地球科学进展 ›› 2017, Vol. 32 ›› Issue (11): 1193 -1203. doi: 10.11867/j.issn.1001-8166.2017.11.1193

上一篇    下一篇

生物标志物单体放射性碳同位素分析技术的发展
张海龙 1( ), 陶舒琴 2, *( ), 于蒙 1, 赵美训 1   
  1. 1.中国海洋大学海洋化学理论与工程技术教育部重点实验室,山东 青岛 266100
    2.国家海洋局海洋大气化学与全球变化重点实验室,福建 厦门 361005
  • 收稿日期:2017-07-10 修回日期:2017-10-02 出版日期:2017-11-10
  • 通讯作者: 陶舒琴 E-mail:zhanghailong@ouc.edu.cn;taoshuqin@tio.org.cn
  • 基金资助:
    国家海洋局第三海洋研究所科研业务费专项资金资助项目“有机(生物)标志物技术对海洋气溶胶来源示踪的研究”(编号:海三科2017013);国家自然科学基金项目“利用分子生物标志物—— 14C技术重建全新世黄海沉积有机质组成变化”(编号:41506087)资助

A Review on Techniques and Applications of Biomarker Compound-specific Radiocarbon Analysis

Hailong Zhang 1( ), Shuqin Tao 2, *( ), Meng Yu 1, Meixun Zhao 1   

  1. 1.Key Laboratory of Marine Theory and Technology, Ministry of Education, Ocean University of China,Qingdao 266100, China
    2.Key Laboratory of Global Change And Marine-Atmospheric Chemistry of State Oceanic Administration, Third Institute of Oceanography, Xiamen 361005, China
  • Received:2017-07-10 Revised:2017-10-02 Online:2017-11-10 Published:2018-01-10
  • Contact: Shuqin Tao E-mail:zhanghailong@ouc.edu.cn;taoshuqin@tio.org.cn
  • About author:

    First author:Zhang Hailong (1981-), male, Jimo City, Shandong Province, Ph.D student. Research areas include marine organic geochemistry.E-mail:zhanghailong@ouc.edu.cn

  • Supported by:
    Project supported by the Scientific Research Foundation of Third Institute of Oceanography, SOA “Source apportionment of molecular specific biomarkers from marine aerosols” (No.Haisanke2017013);The National Natural Science Foundation of China “The application of compound-specific biomarker 14C technique for reconstruction of the changes of sedimentary organic composition in the Yellow Sea during the Holocene” (No.41506087)

自Eglinton等(1996)首次将单体放射性碳同位素分析技术(CSRA)应用于海洋沉积物中生物标志物14C研究以来,该技术发展迅速,广泛应用于海洋科学、生物地球化学和古气候学等领域。但是,自然环境样品中生物标志物大多含量低、干扰基质复杂而且难以分离。因此,如何从基质组成复杂的样品中分离富集高纯度的目标化合物已经成为限制CSRA技术发展和应用的瓶颈。近些年来,不断改进的色谱分离富集技术不仅提高了目标化合物分离的纯度和回收效率,同时也扩展了生物标志物的碳同位素示踪应用。综合介绍了自然环境研究中单体化合物放射性碳同位素分析技术中常见生物标志物单体分离纯化的技术方法以及发展现状。

Eglinton (1996) firstly performed the Compound-Specific Radiocarbon Analysis (CSRA) in marine sediments, providing a new approach to understanding the organic carbon source. The applications of CSRA technique were developed rapidly and widely used in oceanography, biogeochemistry and paleoclimatology. However, because of the extremely low amount and interference with complex substrates, mostly source-specific biomarkers were hard to be separated from environmental matrix samples. Therefore, how to harvest pure biomarkers, from complex natural sample matrixes, has been the limitation of CSRA technique, especially for ultra-small size CSRA. Recently, various preparative chromatography techniques have been carried out to improve the purity and recovery efficiency of the target compounds. This paper aimed to introduce the techniques and applications of CSRA for common source-specific biomarkers in the natural environment.

