[1] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(9): 859-869. [2] Archer D, Winguth A, Lea D, et al. What caused the glacial/interglacial atmospheric pCO2 cycles?[J]. Reviews of Geophysics, 2000, 38(2): 159-189. [3] Hedges J I, Baldock J A, Gelinas Y, et al. Evidence for non-selective preservation of organic matter in sinking marine particles[J]. Nature,2001, 409(6 822): 801-804. [4] Armstrong R A, Lee C, Hedges J I, et al. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep-Sea Research Part II,2002, 49(1/3): 219-236. [5] Thunell R C, Miao Q, Calvert S E, et al. Glacial-Holocene biogenic sedimentation patterns in the south China sea: Productivity variations and surface water pCO2[J].Paleoceanography,1992, 7(2): 143-162. [6] Jian Zhimin, Wang Lvjiang, Kienast M. Late Quaternary surface paleoproductivity and variations of the east Asian monsoon in the south China sea[J].Quaternary Sciences,1999, (1): 32-40.[翦知湣, 王律江, Kienast M. 南海晚第四季表层生产力与东亚季风变迁[J]. 第四纪研究, 1999, (1): 32-40.] [7] Lin H L, Lai C T, Ting H C, et al. Late Pleistocene nutrients and sea surface productivity in the south China sea: A record of teleconnections with northern hemisphere events[J].Marine Geology,1999, 156(1/4): 197-210. [8] Loubere P. A multiproxy reconstruction of biological productivity and oceanography in the eastern equatorial Pacific for the past 30,000 years[J].Marine Micropaleontology,1999, 37(2): 173-198. [9] Ragueneau O, Treguer P, Leynaert A, et al. A review of the Si cycle in the modem ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J].Global and Planetary Change,2000, 26(4): 317-365. [10] Harris P G, Zhao M, Rosell-Mele A, et al. Chlorin accumulation rate as a proxy for Quaternary marine primary productivity[J].Nature,1996, 383(6 595): 63-65. [11] Welschmeyer N A,Lorenzen C J. Chlorophyll budgets: Zooplankton grazing and phytoplankton growth in a temperate fjord and the central Pacific gyres[J].Limnology and Oceanography,1985, 30(1): 1-21. [12] Longhurst A, Sathyendranath S, Platt T, et al. An estimate of global primary production in the ocean from satellite radiometer data[J].Journal of Plankton Research,1995, 17(6): 1 245-1 271. [13] Eckardt C B, Pearce G E S, Keely B J, et al. A widespread chlorophyll transformation pathway in the aquatic environment[J].Organic Geochemistry,1992, 19(1/3): 217-227. [14] Furlong E T, Carpenter R. Pigment preservation and remineralization in oxic coastal marine sediments[J].Geochimica et Cosmochimica Acta,1988, 52(1): 87-99. [15] Calvert S E, Pedersen T F. Organic matter accumulation, remineralization and burial in an anoxic coastal sediment[C]//Whelan J K, Farrington J W, eds. Organic Matter: Productivity, Accumulation and Preservation in Recent and Ancient Sediments. New York: Columbia University Press, 1992: 231-263. [16] Repeta D J, McCaffrey M A, Farrington J W. Organic geochemistry as a tool to study upwelling systems: Recent results from the Peru and Namibian shelves[C]//Summerhayes C P, Prell W L,Emeis K C, eds. Upwelling Systems: Evolution since the Early Miocene. London: Geological Society, 1992: 257-272. [17] Summerhayes C P, Kroon D, Rosell-Mele A, et al. Variability in the Benguela current upwelling system over the past 70,000 years[J].Progress in Oceanography,1995, 35(3): 207-251. [18] Altabet M A, Higginson M J, Murray D W. The effect of millennial-scale changes in Arabian sea denitrification on atmospheric CO2[J]. Nature,2002, 415(6 868): 159-162. [19] Chen R F, Jiang Y, Zhao M. Solid-phase fluorescence determination of chlorins in marine sediments[J].Organic Geochemistry,2000, 31(12): 1 755-1 763. [20] Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: A review of recent research developments[J].Organic Geochemistry,1998, 29(5/7): 1 163-1 179. [21] Barrett S, Volkman J, Dunstan G, et al. Sterols of 14 species of marine diatoms (Bacillariophyta)[J].Journal of Phycology, 1995, 