地球科学进展 ›› 2019, Vol. 34 ›› Issue (9): 901 -911. doi: 10.11867/j.issn.1001-8166.2019.09.0901

综述与评述 上一篇    下一篇

固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展
康曼玉( ),贾国东( )   
  1. 同济大学 海洋地质国家重点实验室,上海 200092
  • 收稿日期:2019-06-12 修回日期:2019-08-09 出版日期:2019-09-10
  • 通讯作者: 贾国东 E-mail:kang_my@tongji.edu.cn;jiagd@tongji.edu.cn
  • 基金资助:
    国家重点研发计划项目“末次冰消期以来碳氮硫循环与全球变化的关系”(2016YFA0601104)

A biomarker of Diazotrophic Cyanobacteria: Heterocyst Glycolipids and Their Research Progress

Manyu Kang( ),Guodong Jia( )   

  1. State Key Laboratory of Marine Gelogy, Tongji University, Shanghai 200092, China
  • Received:2019-06-12 Revised:2019-08-09 Online:2019-09-10 Published:2019-11-15
  • Contact: Guodong Jia E-mail:kang_my@tongji.edu.cn;jiagd@tongji.edu.cn
  • About author:Kang Manyu(1994-), female, Xuzhou City, Jiangsu Province, Ph.D student. Research areas include biomarkers. E-mail: kang_my@tongji.edu.cn
  • Supported by:
    the State Key R&D Project “C;S element cycles since the last deglaciation and their relation with global change”(2016YFA0601104)

异形胞蓝细菌是重要的固氮微生物,广泛分布于淡水与海洋环境,其细胞壁内侧含有由糖苷基连接长链二醇、三醇、酮醇或酮二醇烷基而形成的糖脂,被称为异形胞糖脂(Heterocyst Glycolipids, HGs)。HGs是异形胞蓝细菌独特的生标化合物,其结构较为稳定,在淡水、海洋、微生物席及沉积物中均被检测到。对HGs生物地球化学研究起步较晚,但近年来进展较快,发现它们在异形胞蓝细菌的生物分类和环境示踪方面具有很大潜力。主要从生物及有机地球化学角度讲述蓝细菌异形细胞的分化机制和HGs结构性质,总结HGs在指示环境温度、异形胞蓝细菌群落演变、陆源有机质输入以及固氮活动中的应用情况,并对其在重建古海洋固氮活动以及古气候的重建等方面提出研究展望。

Heterocystous cyanobacteria are important diazotrophs commonly found in freshwater and ocean. They can produce special glycolipids known as Heterocyst Glycolipids (HGs) in their inner membrane layer. HGs are typically long-chain diols, triols, or hydroxyketones connected with a sugar moiety. HGs are unique biomarkers of heterocystous cyanobactria, which are relative stable and can be detected in lakes, marine systems, microbial mats and sediments. The study of HGs in biogeochemistry has not been carried out until recent years. HGs are proved to have great potential in indicating heterocystous cyanbacteria community and environment conditions. In this paper, the mechanism of cyanobacterial heterocyst differentiation and structure of HGs were introduced. In particular, emphasis was put on the application of HGs to infer environmental temperature, heterocystous cyanobacteria community, terrestrial organic input and nitrogen fixationin. The prospect of future study was also proposed.

中图分类号: 