中图分类号: 

图1 PCGC系统工作原理图示 [ 26 ]
Fig.1 Diagrammatic representation of the PCGC instrument [ 26 ]
表1 不同实验室、不同时间湿化学分离(C chemistry)及PCGC分离(C pcgc)过程引入的外源碳(C ex)的比较(单位:μg C/min)
Table 1 The comparison of C ex is introduced between laboratories and period from the chemical separation (C chemistry) and PCGC separation (C pcgc) process (unit: μg C/min)
[1] Levin I, Kromer B, Schoch-Fischer H, et al.25 years of tropospheric 14C observations in central Europe[J]. Radiocarbon, 1985, 27(1): 1-19.
[2] Ardizzone D, Cailliet G M, Natanson L J, et al.Application of bomb radiocarbon chronologies to shortfin mako (Isurus oxyrinchus) age validation[J]. Environmental Biology of Fishes, 2006, 77(3): 355-366.
[3] Zhang Z, Zhao M, Yang X, et al.A hydrocarbon biomarker record for the last 40 kyr of plant input to Lake Heqing, southwestern China[J]. Organic Geochemistry, 2004, 35(5): 595-613.
[4] Wilson A T.Application of AMS 14C dating to ice core research[J]. Radiocarbon, 1995, 37(2): 637-641.
[5] Pearson A, Eglinton T I.The origin of n-alkanes in Santa Monica Basin surface sediment: A model based on compound-specific Δ14C and δ13C data[J]. Organic Geochemistry, 2000, 31(11): 1 103-1 116.
[6] Masiello C A, Druffel E R M. Black carbon in deep-sea sediments[J]. Science, 1998, 280(5 371): 1 911-1 913.
[7] Kusch S, Eglinton T I, Mix A C, et al.Timescales of lateral sediment transport in the Panama Basin as revealed by radiocarbon ages of alkenones, total organic carbon and foraminifera[J]. Earth and Planetary Science Letters, 2010, 290(3/4): 340-350.
[8] Hughen K, Lehman S, Southon J, et al.14C activity and global carbon cycle changes over the past 50,000 years[J]. Science, 2004, 303(5 655): 202-207.
[9] Dou Y, Yang S, Lim D I, et al.Provenance discrimination of last deglacial and Holocene sediments in the southwest of Cheju Island, East China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 422: 25-35.
[10] Salgueiro E, Naughton F, Voelker A H L,et al. Past circulation along the western Iberian margin: A time slice vision from the Last Glacial to the Holocene[J]. Quaternary Science Reviews, 2014, 106: 316-329.
[11] Huang Yuanhui, Ge Shulan, Shi Xuefa, et al.An age model reconstruction of Core BR07 from the northern continental slope of the Bering Sea[J]. Acta Oceanologica Sinica, 2013, 35(6): 67-74.
[黄元辉, 葛淑兰, 石学法, 等. 白令海北部陆坡BR07孔年龄框架重建[J]. 海洋学报, 2013, 35(6): 67-74.]
[12] Kusch S, Rethemeyer J, Schefu β E, et al.Controls on the age of vascular plant biomarkers in Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2010, 74(24): 7 031-7 047.
[13] Wang Yong, Shen Ji, Wu Jian, et al.Hard-water effect correction of lacustrine sediment ages using the relationship between 14C levels in lake waters and in the atmosphere: The case of Lake Qinghai[J]. Journal of Lake Sciences, 2007, 19(5): 504-508.
[汪勇, 沈吉, 吴健, 等. 湖泊沉积物14C年龄硬水效应校正初探——以青海湖为例[J]. 湖泊科学, 2007, 19(5): 504-508.]
[14] Hou J, Huang Y, Brodsky C, et al.Radiocarbon dating of individual Lignin Phenols: A new approach for establishing chronology of late Quaternary lake sediments[J]. Analytical Chemistry, 2010, 82(17): 7 119-7 126.
[15] Vonk J E, Sánchez-García L, Semiletov I, et al.Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea[J]. Biogeosciences, 2010, 7(10): 3 153-3 166.
[16] Drenzek N J, Montluçon D B, Yunker M B, et al.Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular 13C and 14C measurements[J]. Marine Chemistry, 2007, 103(1/2): 146-162.
[17] Tao S, Eglinton T I, Montluçon D B, et al.Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance[J]. Earth and Planetary Science Letters, 2015, 414: 77-86.
[18] Tao S, Eglinton T I, Montluçon D B, et al.Diverse origins and pre-depositional histories of organic matter in contemporary Chinese marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2016, 191: 70-88.
[19] Matsumoto K, Uchida M, Kawamura K, et al.Radiocarbon variability of fatty acids in semi-urban aerosol samples[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223(Suppl.C): 842-847.
