研究评述[J]. 地球科学进展, 1996, 11(6): 563-568.
[5] 李粹中. 海底热液成矿活动研究的进展、热点及展望[J]. 地球科学进展, 1994, 9(1): 14-19.
阅读次数
全文


摘要