图1 基于细菌16S rRNA序列构建的蓝细菌系统发育进化树
罗马数字I-V为蓝细菌形态学分类(Subsection I~V);黑色方框:异形胞固氮蓝细菌;N及灰色标识:非异形胞固氮蓝细菌;无标识:非固氮蓝细菌 [ 2 ]
Fig.1 The phylogenetic trees of cyanobacteria inferred from 16S rRNA
Roman numerals denote cyanobacteria subsections I~V. Black box: Heterocystous diazotropic cyanobacteria; Grey shadow and N: Nonheterocystous diazotrophic cyanobacteria; Non-shaded: Non-diazotrophic cyanobacteria [ 2 ]
图2 异形胞蓝细菌Anabaena及相关机制示意图
(a) Anavaena藻丝 [ 26 ];(b) 异形细胞透射电摬图 [ 24 ];(c) 异形细胞分化示意图 [ 27 ];(d) 异形细胞与营养细胞物质交换示意图 [ 34 ];GL, HGL:糖脂层;PS, HEP:多聚糖层;C:极性藻青藻颗粒;H:异形细胞
Fig.2 Anabaena and related metabolites model
(a) Filament of Anabaena [ 26 ];(b) Transmission electron micrograph of hetercyst [ 24 ]; (c) Heterocyst formation diagram [ 27 ]; (d) Transport of metabolites between heterocyst and vegetative cell [ 34 ]. GL, HGL: Glycolipids layer; PS, HEP: Polysaccharide layer; C: Polar cyanophycin granule; H: Heterocyst
图3 HGs结构图[ 19 , 45 , 49 ]
Fig.3 HGs structures[ 19 , 45 , 49 ]
图4 西班牙淡水及极地环境样品中HG26与温度呈现“S”型曲线关系[ 9 ]
Fig.4 HG26 index vs. temperature in Spanish freshwaters and polar environment samples and fitted sigmoidal curve[ 9 ]
图5 波罗的海沉积柱中HGs分布,及其所反映的全新世以来的不同水文时期[ 58 ]
Fig.5 The distribution of HGs in a sediment core in Baltic Sea and related hydrographical phases over the Holocene[ 58 ]
图6 东地中海沉积柱中环境参数及HGs含量变化分布[ 59 ]
HGs含量增加与δ 15N的负偏同时发生,代表固氮活动的增强
Fig.6 The bulk properties and HGs contents of in a sediment core in the Eastern Mediterranean[ 59 ]
The increased contents of HGs coincide with a decrease of δ 15N suggesting enhanced dinitrogen fixation
1 SchopeJ W, BonnieM P. Early Archean (3.3-Billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia[J]. Science, 1987, 237(4 810): 70-73.
2 TomitaniA, KnollA H, CavanaughC M, et al. The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives[J]. Proceedings of the National Academy of Sciences, 2006, 103(14): 5 442-5 447.
3 RippkaE, DeruellesJ, WaterburyN B. Generic assignments, strain histories and properties of pure cultures of Cyanobacteria[J]. Journal of General Microbiology, 1979, 111(1): 1-61.
4 KomárekJ. Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept)[J]. Hydrobiologia, 2010, 639(1): 245-259.
5 WilmotteA, HerdmanM. Bergey’s Manual of Systematics of Archaea and Bacteria[M]. Chichester, UK: John Wiley & Sons, Ltd., 2015: 1-9.
6 BaleN J, HopmansE C, ZellC, et al. Long chain glycolipids with pentose head groups as biomarkers for marine endosymbiotic heterocystous cyanobacteria[J]. Organic Geochemistry, 2015, 81: 1-7.
7 BauersachsT, TalbotH M, SidgwickF, et al. Lipid biomarker signatures as tracers for harmful cyanobacterial blooms in the Baltic Sea[J]. PLoS ONE, 2017, 12(10): e0186360.
8 BauersachsT, CompaoréJ, SeverinI, et al. Diazotrophic microbial community of coastal microbial mats of the southern North Sea[J]. Geobiology, 2011, 9(4): 349-359.
9 W?rmerL, CirésS, VelázquezD, et al. Cyanobacterial heterocyst glycolipids in cultures and environmental samples: Diversity and biomarker potential[J]. Limnology and Oceanography, 2012, 57(6): 1 775-1 788.
10 GallonJ R. Reconciling the incompatible: N2 fixation and O2[J]. New Phytologist, 2006, 122(4): 571-609.
11 GallonJ R. N2 fixation in phototrophs: Adaptation to a specialized way of life[J]. Plantand Soil, 2001, 230(1): 39-48.
12 Berman-FrankI, LundgrenP, FalkowskiP. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria[J]. Research in Microbiology, 2003, 154(3): 157-164.