[20] Eglinton T I, Eglinton G, Dupont L, et al.Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(8): 1-27.
[21] Hedges J I.Global biogeochemical cycles: Progress and problems[J]. Marine Chemistry, 1992, 39(1): 67-93.
[22] Villinski J C, Hayes J M, Brassell S C, et al.Sedimentary sterols as biogeochemical indicators in the Southern Ocean[J]. Organic Geochemistry, 2008, 39(5): 567-588.
[23] Galy V, Eglinton T.Protracted storage of biospheric carbon in the Ganges-Brahmaputra Basin[J]. Nature Geosci, 2011, 4(12): 843-847.
[24] Martin E E, Ingalls A E, Richey J E, et al. Age of riverine carbon suggests rapid export of terrestrial primary production in tropics [J]. Geophysical Research Letters, 2013, 40(21): 2013 GL057450.
[25] Meyers P A.Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213-250.
[26] Eglinton T I, Aluwihare L I, Bauer J E, et al.Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating[J]. Analytical Chemistry, 1996, 68(5): 904-912.
[27] Eglinton T I, Bryan C, Benitez-Nelson, et al.Variability in radiocarbon ages of individual organic compounds from marine sediments[J]. Science, 1997, 277:796-799.
[28] Drenzek N J, Hughen K A, Montluçon D B, et al.A new look at old carbon in active margin sediments[J]. Geology, 2009, 37(3): 239-242.
[29] Gustafsson Ö, Van Dongen B E, Vonk J E,et al. Widespread release of old carbon across the Siberian Arctic echoed by its large rivers[J]. Biogeosciences, 2011, 8(6): 1 737-1 743.
[30] Feng X, Benitez-Nelson B C, Monrlucon D B,et al. 14C and 13C characteristics of higher plant biomarkers in Washington margin surface sediments[J]. Geochimica et Cosmochimca Acta, 2013, 105: 14-30.
[31] Feng X, Vonk J E, Dongen B E V,et al. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins[J]. Proceedings of the National Academy of Sciences, 2013, 110(35): 14 168-14 173.
[32] Uchikawa J, Brian N P, Jane E.Schoonmaker,et al. Direct application of compound-specific radiocarbon analysis of leaf waxes to establish lacustrine sediment chronology[J]. Journal of Paleolimnology, 2008, 39(1): 43-60.
[33] Matsumoto K, Kawamura K, Uchida M, et al.Compound specific radiocarbon and δ13C measurements of fatty acids in a continental aerosol sample[J]. Geophysical Research Letters, 2001, 28(24): 4 587-4 590.
[34] Xu L, Zheng M, Ding X, et al.Modern and fossil contributions to polycyclic aromatic hydrocarbons in PM2.5 from north Birmingham, Alabama in the southeastern U.S[J]. Environmental Science & Technology, 2012, 46(3): 1 422-1 429.
[35] Cowie B R, Greenberg B M, Slater G F.Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance 14C analysis of PLFA[J]. Environmental Science & Technology, 2010, 44(7): 2 322-2 327.
[36] Ruff M, Wacker L, Gäggeler H, et al.A gas ion source for radiocarbon measurements at 200 kV[J]. Radiocarbon, 2007, 49(2): 307-314.
[37] Shah S, Pearson A.Ultra-microscale (5-25 μg C) analysis of individual lipids by 14C AMS: Assessment and correction for sample processing blanks[J]. Radiocarbon, 2007, 49(1): 69-82.
[38] Ziolkowski L A, Druffel E R M. Quantification of extraneous carbon during compound specific radiocarbon analysis of black carbon[J]. Analytical Chemistry, 2009, 81(24): 10 156-10 161.
[39] Ingalls A E, Ellis E E, Santos G M, et al.HPLC purification of higher plant-dervied lignin phenols for compound specific radiocarbon analysis[J]. Analytical Chemistry, 2010, 82(21): 8 931-8 938.
[40] Santos R A L D, Prange M, Castañeda I S, et al. Glacial-interglacial variability in Atlantic meridional overturning circulation and thermocline adjustments in the tropical North Atlantic[J]. Earth and Planetary Science Letters, 2010, 300: 407-414.
[41] Mandalakis M, Gustafsson Ö.Optimization of a preparative capillary gas chromatography-mass spectrometry system for the isolation and harvesting of individual polycyclic aromatic hydrocarbons[J]. Journal of Chromatography A, 2003, 996(1/2): 163-172.
