地球科学进展 ›› 2009, Vol. 24 ›› Issue (10): 1105 -1121. doi: 10.11867/j.issn.1001-8166.2009.10.1105

综述与评述 上一篇    下一篇

流体包裹体研究:进展、地质应用及展望
孙贺,肖益林   
  1. 中国科学技术大学地球和空间科学学院,安徽  合肥  230026
  • 收稿日期:2009-05-07 修回日期:2009-08-12 出版日期:2009-10-10
  • 通讯作者: 孙贺 E-mail:hish@mail.ustc.edu.cn
  • 基金资助:

    中国科学院知识创新工程方向性项目:“大别—苏鲁超高压变质带形成和演化的地球化学研究”(编号:2060206);国家自然科学基金项目“华北陆块南缘中生代岩石圈增厚机制的地球化学研究”(编号:40634023)和“大别山—苏鲁地区系列变质岩石的Li-B同位素组成及其地球化学意义研究”(编号:40773003);中国科学院“百人计划”项目资助.

Fluid Inclusions: Latest Development, Geological Applications and Prospect

Sun He,Xiao Yilin   

  1. Earth and Space Department, University of Science and Technology of China, Hefei  230026,China
  • Received:2009-05-07 Revised:2009-08-12 Online:2009-10-10 Published:2009-10-10
  • Contact: Sun He E-mail:hish@mail.ustc.edu.cn

      在多数地质作用过程中,流体都担任着元素迁移的载体、化学反应的活化剂的角色。大量研究表明,岩石、矿物以及元素在有无流体的情况下会表现出迥异的物理和化学性质,所以对于认识某一地质过程而言,流体方面的研究往往能够提供极其重要的信息。流体包裹体则以其直接反映古流体的成分,在各种矿物中的普遍存在性,以及对各种后期改造有一定的抵抗力等特点而成为研究古地质流体的最佳样本,并已经被成功地应用到各种地质过程的研究中。从基本概念出发,讨论了流体包裹体的种类和原生、次生流体包裹体的区分,对流体包裹体的岩相学观察要点以及流体包裹体研究的最新进展做了简要的综述,着重介绍了研究中常用的分析方法及变质岩中流体包裹体的研究,并举例说明了流体包裹体在矿床学、石油地质学中的应用,以及近期的一些关于流体包裹体中保存生物标志和生物遗迹化石的研究,最后对未来流体包裹体研究的发展方向作了简单的展望。

       Fluids are aubiquitous transport medium for heat and matter in most geological process. The presence of fluids in rocks may affect the chemical and physical properties, mineral reaction velocity and heat budget of geological systems, Direct sample of geological fluids could be preserved only in fluid inclusions that were trapped during the growth of their host mineral. Fluid inclusions can provide us unique information for the presence and composition of ancient fluids which can not be obtained by other geochemical methods (e.g. the component and evolution of diagenetic fluid; process of fluid-rock interaction; migration of trace elements in fluid). The study of fluid inclusions thus has become one of the “hottest” fields in earth sciences, and plays an important role in studies correlated with geological processes. Starting with a general introduction to the fluid inclusion properties and a summarization about the classification of primary- and secondary-fluid inclusions, this paper reveiws the most recent development in analytical methods in the fluid inclusion research field. We also review the current application of fluid inclusions to various fields in earth sciences (e.g. metamorphic fluid, ore-deposit, petroleum geology and biomarker) in the paper. Finally, we give a short outlook on potential future research topics about fluid inclusion studies.

中图分类号: 

[1] Lu Huanzhang,Fan Hongrui,Ni Pei,et al. Fluid Inclusions[M].Beijing: Science Press,2004.[卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004.]
[2] Van den Kerkhof , Ulrich F H. Fluid inclusion petrography[J].Lithos,2001,55:27-47.
[3] Sterner S M, Bodnar R J. Synthetic fluid inclusions. VII. Re-equilibration of fluid inclusions in quartz during laboratory-simulated metamorphic burial and uplift[J].Journal of Metamorphic Geology,1989,7: 243-260.
