1 |
SchopeJ W, BonnieM P. Early Archean (3.3-Billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia[J]. Science, 1987, 237(4 810): 70-73.
|
2 |
TomitaniA, KnollA H, CavanaughC M, et al. The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives[J]. Proceedings of the National Academy of Sciences, 2006, 103(14): 5 442-5 447.
|
3 |
RippkaE, DeruellesJ, WaterburyN B. Generic assignments, strain histories and properties of pure cultures of Cyanobacteria[J]. Journal of General Microbiology, 1979, 111(1): 1-61.
|
4 |
KomárekJ. Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept)[J]. Hydrobiologia, 2010, 639(1): 245-259.
|
5 |
WilmotteA, HerdmanM. Bergey’s Manual of Systematics of Archaea and Bacteria[M]. Chichester, UK: John Wiley & Sons, Ltd., 2015: 1-9.
|
6 |
BaleN J, HopmansE C, ZellC, et al. Long chain glycolipids with pentose head groups as biomarkers for marine endosymbiotic heterocystous cyanobacteria[J]. Organic Geochemistry, 2015, 81: 1-7.
|
7 |
BauersachsT, TalbotH M, SidgwickF, et al. Lipid biomarker signatures as tracers for harmful cyanobacterial blooms in the Baltic Sea[J]. PLoS ONE, 2017, 12(10): e0186360.
|
8 |
BauersachsT, CompaoréJ, SeverinI, et al. Diazotrophic microbial community of coastal microbial mats of the southern North Sea[J]. Geobiology, 2011, 9(4): 349-359.
|
9 |
W?rmerL, CirésS, VelázquezD, et al. Cyanobacterial heterocyst glycolipids in cultures and environmental samples: Diversity and biomarker potential[J]. Limnology and Oceanography, 2012, 57(6): 1 775-1 788.
|
10 |
GallonJ R. Reconciling the incompatible: N2 fixation and O2[J]. New Phytologist, 2006, 122(4): 571-609.
|
11 |
GallonJ R. N2 fixation in phototrophs: Adaptation to a specialized way of life[J]. Plantand Soil, 2001, 230(1): 39-48.
|
12 |
Berman-FrankI, LundgrenP, FalkowskiP. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria[J]. Research in Microbiology, 2003, 154(3): 157-164.
|
13 |
ZehrJ P. Nitrogen fixation by marine cyanobacteria[J]. Trends in Microbiology, 2010, 19(4): 162-173.
|
14 |
WhiteA E, PrahlF G, LetelierR M, et al. Summer surface waters in the Gulf of California: Prime habitat for biological N2 fixation[J]. Global Biogeochemical Cycles, 2007, 21(2). DOI:10.1029/2006GB002779.
doi: 10.1029/2006GB002779
|
15 |
CarpenterE, MontoyaJ, BurnsJ, et al. Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean[J]. Marine Ecology Progress Series, 1999, 185: 273-283.
|
16 |
WolkC P. Heterocyst formation in Anaebena[C]//Burn Y V, ed. Prokaryotic Development. Washington DC: American Society for Microbiology Press, 2000: 83-104.
|
17 |
GiovannoniS J, TurnerS, OlsenG J, et al. Evolutionary relationships among cyanobacteria and green chloroplasts.[J]. Journal of Bacteriology, 1988, 170(8): 3 584-3 592.
|
18 |
ItemanI, RippkaR, Tandeau de MarsacN, et al. rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira[J]. Microbiology, 2002, 148(2): 481-496.
|
19 |
SchoutenS, VillarealT A, HopmansE C, et al. Endosymbiotic heterocystous cyanobacteria synthesize different heterocyst glycolipids than free-living heterocystous cyanobacteria[J]. Phytochemistry, 2013, 85: 115-121.
|
20 |
StalL J. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?[J]. Environmental Microbiology, 2009, 11(7): 1 632-1 645.
|
21 |
VillarealT A. Nitrogen-fixation by the cyanobacterial symbiont of the diatom genus Hemiaulus[J]. Marine Ecology Progress Series, 1991, 76(2): 201-204.
|
22 |
VillarealT A. Marine Nitrogen-Fixing Diatom-Cyanobacteria Symbioses[C]// Carpenter E J, ed. Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs. Dordrecht: Springer Netherlands, 1992: 163-175.
|
23 |
FosterR A, KuypersM M M, VagnerT, et al. Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses[J]. ISME Journal, 2011, 5(9): 1 484-1 493.
|
24 |
KumarK, Mella-HerreraR A, GoldenJ W. Cyanobacterial heterocysts[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(4): a000315.
|
25 |
WolkC P, SimonR D. Pigments and lipids of heterocysts[J]. Planta, 1969, 86(1): 92-97.
