地球科学进展 ›› 2001, Vol. 16 ›› Issue (2): 244 -250. doi: 10.11867/j.issn.1001-8166.2001.02.0244

综述与评述 上一篇    下一篇

金刚石包裹体中的古地幔信息
肖化云 1,刘丛强 1,黄智龙 2   
  1. 1.中国科学院地球化学研究所环境地球化学国家重点实验室,贵州 贵阳  550002;
    2.中国科学院地球化学研究所矿床地球化学开放研究实验室,贵州 贵阳  550002
  • 收稿日期:2000-04-17 修回日期:2000-07-13 出版日期:2001-04-01
  • 通讯作者: 肖化云(1970-),男,江西省高安市人,助理研究员,主要从事流体和同位素地球化学研究. E-mail:xiaohuayun@sohu.com
  • 基金资助:

    国家科技部攀登计划项目“地质流体作用及其成矿效应研究”(编号:95-预-39)资助.

NFORMATION OF OLD MANTLE FROM INCLUSIONS IN DIAMONDS

XIAO Hua-yun 1,LIU Cong-qiang 1,HUANG Jiu-long 2   

  1. 1.State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,CASGuiyang550002,China;
    2.Open Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,CAS,Guiyang550002,China
  • Received:2000-04-17 Revised:2000-07-13 Online:2001-04-01 Published:2001-04-01

金刚石在地幔环境生长过程中会捕获一些包裹体,这些包裹体能够被金刚石携带到地球表层。金刚石包裹体保存有其生长时古地幔环境的信息,通过对这些包裹体的研究,可以获取古地幔环境的信息。阐述了金刚石包裹体的特征,综述了金刚石包裹体在获取古地幔物理化学环境、相环境以及地幔流体信息方面取得的一些成果。

 The inclusions in diamonds captured from the old mantle during the growth of the diamonds can be carried to the surface layer of the Earth. They kept some information of the old mantle. The information can be obtained by studying these inclusions in diamonds. The paper introduced the character of inclusions in diamonds. And some results about the physi chemical environment, the phase, and the fluids in the old mantle from inclusions in diamonds are summarized. 

中图分类号: 