[4] Barker A J. Post-entrapment modification of fluid inclusions due to overpressure: Evidence from natural samples[J].Journal of Metamorphic Geology,1995,13: 737-750.
[5] Olsen S N, Frry J M. A comparative fluid inclusion study of the Waterville and Sangerille formation, South-central Maine[J]. Contributions to Mineralogy and Petrology,1995,118:396-413.
[6] Marshall D J. Cathodoluminescence of Geological Materials[M]. London:Unwin Hyman, 1988:146.
[7] Barker C E, Kopp O C. Luminescence microscopy and spectroscopy: Qualitative and quantitative applications[J].Socity of Economic Paleontologists and Mineralogists Short Course,1991,25:195.
[8] Habermann D, Gotze J, Neuser R D, et al. The phenomenon of intrinsic cathodoluminescence: Case studies of quartz, calcite and apatite[J].Zentralblatt für Geologie und Palaeontologie,1999,12: 1 275-1 284.
[9] Krüger Y, Stoller P R, Frenz J M. Femtosecond lasers in fluid-inclusion analysis: Overcoming metastable phase states[J]. European Journal of Mineralogy,2007,19: 693-706.
[10] Goldstein R H,Reynolds T J. Systermatics of fluid inclusions in diagenetic minerals[J].Socity for Sedimentary Geology Short Course,1994,31:199.
[11] Goldstein R H. Petrographic analysis of fluid inclusions. Fluid inclusions analysis and interpretation[J].Mineralogical Association of Canada, Short Course Series,2003,32:9-53.
[12] Chi Guoxiang, Lu Huanzhang. Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage (FIA) concept[J].Acta Petrologica Sinica,2008,24(9):1 945-1 953.[池国祥,卢焕章.流体包裹体组合对测温数据有效性的制约及数据表达方法[J].岩石学报,2008,24(9):1 945-1 953.]
[13] Bodnar R J.Introduction to fluid inclusions[C]//Fluid inclusions: Analysis and interpretation. Mineralogical Association of Canada, Short Course Series,2003,32:1-8.
[14] Bodnar R J, Reynolds T, Kuehn C A. Fluid inclusion systematics in epithermal systems[C]//Berger B R, Bethke P M, eds. Society of Economic Geologists, Reviews in Economic Geology,1985,2:73-97.
[15] Diamond L W. Introduction to gas-bearing aqueous fluid inclusions[C]//Samson I, Anderson A, Marshall D,eds. Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada, Short Course, 2003,32:101-159.
[16] Pasteris J D, Wopenka B, Seitz J C. Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions[J].Contributions to Mineralogy and Petrology,1988,52(5): 979-998.
[17] Linnen R L, Keppler H, Sterner S M.In situ measurements of the H2O:CO2 ratio in fluid inclusions by infrared spectroscopy[J].The Canadian Mineralogistl,2004,42:1 275-1 282.
[18] Celik M, Karakaya N, Temel A.Clay minerals in hydrothermally altered volcanic rocks, Eastern Pontides, Turkey[J].Clays Clay Minerals,1999,47:708-717.
[19] Wang Q, Zhao Z H, Bao Z W,et al.Geochemistry and petrogenesis of the Tongshankou and Yinzu Adakitic Intrusive Rocks and the associated porphyry coppermolybdenum mineralization in Southeast Hubei East China[J].Resource Geology,2004, 54:137-152.
[20] Vanko D A, Mavrogenes J A. Applications of microanalytical techniques to understanding mineralizing processes[J].Reviews in Economic Geology,1998, 7:251-263.
[21] Philippot P, Menez B, Simionovici A, et al. X-ray imaging of uranium in individual fluid inclusions[J].Terra Nova, 2000,12: 84-89.
[22] Hayashi K,Iida A.Preliminary study on the chemical mapping of individual fluid inclusion by synchrotron X-ray fluorescence microprobe[J].Resource Geology,2001,51: 259-262.
[23] Philippot P, Menez B, Chevallier P, et al.Absorption correction procedures for quantitative analysis of fluid inclusions using synchrotron radiation X-ray fluorescence[J].Chemical Geology,1998,144:121-136.