13 ZehrJ P. Nitrogen fixation by marine cyanobacteria[J]. Trends in Microbiology, 2010, 19(4): 162-173.
14 WhiteA E, PrahlF G, LetelierR M, et al. Summer surface waters in the Gulf of California: Prime habitat for biological N2 fixation[J]. Global Biogeochemical Cycles, 2007, 21(2). DOI:10.1029/2006GB002779.
doi: 10.1029/2006GB002779    
15 CarpenterE, MontoyaJ, BurnsJ, et al. Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean[J]. Marine Ecology Progress Series, 1999, 185: 273-283.
16 WolkC P. Heterocyst formation in Anaebena[C]//Burn Y V, ed. Prokaryotic Development. Washington DC: American Society for Microbiology Press, 2000: 83-104.
17 GiovannoniS J, TurnerS, OlsenG J, et al. Evolutionary relationships among cyanobacteria and green chloroplasts.[J]. Journal of Bacteriology, 1988, 170(8): 3 584-3 592.
18 ItemanI, RippkaR, Tandeau de MarsacN, et al. rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira[J]. Microbiology, 2002, 148(2): 481-496.
19 SchoutenS, VillarealT A, HopmansE C, et al. Endosymbiotic heterocystous cyanobacteria synthesize different heterocyst glycolipids than free-living heterocystous cyanobacteria[J]. Phytochemistry, 2013, 85: 115-121.
20 StalL J. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?[J]. Environmental Microbiology, 2009, 11(7): 1 632-1 645.
21 VillarealT A. Nitrogen-fixation by the cyanobacterial symbiont of the diatom genus Hemiaulus[J]. Marine Ecology Progress Series, 1991, 76(2): 201-204.
22 VillarealT A. Marine Nitrogen-Fixing Diatom-Cyanobacteria Symbioses[C]// Carpenter E J, ed. Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs. Dordrecht: Springer Netherlands, 1992: 163-175.
23 FosterR A, KuypersM M M, VagnerT, et al. Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses[J]. ISME Journal, 2011, 5(9): 1 484-1 493.
24 KumarK, Mella-HerreraR A, GoldenJ W. Cyanobacterial heterocysts[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(4): a000315.
25 WolkC P, SimonR D. Pigments and lipids of heterocysts[J]. Planta, 1969, 86(1): 92-97.
26 ShvarevD, NishiC N, MaldenerI. Glycolipid composition of the heterocyst envelope of Anabaena sp. PCC 7120 is crucial for diazotrophic growth and relies on the UDP-galactose 4-epimerase HgdA[J]. Microbiology Open, 2019, e811: 1-15.
27 NicolaisenK, HahnA, SchleiffE. The cell wall in heterocyst formation by Anabaena sp. PCC 7120 From vegetative cells to heterocysts[J]. Journal of Basic Microbiology, 2009, 49(1): 5-24.
28 WolkC P, ErnstA, ElhaiJ. Heterocyst metabolism and development[C]//Bryant D, ed. The Molecular Biology of Cyanobacteria. Dordrecht: Springer Netherlands, 1994: 769-823.
29 AltabetM A. Isotopic Tracers of the marine nitrogen cycle: Present and past[C]//Volkman J K, ed. Marine Organic Matter: Biomarkers,Isotopes and DNA. Berlin/Heidelberg: Springer, 2006, 2(3): 251-293.
30 ZhangC C, LaurentS, SakrS, et al. Heterocyst differentiation and pattern formation in cyanobacteria: A chorus of signals[J]. Molecular Microbiology, 2006, 59(2): 367-375.
31 YoonH S, GoldenJ W. PatS and products of nitrogen fixation control heterocyst pattern[J]. Journal of Bacteriology, 2001, 183(8): 2 605-2 613.
32 ThielT, PratteB. Effect on heterocyst differentiation of nitrogen fixation in vegetative cells of the Cyanobacterium Anabaena variabilis ATCC 29413[J]. Journal of Bacteriology, 2001, 183(1): 280-286.
33 FloresE, HerreroA, WolkC P, et al. Is the periplasm continuous in filamentous multicellular cyanobacteria?[J]. Trends in Microbiology, 2006, 14(10): 439-443.