[42] Ball G I, Xu L, Mcnichol A P, et al. A two-dimensional, heart-cutting preparative gas chromatograph facilitates highly resolved single-compound isolations with utility towards compound-specific natural abundance radiocarbon (14C) analyses [J]. Journal of Chromatography A, 2012, 1 220: 122-131.
[43] Sciarrone D, Pantò S, Donato P, et al. Improving the productivity of a multidimensional chromatographic preparative system by collecting pure chemicals after each of three chromatographic dimensions [J]. Journal of Chromatography A, 2016, 1 475: 80-85.
[44] Müller P J, Kirst G, Ruhland G, et al.Calibration of the alkenone paleotemperature index based on core-tops from the eastern South Atlantic and the global ocean (60°N~60°S)[J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1 757-1 772.
[45] Xing L, Zhang H, Yuan Z, et al.Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10): 1 106-1 115.
[46] Zhang Z, Zhao M, Eglinton G, et al.Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr[J]. Quaternary Science Reviews, 2006, 25(5/6): 575-594.
[47] Calvo E, Pelejero C, Logan G A.Pressurized liquid extraction of selected molecular biomarkers in deep sea sediments used as proxies in paleoceanography[J]. Journal of Chromatography A, 2003, 989(2): 197-205.
[48] Birkholz A, Smittenberg R H, Hajdas I, et al.Isolation and compound specific radiocarbon dating of terrigenous branched glycerol dialkyl glycerol tetraethers (brGDGTs)[J]. Organic Geochemistry, 2013, 60: 9-19.
[49] Ohkouchi N, Xu L, Reddy C M, et al.Radiocarbon dating of alkenones from marine sediments: I. Isolation protocol[J]. Radiocarbon, 2005, 47(3): 401-412.
[50] Wacker L, Lippold J, Molnár M, et al.Towards radiocarbon dating of single foraminifera with a gas ion source[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294(Suppl.C): 307-310.
[51] Wacker L, Fahrni S M, Hajdas I, et al.A versatile gas interface for routine radiocarbon analysis with a gas ion source[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 315-319.
[52] Smith A M, Hua Q, Williams A, et al.Developments in micro-sample 14C AMS at the ANTARES AMS facility[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7): 919-923.
[53] Mollenhauer G, Rethemeyer J.Compound-specific radiocarbon analysis—Analytical challenges and applications[J]. IOP Conference Series: Earth and Environmental Science, 2009, 5(1): 1-9.
[54] Zencak Z, Reddy C M, Teuten E L, et al.Evaluation of gas chromatographic isotope fractionation and process contamination by carbon in compound-specific radiocarbon analysis[J]. Analytical Chemistry, 2007, 79(5): 2 042-2 049.
[55] Buchholz B A, Freeman S P H T, Haack K W, et al. Tips and traps in the 14C bio-AMS preparation laboratory[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 172(1): 404-408.
[56] Ingalls A E, Shah S R, Hansman R L, et al.Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon[J]. Proceedings of the National Academy of Sciences, 2006, 103(17): 6 442-6 447.
[57] Coppola A I, Ziolkowski L A, Druffel E R M. Extraneous carbon assessments in radiocarbon measurements of black carbon in environmental matrices[J]. Radiocarbon, 2013, 55(3): 1 631-1 640.
[58] Tao Shuqin. The Composition,Isotopic Characteristics and Sources of Organic Matter in the Yellow River Suspended Particulates and Adjacent Bohai and Yellow Sea Suface Sediments[D]. Qingdao: Ocean University of China,2014.
[陶舒琴. 黄河颗粒态及渤、黄海现代沉积有机质的组成和同位素分布特征及源项解析[D]. 青岛:中国海洋大学, 2014.]
[59] Santos G M, Southon J R, Griffin S, et al.Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility[J]. Nuclear Instruments and Methods in Physics Research B, 2007, 259: 293-302.
[60] Pearson A.Biogeochemical Applications of Compound-Specific Radiocarbon Analysis[R]. Cambridge: Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1999.