[24] Ryan C G, Jamieson D N, Griffin W L, et al.The new CSIRO-GEMOC nuclear microprobe: First results, performance and recent applications[J].Nuclear Instruments and Methods in Physics Research B,2001,181:12-19.
[25] Volfinger M.Quantitative analysis of the fluid inclusions by particle-induced gamma-ray emission[J].Journal of Radioanalytical and Nuclear Chemistry,2002, 253:413-419.
[26] Heinrich C A, Ryan C G, Mernagh T P,et al.Segregation of ore metals between magmatic brine and vapor a fluid inclusion study using PIXE microanalysis[J].Economic Geology,1992,87:1 566-1 583.
[27] Williams P J, Dong G Y, Ryan C G, et al. Geochemistry of hypersaline fluid inclusions from the Starra (Fe Oxide)-Au-Cu Deposit, Cloncurry District, Queensland[J].Economic Geology,2001,96: 875-883.
[28] Kurosawa M, Shimano S, Ishii S, et al. Quantitative trace element analysis of single fluid inclusions by proton-induced X-ray emission (PIXE): Application to fluid inclusions in hydrothermal quartz[J].Geochimica et Cosmochimica Acta, 2003,67:4 337-4 352.[29] Baker T, Achterberg V, Ryan E C G, et al.Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J].Geology,2004, 32:117-120.
[30] Berry A J, O'Neill H S C, Jayasuriya K D,et al. XANES calibrations for the oxidation state of iron in a silicate glass[J]. American Mineralogist,2003,88: 967-977.
[31] Berry A J, O'Neill H S C. A XANES determination of the oxidation state of chromium in silicate glasses[J].American Mineralogist,2004,89: 790-798.
[32] Farges F.Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials[J].Physical Review B,2005,71:109-155.
[33] Mavrogenes J A, Berry A J, Newville M,et al.Copper speciation in vapor-phase fluid inclusions from the Mole Granite, Australia[J].American Mineralogist,2002,87:1 360-1 364.
[34] Hezarkhani A, Williams-Jones A E, Gammons C H. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran[J].Mineralium Deposita,1999, 34:770-783.
[35] Harris A C, Kamenetsky V S, White N C, et al. Melt inclusions in veins: linking magmas and porphyry Cu deposits[J].Science, 2003,302:2 109-2 111.
[36] Akinfiev N N , Zotov A V. Thermo-dynamic description of chloride, hydrosulfide, and hydroxo complexes of Ag(I), Cu(I), and Au(I) at temperatures of 25~500℃ and pressures of 1~2000 bar[J].Geochemistry International,2001,39:990-1 006.
[37] Berry A J, Hack A C, Mavrogenes J A,et al. A XANES study of Cu speciation in high-temperature brines using synthetic fluid inclusions[J].American Mineralogist,2006,91:1 773-1 782.
[38] Heinrich C A, Pettke T, Halter W E, et al.Quantitative multi-element analysis of minerals, fluid and melt inclusionsby laser-ablation inductively-coupled-plasma mass-spectrometry[J].Geochimica et Cosmochimica Acta,2003, 67(18): 3 473-3 496.
[39] Bleinerd,Güntherd.Theoretical description and experi-mental observation of aerosol transport processes in laser ablation inductively coupled plasma mass spectrometry[J].Journal of Geochemical Exploration,2001,76(1):45-69.
[40] Blankenburg B L, Günther D.Laser microanalysis of geological samples by atomic emission spectrometry (LM-AES) and inductively coupled plasma atomic emission-spectrometry (LM-ICPAES)[J].Chemical Geology,1992, 95(1/2):5-92.
[41] Jeffries T E, Jackson S E,Longerich H P. Application of a frequency quintupled Nd:YAG source (lambda =213 nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals[J].Journal of Analytical Atomic Spectrometry,1998,13(9): 935-940.
[42] Günther D,Heinrich C A. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier-Plenary lecture[J].Journal of Analytical Atomic Spectrometry,1999,14: 1 363-1 368.
[43] Horn I, Guillong M, Günther D. Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles-Implications for LA-ICP-MS[J].Applied Surface Science,2001,182:91-102.