|
26 |
ShvarevD, NishiC N, MaldenerI. Glycolipid composition of the heterocyst envelope of Anabaena sp. PCC 7120 is crucial for diazotrophic growth and relies on the UDP-galactose 4-epimerase HgdA[J]. Microbiology Open, 2019, e811: 1-15.
|
27 |
NicolaisenK, HahnA, SchleiffE. The cell wall in heterocyst formation by Anabaena sp. PCC 7120 From vegetative cells to heterocysts[J]. Journal of Basic Microbiology, 2009, 49(1): 5-24.
|
28 |
WolkC P, ErnstA, ElhaiJ. Heterocyst metabolism and development[C]//Bryant D, ed. The Molecular Biology of Cyanobacteria. Dordrecht: Springer Netherlands, 1994: 769-823.
|
29 |
AltabetM A. Isotopic Tracers of the marine nitrogen cycle: Present and past[C]//Volkman J K, ed. Marine Organic Matter: Biomarkers,Isotopes and DNA. Berlin/Heidelberg: Springer, 2006, 2(3): 251-293.
|
30 |
ZhangC C, LaurentS, SakrS, et al. Heterocyst differentiation and pattern formation in cyanobacteria: A chorus of signals[J]. Molecular Microbiology, 2006, 59(2): 367-375.
|
31 |
YoonH S, GoldenJ W. PatS and products of nitrogen fixation control heterocyst pattern[J]. Journal of Bacteriology, 2001, 183(8): 2 605-2 613.
|
32 |
ThielT, PratteB. Effect on heterocyst differentiation of nitrogen fixation in vegetative cells of the Cyanobacterium Anabaena variabilis ATCC 29413[J]. Journal of Bacteriology, 2001, 183(1): 280-286.
|
33 |
FloresE, HerreroA, WolkC P, et al. Is the periplasm continuous in filamentous multicellular cyanobacteria?[J]. Trends in Microbiology, 2006, 14(10): 439-443.
|
34 |
Muro-PastorA M, HessW R. Heterocyst differentiation: From single mutants to global approaches[J]. Trends in Microbiology, 2012, 20(11): 548-557.
|
35 |
DonzeM, HavemanJ, SchiereckP. Absence of photosystem 2 in heterocysts of the blue-green alga Anabaena[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1972, 256(1): 157-161.
|
36 |
CuminoA C, MarcozziC, BarreiroR, et al. Carbon cycling in Anabaena sp. PCC 7120. Sucrose synthesis in the heterocysts and possible role in Nitrogen Fixation[J]. Plant Physiology, 2007, 143(3): 1 385-1 397.
|
37 |
MarcozziC, CuminoA C, SalernoG L. Role of NtcA, a cyanobacterial global nitrogen regulator, in the regulation of sucrose metabolism gene expression in Anabaena sp. PCC 7120[J]. Archives of Microbiology, 2009, 191(3): 255-263.
|
38 |
Marti?n-FigueroaE, NavarroF, FlorencioF J. The GS-GOGAT pathway is not operative in the heterocysts. Cloning and expression of glsF gene from the cyanobacterium Anabaena sp. PCC 7120[J]. FEBS Letters, 2000, 476(3): 282-286.
|
39 |
MeeksJ C, ElhaiJ. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states[J]. Microbiology and Molecular Biology Reviews, 2002, 66(1): 94-121.
|
40 |
NicholsB W, WoodB J B. New glycolipid specific to Nitrogen-fixing blue-green algae[J]. Nature, 1968, 217(5 130): 767-768.
|
41 |
WalsbyA E, NicholsB W. Lipid composition of heterocysts[J]. Nature, 1969, 221(5181): 673-674.
|
42 |
BryceT A, WeltiD, WalsbyA E, et al. Monohexoside derivatives of long-chain polyhydroxy alcohols: A novel class of glycolipid specific to heterocystous algae[J]. Phytochemistry, 1972, 11(1): 295-302.
|
43 |
LambeinF, WolkC P. Structural studies on the glycolipids from the envelope of the heterocyst of Anabaenacylindrica[J]. Biochemistry, 1973, 12(5): 791-798.
|
44 |
GambacortaA, SorienteA, TrinconeA, et al. Biosynthesis of the heterocyst glycolipids in the cyanobacterium Anabaena cylindrica[J]. Phytochemistry, 1995, 39(4): 771-774.
|
45 |
BaleN J, HopmansE C, DorhoutD, et al. A novel heterocyst glycolipid detected in a pelagic N2-fixing cyanobacterium of the genus Calothrix[J]. Organic Geochemistry, 2018, 123: 44-47.