34 Muro-PastorA M, HessW R. Heterocyst differentiation: From single mutants to global approaches[J]. Trends in Microbiology, 2012, 20(11): 548-557.
35 DonzeM, HavemanJ, SchiereckP. Absence of photosystem 2 in heterocysts of the blue-green alga Anabaena[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1972, 256(1): 157-161.
36 CuminoA C, MarcozziC, BarreiroR, et al. Carbon cycling in Anabaena sp. PCC 7120. Sucrose synthesis in the heterocysts and possible role in Nitrogen Fixation[J]. Plant Physiology, 2007, 143(3): 1 385-1 397.
37 MarcozziC, CuminoA C, SalernoG L. Role of NtcA, a cyanobacterial global nitrogen regulator, in the regulation of sucrose metabolism gene expression in Anabaena sp. PCC 7120[J]. Archives of Microbiology, 2009, 191(3): 255-263.
38 Marti?n-FigueroaE, NavarroF, FlorencioF J. The GS-GOGAT pathway is not operative in the heterocysts. Cloning and expression of glsF gene from the cyanobacterium Anabaena sp. PCC 7120[J]. FEBS Letters, 2000, 476(3): 282-286.
39 MeeksJ C, ElhaiJ. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states[J]. Microbiology and Molecular Biology Reviews, 2002, 66(1): 94-121.
40 NicholsB W, WoodB J B. New glycolipid specific to Nitrogen-fixing blue-green algae[J]. Nature, 1968, 217(5 130): 767-768.
41 WalsbyA E, NicholsB W. Lipid composition of heterocysts[J]. Nature, 1969, 221(5181): 673-674.
42 BryceT A, WeltiD, WalsbyA E, et al. Monohexoside derivatives of long-chain polyhydroxy alcohols: A novel class of glycolipid specific to heterocystous algae[J]. Phytochemistry, 1972, 11(1): 295-302.
43 LambeinF, WolkC P. Structural studies on the glycolipids from the envelope of the heterocyst of Anabaenacylindrica[J]. Biochemistry, 1973, 12(5): 791-798.
44 GambacortaA, SorienteA, TrinconeA, et al. Biosynthesis of the heterocyst glycolipids in the cyanobacterium Anabaena cylindrica[J]. Phytochemistry, 1995, 39(4): 771-774.
45 BaleN J, HopmansE C, DorhoutD, et al. A novel heterocyst glycolipid detected in a pelagic N2-fixing cyanobacterium of the genus Calothrix[J]. Organic Geochemistry, 2018, 123: 44-47.
46 BauersachsT, HopmansE C, CompaoréJ, et al. Rapid analysis of long-chain glycolipids in heterocystous cyanobacteria using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2009, 23(9): 1 387-1 394.
47 GambacortaA, TrinconeA, SorienteA, et al. Chemistry of glycolipids from the heterocysts of nitrogen-fixing cyanobacteria[J]. Current Topics in Phytochemistry, 1999, 2: 145-150.
48 GambacortaA, RomanoI, TrinconeA, et al. Heterocyst glycolipids from five nitrogen-fixing cyanobacteria[J]. Gazzetta Chimica Italiana, 1996, 126: 653-656.
49 GambacortaA, PagnottaE, RomanoI, et al. Heterocyst glycolipids from nitrogen-fixing cyanobacteria other than nostocaceae[J]. Phytochemistry, 1998, 48(5): 801-805.
50 DongL, JiaG, LiQ, et al. Intact polar glycosidic GDGTs in sediments settle from water column as evidenced from downcore sediment records[J]. Chemical Geology, 2018, 501: 12-18.
51 BauersachsT, MudimuO, SchulzR, et al. Distribution of long chain heterocyst glycolipids in N2-fixing cyanobacteria of the order Stigonematales[J]. Phytochemistry, 2014, 98: 145-150.
52 BauersachsT, CompaoréJ, HopmanSE C, et al. Distribution of heterocyst glycolipids in cyanobacteria[J]. Phytochemistry, 2009, 70(17/18): 2 034-2 039.
53 AwaiK, WolkC P. Identification of the glycosyl transferase required for synthesis of the principal glycolipid characteristic of heterocysts of Anabaena sp. strain PCC 7120[J]. FEMS Microbiology Letters, 2007, 266(1): 98-102.