[44] Guillong M, Horn I, Günther D. Capabilities of a homogenized 266 nm Nd: YAG laser ablation systems for LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2002,17:8-14.
[45] Liu H C, Borisov O V, Mao X L, et al.Pb/U fractionation during Nd:YAG 213 nm and 266 nm laser ablation sampling with inductively coupled plasma mass spectrometry[J].Applied Spectroscopy,2000, 54(10): 1 435-1 442.
[46] Russo R E, Mao X L, Borisov O V ,et al.Influence of wavelength on fractionation in laser ablation ICP-MS[J].Journal of Analytical Atomic Spectrometry,2000,15(9):1 115-1 120.
[47] Eggins S M, Kinsley L P J, Shelley J M G.Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS[J].Applied Surface Science,1998,129:278-286.
[48] Callies G, Schittenhelm H, Berger P, et al. Modeling of the expansion of laser-evaporated matter in argon, helium and nitrogen and the condensation of clusters[J].Applied Surface Science,1998,129:134-141.
[49] Shepherd T J,Chener S R. Laser ablation ICP-MS elemental analysis of individual fluid inclusions:An evaluation study[J]. Geochimica et Cosmochimica Acta,1995,59(19): 3 997-4 007.
[50] Ulrich T. Applications of quantitative single fluid inclusion analysis using laser ablation ICP-MS[J].Geology,2003,10(2):379-393.[51] Hattendorf B, Gunther D. Characterristics and capabilities of an ICP-MS with a dynamic reaction cell for dry aerosoals and laser ablation[J].Journal of Analytical Atomic Spectrometry,2000,15(9):1 125-1 131.
[52] Mason P R D. Depth analysis by laser-ablation ICP-MS[C]//Sylvester P.Laser Ablation ICP-MS in the Earth Science; Principles and Appilications.Mineralogical Association of Canada Short Course Series. Mineralogical Association of Canada, 2000:63-81.
[53] Horn E E , Tye C T. Analysis of fluid inclusions in minerals by VG laser ablation ICP-MS[C]//Pan-American Current Research on Fluid Inclusions Conference Program and Abstracts.1989, 2:32.
[54] Gǖnther D, Frischknechrt, Schknechtr.Direct liquid ablation:A new calibration streategy for laser ablation ICP-MS microanalysis of solid and liquids.Fresenius[J].Journal of Chemistry,1997,359(4/5):390-393.
[55] Moissette A, hepherd T J, henery S R. Calibration strategies for the elemental analysis of individual aqueous fluid inclusions by laser abation inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry,1996,1(3):177-185.
[56] Gǖnther D, Aude′tat A, Frischknecht R, et al.Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation inductively coupled plasma mass spectrometry.[J].Journal of Analytical Atomic Spectrometry,1998,13(4): 263-270.
[57] Moritz R, Kouzmanov K, Petrunov R. Late Cretaceous Cu-Au epithermal deposits of the Panagyurishte district, Srednogorie zone, Bulgaria[J].Swiss Bulletin of Mineralogy and Petrology,2004, 84: 79-99.
[58] Moritz R. Fluid salinities obtained by infrared microthermometry of opaque minerals: Implications for ore deposit modeling—A note of caution[J].Journal of Geochemical Exploration,2006, 89: 284-287.
[59] Mancano D P , Campbell A R. Microthermometry of enargitehosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu-Au deposit[J].Geochimica et Cosmochimica Acta,1995,59:3 909-3 916.
[60] Lüders V , Reutel C. Possibilities and limits of infrared microscopy applied to studies of fluid inclusions in sulfides and other opaque minerals[C]//Pan-American Conference on Research on Fluid Inclusions (PACROFI) VI, Madison, Wisconsin, Program and Abstracts,1996:78-80.
[61] Shannon E, Lindaas J K, Campbell A R. Near-infrared observation and microthermometry of pyrite-Hosted fluid inclusions[J].Economic Geology,2002, 97:603-618.
[62] Kulis J. Trace Element Control on Near-infrared Transparency of pyrite\[M\].Unpublished m thesis, Socorro, New Mexico Institute of Mining and Technology,1999: 271.