[1]  Richardson S H, Gurney J J, Erlank A J,et al. Origin of diamonds in old enriched mantle[J]. Nature, 1984, 310: 198~202.
[2]  Mitchell R H. Kimberlites and lamproites primary sources of diamond[J]. Geoscience Canada, 1991, 18: 1~16.
[3]  Lang A R. Internal structure[A]. In: Field J E, ed. The Properties of Diamond[C], London: Academic Press, 1979.425~426.
[4]  Bulanova G P. The formation of diamond[J]. J Geochem Explor, 1995, 53: 1~23.
[5]  Bulanova G P, Griffin W L, Ryan C G. Nucleation environment of diamonds from Yakutian kimberlites [J]. Mineral Magazine, 1998, 62: 409~419.
[6]  Bulanova G P, Griffin.W L, Ryan C G,et al. Trace elements in sulfide inclusions from Yakutian diamonds[J]. Contri Mineral Petrol, 1996, 124: 111~125.
[7]  Lambrecht W R L, Lee C H, Segall B,et al. Diamond nucleation by hydrogenation of the edges of graphitic precursors[J]. Nature, 1993, 364: 607~610.
[8]  Milledge H J, Woods P A, Taylor W R,et al. Cathodoluminescence and infrared studies of russian diamonds[A]. In:Abstr IAVCEI General Assembly [C]. Canberra, 1993.pp74.
[9]  Griffin W L, Gurney J J, Ryan C G. Variations in trapping temperatures and trace elements in peridotite-suite inclusions from African diamonds: evidence for two inclusion suites, and implications for lithospere stratigraphy[J]. Contrib Mineral Petrol, 1992, 110: 1~15.
[10]  Griffin W L, Sobolev N V, Ryan C G,et al. Trace elements in garnets and chromites: Diamond formation in the Siberian lithospere[J]. Lithos, 1993, 29: 235~256.
[11]  Cheng F,Guo J G,Chen J C,et al. Potassic salt inclusions found in diamonds[J]. Chinese Science Bulletin, 1992, 37(10): 921~923(in Chinese).
[12]  Cheng F,Guo J G,Wang S X,et al. NaCl inclusions found in diamonds[J]. Chinese Science Bulletin, 1992, 37(16): 1 489~1 491 (in Chinese).
[13]  Leng I, Guo W, Friendman I. Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian[J]. Nature, 1991, 346: 352~354.
[14]  Zhao L, Lu F X, Zheng J P,et al. Natural silver and silvercontaining iron-gold alloy inclusions found in diamonds the first time[J]. Chinese Science Bulletin, 1995, 40(12): 1 114~1 115(in Chinese).
[15]  Ellis D J, Green D H An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria[J].Contrib Mineral Petrol, 1979, 71: 13~22.
[16]  Griffin W L, Jaques A L, Sie S H,et al. Conditions of diamond growth: a proton microprobe study of inclusions in West Australian diamonds [J]. Contrib Mineral Petrol,1988, 99: 143~158.
[17]  Griffin W L, Sobolev N V, Ryan C G,et al. Trace elements in garnets and chromites: diamond formation in the Siberian lithosphere[J]. Lithos, 1993, 29: 236~257.
[18]  O' Neill HSt C, Wall V G. The olivine-orthopyrexene-spinel oxygen geobarneter, the nickle precipitation curve, and oxygen fugacity of the Earth' s upper mantle[J]. J Petrol, 1987,28: 1 169~1 191.
[19]  Jarikov V A, Ishbulatov R A, Chudinovskih L T. The eclogitic barrier and clinopyroxenes of high pressure[J]. Geol Geophys, 1984, 12: 54.
[20]  Brey G P, Nickel K G, Kogarko L. Garnet pyroxene equilibrium in system Cao-MgO-Al2O3-SiO2( CMAS ), and prospects for simplified (T-independent) lherzolite barometry and eclogite-barmeter[J]. Contrib Mineral Petrol, 1986, 92:448~453.
[21]  Jaques A L, Haggerty S E, Lucas H,et al. Mineralogy and petrology of the Argyle (AK1) lamproite pipe, Western Australia. Kimberlites and related rocks, vol 1: Their composition, occurrence, origin and emplacement[J]. Geol Soc Aust Spec Publ, 1989, 14: 153~169.
[22]  Kesson S E, Ringwood A E. Slab-mantle interactions 2. The formation of diamonds[J]. Chem Geol, 1989, 78: 97~118.
[23]  Liu L-g, Mernagh T P, Jaques A L. A mineralogical Raman spectroscopy study on eclogitic garnet inclusions in diamonds from Argyle[J]. Contrib Mineral Petrol, 1990, 105: 154~161.
[24]  Liu L-g. Genesis of diamonds in the lower mantle[J]. Contrib Mineral Petrol, 1999, 134: 170~173.
[25]  Moore R O, Gurney J J. Pyroxene solid solution in garnets included in diamond[J]. Nature, 1985, 318: 553~555.
[26]  Irifune T, Sekine T, Ringwood A E,et al. The eclogite-garnet transformation at high pressure and some geophysical implications[J]. Earth Planet Sci Lett, 1986, 77: 245~256.
[27]  Boyd F R, Gurney J J, Richardson S H. Evidence for a 150~200 km thick, Archaean lithosphere from diamond inclusion thermobarometry[J]. Nature, 1985, 315: 387~389.
[28]  Moore R O, Gurney J J, Griffin W L,et al. Ultra-high pressure garnet inclusions in Monastery diamonds: trace element abundance patterns and conditions of origin[J]. Eur J Mineral, 1991, 3: 213~230.
[29]  Sunagawa I. Characteristics of crystal growth in nature as seen from the morphology of mineral crystals[J]. Bull Mineral, 1981, 104: 81~87.
[30]  Sunagawa I. Growths of crystals in nature[A]. In: Sunagawa I.Materials Science of the Earth' s Interior[C]. Tokyo:Terrapub, 1984.61~103.
[31]  Sunagawa, I. Morphology of natural and synthetic diamond crystals[A]. In: Sunagawa l,ed. Materials Science of the Earth' s Interior[C]. Tokyo: Terrapub,1984.303~331.
[32]  Arima M, Nakayama K, Yamaoka S,et al. Crystallization of diamond from a silicate melt of kimberlite composition in high-pressure and high-temperature[J]. Geology, 1993, 21:968~970.
[33]  Saxena S K. Oxidation state of the mantle[J]. Geochim Cosmochim Acta, 1989, 53: 89~95.
[34]  Chepurov A I. On the role of sulfide melt in the process of diamond origin[J]. Geol Geophys, 1988, 8: 110~124.
[35]  Bulanova G P, Spetsius Z V, Leskova N V. Sulfides in Diamond Growth and Mantle Xenoliths from Kimberlite Pipes of Yakutiya[M]. Novosibirsk: Nauka, 1990. pp118.
[36]  Navon O, Hutcheon I D, Rossman G R,et al. Mantle-derived fluids in diamond micro-inclusions[J]. Nature, 1988,335: 784~789.
[37]  Schrauder M, Navon O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana [J].Geochim Cosmochim Acta, 1994, 58: 761~771.
[38]  Schrauder M, Koeberl C, Navon O. Trace element analyses of fluid-bearing diamonds from Jwaneng, Botswana [J].Geochim CosmochimActa, 1996, 60: 4 711~4 724.
[39]  Roedder E. Fluid inclusions[J]. Reviews in Mineralogy,1984, 12: 1~664.
[40]  Richardson S H, Gurney J J, Erlank A J,et al. Origin of diamond in old enriched mantle[J]. Nature, 1984, 310: 198~202.
[41]  Navon O. High internal pressures in diamond fluid inclusions determined by infrared absorption[J]. Nature, 1991, 353:746~748.
[42]  Guthrie Jr G D, Veblen D R, Navon O,et al. Submicrometer fluid inclusions in turbid-diamond coats[J]. Earth Planet Sci Lett, 1991, 105: 1~12.
[43]  Lu F X, Zhao L, Zheng J P. Geochemistry of mantle fluids and asthenosphere, related with kimberlites[A]. In: Du L T, ed. Geochemistry of Mantle Fluids and Asthenosphere(asthenoliths). Beijing: Geological Publishing House.1996.97~153(in Chinese).
[44]  Chrenko R M, McDonald R S, Darrow K A. Infra-red spectra of diamond coat[J]. Nature, 1967, 213: 474~476.
[45]  Zheng J P, Lu F X, Guo H,et al. Studies of fluid inclusions in diamonds[J]. Chinese Science Bulletin, 1994, 39(3): 253~256.