[61] Hayes J M, Freeman K H, Popp B N, et al.Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes[J]. Organic Geochemistry, 1990, 16(4/6): 1 115-1 128.
[62] Caimi R J, Brenna J T.Quantitative evaluation of carbon isotopic fractionation during reversed-phase high-performance liquid chromatography[J]. Journal of Chromatography A, 1997, 757(1): 307-310.
[63] Holmstrand H, Mandalakis M, Zencak Z, et al. Chlorine isotope fractionation of a semi-volatile organochlorine compound during preparative megabore-column capillary gas chromatography [J]. Journal of Chromatography A, 2006, 1 103(1): 133-138.
[64] Stuiver M, Polach H A.Radiocarbon-discussion reporting of 14C data[J]. Radiocarbon, 1977, 19(3): 355-363.
[65] Mcnichol A, Ertel J, Eglinton T I.The radiocarbon content of individual lignin-derived phenols: Technique and initial results[J]. Radiocarbon, 2000, 42(2): 219-227.
[66] Pearson A, Mcnichol A P, Benitez-Nelson B C, et al. Origins of lipid biomarkers in Santa Monica Basin surface sediment: A case study using compound-specific Δ14C analysis[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3 123-3 137.
[67] Corr L T, Berstan R, Evershed R P.Optimisation of derivatisation procedures for the determination of δ13C values of amino acids by gas chromatography/combustion/isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(23): 3 759-3 771.
[68] Shah S R, Mollenhauer G, Ohkouchi N, et al.Origins of archaeal tetraether lipids in sediments: Insights from radiocarbon analysis[J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4 577-4 594.
[69] Smittenberg R H, Hopmans E C, Schouten S, et al.Rapid isolation of biomarkers for compound specific radiocarbon dating using high-performance liquid chromatography and flow injection analysis-atmospheric pressure chemical ionisation mass spectrometry[J]. Journal of Chromatography A, 2002, 978(1): 129-140.
[70] Bour A L, Walker B D, Broek T A B, et al. Radiocarbon analysis of individual Amino Acids: Carbon blank quantification for a small-sample high-pressure liquid chromatography purification method[J]. Analytical Chemistry, 2016, 88(7): 3 521-3 528.
[71] Hopmans E C, Weijers J W H, Schefu B E,et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1/2): 107-116.
[72] Kim J H, Schouten S, Buscail R, et al.Origin and distribution of terrestrial organic matter in the NW Mediterranean (Gulf of Lions): Exploring the newly developed BIT index[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(11),doi:10.1029/2006GC001306.
[73] Xing L, Zhao M, Gao W, et al.Multiple proxy estimates of source and spatial variation in organic matter in surface sediments from the southern Yellow Sea[J]. Organic Geochemistry, 2014, 76: 72-81.
[74] Sinninghe Damsté J S, Ossebaar J, Abbas B, et al. Fluxes and distribution of tetraether lipids in an equatorial African lake: Constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings[J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4 232-4 249.
[75] Weijers J W H, Schefu B E, Kim J H, et al. Constraints on the sources of branched tetraether membrane lipids in distal marine sediments[J]. Organic Geochemistry, 2014, 72: 14-22.
[76] Zigah P K, Minor E C, Werne J P.Radiocarbon and stable-isotope geochemistry of organic and inorganic carbon in Lake Superior[J]. Global Biogeochemical Cycles, 2012, 26(1),doi:10.1029/2011GB004132.
[1] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[2] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[3] 侯笛,张俊杰,邢磊,周阳. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2): 140-147.
[4] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[5] 陈中红, Moldowan J M,刘昭茜. 东营凹陷生物降解稠油甾烷分子的选择蚀变[J]. 地球科学进展, 2012, 27(10): 1108-1114.
[6] 赵军,姚鹏,于志刚. 海洋沉积物中色素生物标志物研究进展[J]. 地球科学进展, 2010, 25(9): 950-959.
[7] 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9): 981-989.
[8] 马安来;张水昌;张大江;金之钧. 生物降解原油地球化学研究新进展[J]. 地球科学进展, 2005, 20(4): 449-454.
[9] 吴 莹,张 经,唐运千. 中国海洋有机地球化学研究的若干进展[J]. 地球科学进展, 1999, 14(3): 256-261.
阅读次数
全文


摘要