[63] Pecher A. Experimrntal decrepetation and reequilibration of fluid inclusions in aynthetic quartz[J]. Tectonophysics,1981, 78:567-584.
[64] Kerrich R. Some effects of tectonic recrystallization on fluid inclusions in vein quartz[J].Contributions to Mineralogy and Petrology,1976, 59:195-202.
[65] Heinrich W, Gottschalk M.Metamorphic reactions between fluid inclusions and mineral hosts. I. Progress of the reaction calcite + quartz=wollastonite + CO2 in natural wollastonite-hosted fluid inclusions[J].Contributions to Mineralogy and Petrology,1995,122:51-61.
[66] Kleinefeld B, Bakker R J. Fluid inclusions as microchemical systems; evidence and modelling of fluid host interactions in plagioclase[J].Journal of Metamorphic Geology,2002,20:845-858.
[67] Franz L, Romer R L, Klemd R, et al. Eclogite-facies quartz veins within metabasites of the Dabie Shan  (eastern China): Pressure  temperature time-deformation-path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks[J].Contributions to Mineralogy and Petrology,2001,141:322-346.
[68] Nadeau S, Philippot P, Pineau F. Fluid inclusions and mineral istopic compositions in eclogitic rocks as trace of local fluid migration during high pressure metamorphism[J].Earth and Planetary Science Letters,1993,114:431-448.
[69] Fu B, Touret J L R, Zheng Y F.Fluid inclusions in granulites, granulitized eclogites and garnet clinopyroxenite from the Dabie-Sulu terranes, easten China[J].Lithos,2001, 70: 293-391.
[70] Andersen T, Burke E A J, Austrheim H. Nitrogen-bearing, aqueous fluid inclusions in some eclogites from the Western Gneiss Region of the Norwegian Caledonides[J].Contributions to Mineralogy and Petrology, 1989,103:153-165.
[71] Andersen T,Austrheim H, Burke E A J. Fluid inclusions in granulites and eclogites from the Bergen Arcs, Caledonides of W Norway[J].Mineralogical Magazine,1990,54:145-158.
[72] Andersen T, Austrheim H, Burke E A J. Mineral-fluid melt interactions in high pressure shear zones in the Bergen Arcs nappe complex, Caledonides of W. Norway: Implications for fluid regime in Caledonian eclogitefacies metamorphism[J].Lithos,1991, 27: 187-204.
[73] Andersen T, Austrheim H, Burke E A J. N2 and CO2 in deep crustal fluids: Evidence from the Caledonides of Norway[J].Chemical geology,1993,108: 113-132.
[74] Xiao YL, Hoefs J, Van den Kerkhof A M,et al.Fluid history of UHP metamorphism in Dabie Shan,chian:A fluid inclusion and oxygen istope study on the coesite-bearing eclogite from Bixiling[J].Contributions to Mineralogy and Petrology,2000,139: 1-16.
[75] Bakker R J, Jansen J B H. Experimental post-entrapment water loss from synthetic CO2-H2O inclusions in natural quartz[J].Geochimica et Cosmochimica Acta,1991, 55: 2 215-2 230.
[76] Hollister L S. Enrichment of CO2 in fluid inclusions in quartz by removal of H2O during crystal-plastic deformation[J].Structural Geology,1990,7: 895-901.
[77] Craw D, Norris R J. Grain boundary migration of water and carbon dioxide during uplift of garnet-zone Alpine schist, New Zealand[J].Journal of Metamorphic Geology,1993,11:371-378.
[78] Johnson E L, Hollister L S. Syndeformational fluid trapping in quartz: Determining the pressure-temperature conditions of deformation from fluid inclusions and the formation of pure CO2 fluid inclusions during grain boundary migration[J].Journal of Metamorphic Geology,1995,13:239-249.
[79] Stout M Z, Crawford M L, Ghent E D. Pressure-temperautre and evolution of fluid composition of Al2SiO5bearing rocks,Mica Creek,B C, in light of fluid inclusion data and mineral equilibria[J].Contributions to Mineralogy and Petrology,1986,92: 236-247.
