地球科学进展 ›› 2005, Vol. 20 ›› Issue (7): 804 -808. doi: 10.11867/j.issn.1001-8166.2005.07.0804

新学科·新技术·新发现 上一篇    下一篇

一种潜在的地质压力计:流体包裹体子矿物的激光拉曼光谱测压法
郑海飞,段体玉,孙 樯,乔二伟   
  1. 北京大学地质学系,北京 100871
  • 收稿日期:2004-06-01 修回日期:2005-03-28 出版日期:2005-07-25
  • 通讯作者: 郑海飞
  • 基金资助:

    国家自然科学基金项目“地球内部水的突变性质及其地质作用的实验研究”(编号:40173019);教育部博士点基金项目“包裹体拉曼光谱压力计的实验研究”(编号:20030001053)资助.

A POTENTIAL GEOLOGICAL BAROMETER: NEW METHOD TO DETERMINE THE PRESSURE WITH DAUGHTER MINERALS IN FLUID INCLUSION BY RAMAN SPECTROSCOPY

ZHENG Haifei;DUAN Tiyu;SUN Qiang;QIAO Erwei   

  1. Department of Geology, Peking University, Beijing 100871, China
  • Received:2004-06-01 Revised:2005-03-28 Online:2005-07-25 Published:2005-07-25

高温高压下矿物的拉曼原位测量表明,某些拉曼活性的物质其拉曼位移与压力之间具有良好的线性关系。这一特性使我们能够通过测量矿物包裹体中含有这些子矿物的拉曼位移以确定矿物的形成压力。与目前常采用的共存矿物对压力计以及流体包裹体的CO2等容线法等压力测定方法相比,该方法具有快速、方便和准确的特点。由于包裹体中可以存在各种不同的子矿物以及不同的溶液物质,因此系统研究包裹体中一切可能存在的矿物或物质的拉曼位移与温度和压力之间的关系将可以提供一种方便、准确的地质压力测量手段。

In situ measurement of Raman spectroscopy at high temperature and high pressure indicates that the frequency of the Raman peak of some materials, including minerals, molecules and ions, shifts systematically with increasing pressure and temperature. This property has been used as a pressure gauge for high pressure experiment with diamond anvil cell(DAC). Since the system of fluid inclusion is similar to that of DAC, we propose that it also be used to determine the formation pressure for mineral by measuring the Raman shift of the daughter mineral and ion in fluid inclusion in geological and geochemical studies. The method is firstly to increase the temperature of the fluid inclusion to homogeneous temperature heated by heat stage and then to measure the Raman shift for the mineral or ion with Raman active mode of vibration. For ion there is no problem to get the data of the Raman shift at homogeneous temperature. As for the mineral disappearance at homogeneous temperature, the data of Raman shift can be obtained before the mineral disappears by measuring Raman shift at several lower temperatures and then extrapolating them to the homogeneous temperature. By comparing with the previous geological barometer, such as the barometer based on two co-existing minerals or the barometer on the state function of CO2 volume in fluid inclusion, we believe that the proposed method might be a more rapid, convenient and precise method for determining the geological pressure. Because there exist many possible minerals or materials with Raman active mode in the fluid inclusion in minerals, systematic measurement and study should be done to obtain the relationship between the Raman shift of minerals and the temperature and/or pressure by carrying out in situ experimental study at high temperature and high pressure.

中图分类号: 