54 BaleN, DE VRIESS, HopmansE C, et al. A method for quantifying heterocyst glycolipids in biomass and sediments[J]. Organic Geochemistry, 2017, 110: 33-35.
55 SuutariM, LaaksoS. Microbial fatty acids and thermal adaptation[J]. Critical Reviews in Microbiology, 1994, 20(4): 285-328.
56 BauersachsT, StalL J, GregoM, et al. Temperature induced changes in the heterocyst glycolipid composition of N2 fixing heterocystous cyanobacteria[J]. Organic Geochemistry, 2014, 69: 98-105.
57 BauersachsT, RochelmeierJ, SchwarkL. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers[J]. Biogeosciences, 2015, 12(12): 3 741-3 751.
58 SollaiM, HopmansE C, BaleN J, et al. The Holocene sedimentary record of cyanobacterial glycolipids in the Baltic Sea: An evaluation of their application as tracers of past nitrogen fixation[J]. Biogeosciences, 2017, 14(24): 5 789-5 804.
59 BauersachsT, SpeelmanE N, HopmansE C, et al. Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteria[J]. Proceedings of the National Academy of Sciences, 2010, 107(45): 19 190-19 194.
60 KangM, HeL, FanD, et al. Assessment of sedimentary heterocyst glycolipids as tracers of freshwater input to the Changjiang Estuary and East China Sea[J]. Chemical Geology, 2019, 521: 39-48.
61 GruberN. The marine nitrogen cycle: Overview and challenges[C]//Capone D G, ed. Nitrogen in the Marine Environment. Oxford, UK: Elsevier, 2008.
62 SummonsR E, JahnkeL L, HopeJ M, et al. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis[J]. Nature, 1999, 400(6 744): 554-557.
63 KuypersM M M, BreugelY V, SchoutenS, et al. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events[J]. Geology, 2004, 32(10): 853.
64 WelanderP V, ColemanM L, SessionsA L, et al. Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes[J]. Proceedings of the National Academy of Sciences, 2010, 107(19): 8 537-8 542.
65 RashbyS E, SessionsA L, SummonsR E, et al. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph[J]. Proceedings of the National Academy of Sciences, 2007, 104(38): 15 099-15 104.
66 MackoS A, FogelM L, HareP E, et al. Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms[J]. Chemical Geology, 1987, 65(1): 79-92.
67 KempA E S, VillarealT A. High diatom production and export in stratified waters—A potential negative feedback to global warming[J]. Progress in Oceanography, 2013, 119: 4-23.
68 BaleN J, VIllarealT A, HopmansE C, et al. C5 glycolipids of heterocystous cyanobacteria track symbiont abundance in the diatom Hemiaulus hauckii across the tropical North Atlantic[J]. Biogeosciences, 2018, 15(4): 1 229-1 241.
[1] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[2] 侯笛,张俊杰,邢磊,周阳. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2): 140-147.
[3] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[4] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[5] 陈中红, Moldowan J M,刘昭茜. 东营凹陷生物降解稠油甾烷分子的选择蚀变[J]. 地球科学进展, 2012, 27(10): 1108-1114.
[6] 苏延桂,李新荣,赵昕,李爱霞,陈应武. 不同类型生物土壤结皮固氮活性及对环境因子的响应研究[J]. 地球科学进展, 2011, 26(3): 332-338.
[7] 赵军,姚鹏,于志刚. 海洋沉积物中色素生物标志物研究进展[J]. 地球科学进展, 2010, 25(9): 950-959.
[8] 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9): 981-989.
[9] 马安来;张水昌;张大江;金之钧. 生物降解原油地球化学研究新进展[J]. 地球科学进展, 2005, 20(4): 449-454.
[10] 侯建军;黄邦钦. 海洋蓝细菌生物固氮的研究进展[J]. 地球科学进展, 2005, 20(3): 312-319.
[11] 吴 莹,张 经,唐运千. 中国海洋有机地球化学研究的若干进展[J]. 地球科学进展, 1999, 14(3): 256-261.
阅读次数
全文


摘要