[80] Schimidt C, Bondnar R J. Synthetic fluid inclusions: XVI.PVTX properties in the systerm H2O-NaCl-CO2 at elevated temperture ,pressure and salinities[J].Geochimica et Cosmochimica Acta,2000, 64:3 853-3 869.
[81] Hall D L, Sterner S M. Preferentialwater loss from synthetic fluid inclusions[J].Contributions to Mineralogy and Petrology,1993,114: 489-504.
[82] Andreas A, Gunther D. Mobility and H2O loss from fluid inclusions in natural quartz crystals[J].Contributions to Mineralogy and Petrology,1999, 137: 1-14.
[83] Herrington L, Wilkinson J J. Colloidal gold and silica in mesothermal vien system[J].Geology,1993, 21:539-542.
[84] Newton R C. Chanorckite alteration: Evidence for infiltration in granulite facies metamorphism[J].Journal of Metamorphic Geology,1992:383-400.
[85] Shen Kun, Shen Qihan, Xu Huifen. Metamorphic fluids in the Yishui granulite complex and their geological significance,Shandong[J].Journal of North China Geology and Ore Resources,1995, 10(2):154-166.[沈昆,沈其韩,徐惠芬.山东沂水麻粒岩杂岩中的变质流体及其地质意义[J].华北地质矿产杂志,1995,10(2):154-166.]
[86] Shen Kun, Shen Qihan, Xu Huifen, et al. Metamorphic fluids related to anatexis in Gongdanshan block, Yishui County, Shandong Province[J].Acta Petrrologicet Mineralogica,1998,17(3):193-205.[沈昆,沈其韩,徐惠芬,等.山东省沂水汞丹山地块与深熔作用有关的变质流体[J].矿物岩石学杂志,1998,17(3):193-205.]
[87] Brenan J M. Partitioning of fluorine and chlorine between apatite and aqueous fluids at high pressure and temperature: Implications for the fluorine and chlorine content of high p-T fluids[J].Earth and Planetary Science Letters,1993,107:672-688.
[88] Elrhazi M, Hayashi K. Mineralogy, geochemistry, and age constraints on the Beni Bou Ifrour skarn type magnetite deposit,northeastern Morocco[J].Resource Geology,2002, 52:25-39.
[89] Andreas A, Gǖnthe D, Heinrich C A. Formation of a Magmatic-Hydrothermal Ore Deposit: Insights with LA-ICP-MS Analysis of Fluid Inclusions[J].Science,1998,279:2 091-2 094.
[90] Baker D E L. Seccombe P K. Physical conditions of gold deposition at the McPhees deposit, Pilbara Craton, Western Australia: Fluid Inclusion and stable isotope constraints[J].The Canadian Mineralogist,2004, 42: 1 405-1 424.
[91] Mernagh T P, Heinrich C A, Mikucki E J. Temperature gradients recorded by fluid inclusions and hydrothermal alteration at the Mount Charlotte gold deposit, Kalgoorlie, Australia[J].The Canadian Mineralogist,2004, 42:1 383-1 403.
[92] Walderhaug O. A fluid inclusion study of quartz-cemented sandstones from offshore mid-Norway-possible evidence for continued quartz cementation during oil emplacement[J].Journal of Sedimentary Petrology,1990, 60:203-210.
[93] Leischner K, Welte D H , Littke R. Fluid inclusions and organic maturity parameters as calibration tools in basin modelling[C]//Dore A G, Augusison J H, Stewart D J,et al. Basin Modelling: Advances and Applications.National Petroleum Foundation Special Publication,1993,3:161-172.
[94] Pagel M J, BraunJ R, Disnar L, et al.Thermal history constraints from studies of organic matter, clay minerals, fluid inclusions, and apatite fission tracks at the Ardeche Paleo-Margin (BA1 Drill Hole, GPF Program), France[J].Journal of Sedimentary Research,1997, 67: 235-245.
[95] Liu Dehan, Xiao Xianming, Tian Hui,et al. Fluid inclusion types and their geological significance in petroliferous basins[J].Oil and Gas Geology,2008,29(4):491-501.[刘德汉,肖贤明,田辉,等. 含油气盆地中流体包裹体类型及其地质意义[J].石油与天然气地质,2008,29(4):491-501.]