[1] 郑昕雨,丘志力,邓小芹,马瑛,陆太进. 超深金刚石包裹体:对深部地幔物理化学环境的指示[J]. 地球科学进展, 2020, 35(5): 452-464.
[2] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[3] 杨志军, 黄珊珊, 陈耀明, 李晓潇, 曾璇, 周文秀. 金伯利岩演化过程及金刚石含矿性评价的研究进展[J]. 地球科学进展, 2016, 31(7): 700-707.
[4] 王九一, 刘成林. 石盐流体包裹体中古嗜盐菌的研究进展[J]. 地球科学进展, 2016, 31(12): 1220-1227.
[5] 赵欣, 施光海, 张骥. 岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J]. 地球科学进展, 2015, 30(3): 310-322.
[6] 曹青,赵靖舟,赵小会,张涛,王宝清. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7): 819-828.
[7] 葛云锦,陈勇,周瑶琪,周振柱. 实验模拟碳酸盐岩储层包裹体对油气充注的响应[J]. 地球科学进展, 2011, 26(10): 1050-1056.
[8] 平宏伟,陈红汉. 次生油气藏成藏研究进展[J]. 地球科学进展, 2009, 24(9): 990-1000.
[9] 傅晓明,戴塔根,息朝庄,刘 伟,刘 旭. 青海双朋西金铜矿床的成矿流体特征及流体来源[J]. 地球科学进展, 2009, 24(5): 531-537.
[10] 孙贺,肖益林. 流体包裹体研究:进展、地质应用及展望[J]. 地球科学进展, 2009, 24(10): 1105-1121.
[11] 刘兴起;倪培. 表生环境条件形成的石盐流体包裹体研究进展[J]. 地球科学进展, 2005, 20(8): 856-862.
[12] 郑海飞;段体玉;孙樯;乔二伟. 一种潜在的地质压力计:流体包裹体子矿物的激光拉曼光谱测压法[J]. 地球科学进展, 2005, 20(7): 804-808.
[13] 李兆丽;胡瑞忠;彭建堂;毕献武;李晓敏. 稀有气体同位素示踪成矿古流体研究进展[J]. 地球科学进展, 2005, 20(1): 57-063.
[14] 赵孟军;宋岩;潘文庆;韩剑发;柳少波;秦胜飞. 沉积盆地油气成藏期研究及成藏过程综合分析方法[J]. 地球科学进展, 2004, 19(6): 939-946.
[15] 王显东,姜振学,庞雄奇. 古油气水界面恢复方法综述[J]. 地球科学进展, 2003, 18(3): 412-419.
阅读次数
全文


摘要