|
46 |
BauersachsT, HopmansE C, CompaoréJ, et al. Rapid analysis of long-chain glycolipids in heterocystous cyanobacteria using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2009, 23(9): 1 387-1 394.
|
47 |
GambacortaA, TrinconeA, SorienteA, et al. Chemistry of glycolipids from the heterocysts of nitrogen-fixing cyanobacteria[J]. Current Topics in Phytochemistry, 1999, 2: 145-150.
|
48 |
GambacortaA, RomanoI, TrinconeA, et al. Heterocyst glycolipids from five nitrogen-fixing cyanobacteria[J]. Gazzetta Chimica Italiana, 1996, 126: 653-656.
|
49 |
GambacortaA, PagnottaE, RomanoI, et al. Heterocyst glycolipids from nitrogen-fixing cyanobacteria other than nostocaceae[J]. Phytochemistry, 1998, 48(5): 801-805.
|
50 |
DongL, JiaG, LiQ, et al. Intact polar glycosidic GDGTs in sediments settle from water column as evidenced from downcore sediment records[J]. Chemical Geology, 2018, 501: 12-18.
|
51 |
BauersachsT, MudimuO, SchulzR, et al. Distribution of long chain heterocyst glycolipids in N2-fixing cyanobacteria of the order Stigonematales[J]. Phytochemistry, 2014, 98: 145-150.
|
52 |
BauersachsT, CompaoréJ, HopmanSE C, et al. Distribution of heterocyst glycolipids in cyanobacteria[J]. Phytochemistry, 2009, 70(17/18): 2 034-2 039.
|
53 |
AwaiK, WolkC P. Identification of the glycosyl transferase required for synthesis of the principal glycolipid characteristic of heterocysts of Anabaena sp. strain PCC 7120[J]. FEMS Microbiology Letters, 2007, 266(1): 98-102.
|
54 |
BaleN, DE VRIESS, HopmansE C, et al. A method for quantifying heterocyst glycolipids in biomass and sediments[J]. Organic Geochemistry, 2017, 110: 33-35.
|
55 |
SuutariM, LaaksoS. Microbial fatty acids and thermal adaptation[J]. Critical Reviews in Microbiology, 1994, 20(4): 285-328.
|
56 |
BauersachsT, StalL J, GregoM, et al. Temperature induced changes in the heterocyst glycolipid composition of N2 fixing heterocystous cyanobacteria[J]. Organic Geochemistry, 2014, 69: 98-105.
|
57 |
BauersachsT, RochelmeierJ, SchwarkL. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers[J]. Biogeosciences, 2015, 12(12): 3 741-3 751.
|
58 |
SollaiM, HopmansE C, BaleN J, et al. The Holocene sedimentary record of cyanobacterial glycolipids in the Baltic Sea: An evaluation of their application as tracers of past nitrogen fixation[J]. Biogeosciences, 2017, 14(24): 5 789-5 804.
|
59 |
BauersachsT, SpeelmanE N, HopmansE C, et al. Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteria[J]. Proceedings of the National Academy of Sciences, 2010, 107(45): 19 190-19 194.
|
60 |
KangM, HeL, FanD, et al. Assessment of sedimentary heterocyst glycolipids as tracers of freshwater input to the Changjiang Estuary and East China Sea[J]. Chemical Geology, 2019, 521: 39-48.
|
61 |
GruberN. The marine nitrogen cycle: Overview and challenges[C]//Capone D G, ed. Nitrogen in the Marine Environment. Oxford, UK: Elsevier, 2008.
|
62 |
SummonsR E, JahnkeL L, HopeJ M, et al. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis[J]. Nature, 1999, 400(6 744): 554-557.
|
63 |
KuypersM M M, BreugelY V, SchoutenS, et al. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events[J]. Geology, 2004, 32(10): 853.
|
64 |
WelanderP V, ColemanM L, SessionsA L, et al. Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes[J]. Proceedings of the National Academy of Sciences, 2010, 107(19): 8 537-8 542.
|
65 |
RashbyS E, SessionsA L, SummonsR E, et al. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph[J]. Proceedings of the National Academy of Sciences, 2007, 104(38): 15 099-15 104.
|
66 |
MackoS A, FogelM L, HareP E, et al. Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms[J]. Chemical Geology, 1987, 65(1): 79-92.
|
67 |
KempA E S, VillarealT A. High diatom production and export in stratified waters—A potential negative feedback to global warming[J]. Progress in Oceanography, 2013, 119: 4-23.
|
68 |
BaleN J, VIllarealT A, HopmansE C, et al. C5 glycolipids of heterocystous cyanobacteria track symbiont abundance in the diatom Hemiaulus hauckii across the tropical North Atlantic[J]. Biogeosciences, 2018, 15(4): 1 229-1 241.
|