[1] Merecier J C C. Single-pyroxene geothermometry and geobarometry[J]. American Mineralogist,1976, 61: 603-615.
[2] Zhang Ruyuan, Cong Bolin. Geothermometry and Geobarometry of Mineral[M]. Beijing: Geological Press, 1983.[张儒瑗,从柏林.矿物温度计和矿物压力计[M].北京:地质出版社,1983.]
[3] Mao H K,Xu J,Bell P M. Calibration of the Ruby pressure Gauge to 800 kbar under Quasi-Hydrostatic conditions[J].Journal of Geophysical Research, 1986, 91(B5):4 673-4 676.
[4] Schmidt C, Martin A Ziemann. In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures[J].American Mineralogist, 2000, 85: 1 725-1 734.
[5] Philippe G, Claudine B, Bruno R, et al. Raman spectroscopic studies of Carbonates, Part Ⅰ:High-Pressure and High-Temperature Behaviour of Calcite, Magnesite, Dolomite and Aragonite[J]. Physics and Chemistry of Minerals, 1993, 20:1-18.
[6] Liu Wenjun, Zheng Rongcai, Li Yuanlin, et al. Research of the daughter minerals in fluid inclusions of the Huayuan Lead-Zinc deposit[J]. Journal of Chengdu University of Technology, 1997, 24(4):65-69.[刘文均,郑荣才,李元林,等.花垣铅锌矿床流体包体中的子矿物[J].成都理工学院学报,1997, 24(4):65-69.]
[7] Xu Jiuhua, Xie Yuling, Li Jianping, et al. Discovery of bearing Sr and LREE minerals in fluid inclusion of REE deposit in Maoniuping, Mianning county, Sichuan province[J]. Progress in Natural Science, 2001, 11(5):543-547.[徐九华,谢玉玲,李建平,等.四川冕宁牦牛坪稀土矿床流体包裹体中发现含锶和轻稀土的子矿物[J].自然科学进展,2001, 11(5):543-547.]
[8] Moroz I, Vapnik Y, Eliezri I, et al. Mineral and fluid inclusion study of emeralds from the Lake Manyara and Sumbawanga deposits[J].Journal of Africa Earth Science,2001,33 (2): 377-390.
[9] Moore J N, Norman D I, Kennedy B M.Fluid inclusion gas compositions from an active magmatic-hydrothermal system: A case study of the Geysers geothermal field, USA[J].Chemical Geology,2001,173 (1-3): 3-30. 
[10] Fonarev V I, Touret J L R, Kotelnikova Z A.Fluid inclusions in rocks from the Central Kola granulite area (Baltic Shield)[J].Europe Journal of Mineral,1998,10 (6): 1 181-1 200.
[11] Chen Peirong, Xu Shijin, Wang Rucheng, et al. Physico-chemical characteristic and genesis of highly copper-rich fluid in the Xifangping Porphyry copper deposit,Yanyuan county,Sichuan province[J]. Geochemistry, 1997, 26(5):54-61.[陈培荣,徐士进,王汝成,等.四川盐源西苑坪斑岩铜矿流体物理—化学特征和成因[J].地球化学,1997,26(5):54-61.]
[12] Zhang Wenhuai,Tan Tielong, Relationship between organic fluids and gold mineralization in the Jinshan gold deposit,Jianxi province[J]. Mineral Deposits, 1998, 17(1):15-24.[张文淮,谭铁龙.江西省金山金矿有机流体与金矿关系[J].矿床地质,1998, 17(1):15-24.]
[13] Tang Hongfeng, Liu Congqiang, Ni Pei, et al. Inclusion study on metamorphic fluids from the Xingzi group, Lushan[J]. Acta Mineralogica Sinica, 2000, 20(3):286-292.[唐红峰,刘丛强,倪培,等.庐山星子群变质流体的包裹体研究[J].矿物学报,2000, 20(3):286-292.]
[14] Xie Xiaojun, Sheng Xiang, Application of fluid inclusion Enclave in oil-gas migration of Miyang depression[J]. Journal of Xinjiang Petroleum Institute,2001,13(1):48-51.[谢晓军,盛湘.泌阳凹陷流体包裹体在油气运移中研究的应用[J].新疆石油学院学报,2001,13(1):48-51.]
[15] Fan Hongrui, Xie Yihan, Wang Kaiyi, et al. Carbonatitic fluid and REE mineralization[J]. Earth Science Frontiers, 2001, 8(4):289-295.[范宏瑞,谢奕汉,王凯怡,等.碳酸盐流体及其稀土成矿作用[J].地学前缘,2001, 8(4):289-295.]
[16] Qian Dayi, Xie Yuling, Xu Jiuhua. Composition characteristics of fluid inclusions from Baguamiao gold deposit in Shaanxi province,China[J]. Journal of University of Science and Technology Beijing, 2003,25(1):1-4.[钱大益,谢玉玲,徐九华.陕西凤县八卦庙金矿流体包裹体的成分特征[J].北京科技大学学报,2003, 25(1):1-4.]
[17] An Wei, Cao Zhimin,Zheng Jianbin, et al. The develepments of study on ancient and modern volcanogenic, massive sulfide deposits[J].Advances in Earth Science,2003,18(5):773-782.[安伟,曹志敏,郑建斌,等.古代与现代火山成因块状硫化物矿床研究进展[J].地球科学进展,2003,18(5):773-782.]
[18] Li Jianghai, Niu Xianglong, Feng Jun. The identification of fossil black smoker chimney and its implication for scientific research[J].Advances in Earth Science,2004,19(1):17-25.[李江海,牛向龙,冯军.海底黑烟囱的识别研究及其科学意义[J].地球科学进展,2004,19(1):17-25.]

[1] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[2] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[3] 王九一, 刘成林. 石盐流体包裹体中古嗜盐菌的研究进展[J]. 地球科学进展, 2016, 31(12): 1220-1227.
[4] 药瑛, 孙樯. 应用于流体包裹体CO 2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[5] 曹青,赵靖舟,赵小会,张涛,王宝清. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7): 819-828.
[6] 孙贺,肖益林. 流体包裹体研究:进展、地质应用及展望[J]. 地球科学进展, 2009, 24(10): 1105-1121.
[7] 刘兴起;倪培. 表生环境条件形成的石盐流体包裹体研究进展[J]. 地球科学进展, 2005, 20(8): 856-862.
[8] 张华锋;叶青培;翟明国. 岩浆绿帘石特征及其地质意义研究进展[J]. 地球科学进展, 2005, 20(4): 442-448.
[9] 李兆丽;胡瑞忠;彭建堂;毕献武;李晓敏. 稀有气体同位素示踪成矿古流体研究进展[J]. 地球科学进展, 2005, 20(1): 57-063.
[10] 赵靖舟. 油气成藏年代学研究进展及发展趋势[J]. 地球科学进展, 2002, 17(3): 378-383.
[11] 秦朝建,裘愉卓. 岩浆(型)碳酸岩研究进展[J]. 地球科学进展, 2001, 16(4): 501-507.
[12] 孙 青,曾贻善. 单个流体包裹体成分无损分析进展[J]. 地球科学进展, 2000, 15(6): 673-678.
[13] 常兆山. 流体包裹体各相体积测定的现状和探索[J]. 地球科学进展, 1995, 10(6): 555-561.
阅读次数
全文


摘要