[96] Liu Dehan, Lu Huanzhang, Xiao Xianming.Oil-Gas Inclusions: Apply to Petroleum Prospecting and Exploitation[M].Guangzhou: Guangdong Science &Technology Press,2007.[刘德汉,卢焕章,肖贤明. 油气包裹体及其在石油勘探和开发中的应用[M].广州:广东科技出版社,2007.]
[97] Goldstein R H. Fluid inclusions in sedimentary and diagenetic systerm[J].Lithos, 2001,55:159-193.
[98] Muze I A. Petroleum inclusions in sedimentary basins: Systermatic,analytical methods and applications[J]. Lithos,2001,55: 195-212.
[99] Muze I A, Johansen H, Holm K,et al.The petroleum characteristics of the froy field and the rind discovery, Norwegian North Sea[J].Marine and Petroleum Geology,1999,16:633-651.
[100] Dutkiewicz A, Birger R, Roger B. Oil preserved in fluid inclusions in Archaean sandstones[J].Nature, 1998,395:885-887.
[101] Bois C, Bouche P, Pelet R.Global geologic history and distribution of hydrocarbon reserves[J].American Association of Petroleum Geologists Bulletin,1982, 66: 1 248-1 270.
[102] Hobson G D, Tiratsoo E N. Introduction to Petroleum Geology[M].Houston: Gulf Publishing Co.,1981.
[103] Ungerer P. State of the art of research in kinetic modelling of oil formation and expulsion[J].Organic Geochemistry,1990,16:1-25.
[104] Hunt J M. Petroleum Geochemistry and Geology[C]//Hunt J M.Freeman and Company.New York: W H Freeman and Company,1996,743.
[105] Lewan M D. Experiments on the role of water in petroleum formation[J].Geochimica et Cosmochimica Acta, 1997, 61:3 691-3 723.
[106] Giggenbach W F.Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high heatflow sedimentary basins[J].Geochimica et Cosmochimica Acta,1997,61:3 763-3 785.
[107] Mango F D. The origin of light hydrocarbons in petroleum: A kinetic test of the steady-state catalytic hypothesis[J].Geochimica et Cosmochimica Acta,1990,54:1 315-1 323.
[108] Ueno Y, Yamada K, Yoshida N, et al.Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era[J].Nature,2006, 440:516-518.
[109] Buijs C J A,Goldstein R H, Hasiotis S T,et al.Preseervation of microborings as fluid inclusions[J].The Canadian Mineralogist,2004, 42:1 563-1 581.

[1] 储著银, 许继峰. 铼—锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021, 36(3): 245-264.
[2] 程昊,徐乃潇. 基于石榴石的变质岩年代学[J]. 地球科学进展, 2020, 35(10): 991-1005.
[3] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[4] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[5] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[6] 侯笛,张俊杰,邢磊,周阳. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2): 140-147.
[7] 魏金娥,张洪海,陈岩,杨桂朋. 环境样品中氨基糖分析检测方法的研究进展[J]. 地球科学进展, 2019, 34(1): 84-92.
[8] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[9] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[10] 倪师军,徐争启,张成江,宋 昊,罗 超. 西南地区黑色岩系铀成矿作用及成因模式探讨[J]. 地球科学进展, 2012, 27(10): 1035-1042.
[11] 陈中红, Moldowan J M,刘昭茜. 东营凹陷生物降解稠油甾烷分子的选择蚀变[J]. 地球科学进展, 2012, 27(10): 1108-1114.
[12] 赵军,姚鹏,于志刚. 海洋沉积物中色素生物标志物研究进展[J]. 地球科学进展, 2010, 25(9): 950-959.
[13] 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9): 981-989.
[14] 姜苏,李院生,马红梅,安春雷. 环境中高氯酸盐的来源、污染现状及其分析方法[J]. 地球科学进展, 2010, 25(6): 617-624.
[15] 赵士洞,张永民. 生态系统与人类福祉——千年生态系统评估的成就、贡献和展望[J]. 地球科学进展, 2006, 21(9): 895-902.
阅读次数
全文


摘要