31(3): 360-368. [22] Boon J J, Rijpstra W I C, de Lange F, et al. Black sea sterol: A molecular fossil for dinoflagellate blooms[J].Nature,1979, 277(5 692): 125-127. [23] Zimmerman A R, Canuel E A. Sediment geochemical records of eutrophication in the mesohaline Chesapeake bay[J]. Limnology and Oceanography,2002, 47(4): 1 084-1 093. [24] Henriksson A S, Sarnthein M, Eglinton G, et al. Dimethylsulfide production variations over the past 200 k.y. in the equatorial Atlantic: A first estimate[J].Geology, 2000, 28(6): 499-502. [25] Ikehara M, Kawamura K, Ohkouchi N, et al. Variations of terrestrial input and marine productivity in the Southern ocean (48°S)during the last two deglaciations[J].Paleoceanography,2000, 15(2): 170-180. [26] Ishiwatari R, Yamada K, Matsumoto K, et al. Organic molecular and carbon isotopic records of the Japan sea over the past 30 kyr[J].Paleoceanography,1999, 14(2): 260-270. [27] Mangelsdorf K, Guntner U, Rullkotter J. Climatic and oceanographic variations on the California continental margin during the last 160 kyr[J].Organic Geochemistry,2000, 31(9): 829-846. [28] Eglinton T I, Conte M H, Eglinton G, et al. Proceedings of a workshop on alkenone-based paleoceanographic indicators[J]. Geochemistry Geophysics Geosystems, 2001, 2(1): doi: 10.1029/2000GC000122. [29] Volkman J K, Eglinton G, Corner E D S, et al. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi[J].Phytochemistry,1980, 19(12): 2 619-2 622. [30] Wakeham S G, Peterson M L, Hedges J I, et al. Lipid biomarker fluxes in the Arabian sea, with a comparison to the equatorial Pacific ocean[J].Deep-Sea Research Part II,2002, 49(12): 2 265-2 301. [31] Werne J P, Hollander D J, Lyons T W, et al. Climate-induced variations in productivity and planktonic ecosystem structure from the Younger Dryas to Holocene in the Cariaco basin, Venezuela[J].Paleoceanography,2000, 15(1): 19-29. [32] Higginson M J, Altabet M A. Initial test of the silicic acid leakage hypothesis using sedimentary biomarkers[J].Geophysical Research Letters,2004, 31(18): L18303, doi:18310.11029/12004GL020511. [33] Seki O, Ikehara M, Kawamura K, et al. Reconstruction of paleoproductivity in the sea of Okhotsk over the last 30 kyr[J]. Paleoceanography,2004, 19(1): PA1016, doi:1010.1029/2002PA000808. [34] Xing Lei, Ding Ling, Zhao Meixun, et al. Centennial variations in sea surface temperature and productivity over the last 14ka from core PC-14 off Baja California[J].Oceanologia et Limnologia Sinica,2009, 40(7): 385-392.[邢磊, 丁玲, 赵美训,等. Baja California 边缘PC14岩芯海水表层温度及生产力变化的百年尺度记录[J]. 海洋与湖沼, 2009, 40(7): 385-392.] [35] De Leeuw J, Irene W, Rijpstra C, et al. The occurrence and identification of C30, C31 and C32 alkan-1, 15-diols and alkan-15-one-1-ols in Unit I and Unit II Black sea sediments[J].Geochimica et Cosmochimica Acta,1981, 45(11): 2 281-2 285. [36] Schouten S, Hoefs M J L, Sinninghe Damsté J S. A molecular and stable carbon isotopic study of lipids in late Quaternary sediments from the Arabian sea[J].Organic Geochemistry,2000, 31(6): 509-521. [37] Sinninghe Damsté J S, Rampen S, Irene W, et al. A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in Quaternary marine sediments: Indicators for high-nutrient conditions[J]. Geochimica et Cosmochimica Acta,2003, 67(7): 1 339-1 348. [38] Ferreira A M, Miranda A, Caetano M, et al. Formation of mid-chain alkane keto-ols by post-depositional oxidation of mid-chain diols in Mediterranean sapropels[J].Organic Geochemistry,2001, 32(2): 271-276. [39] Volkman J K, Barrett S M, Dunstan G A, et al. C30-C32 alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae[J].Organic Geochemistry,1992, 18(1): 131-138. [40] Hinrichs K U, Schneider R R, Mueller P J, et al. A biomarker perspective on paleoproductivity variations in two late Quaternary sediment sections from the southeast Atlantic ocean[J].Organic Geochemistry,1999, 30(5): 341-366. [41] Harrison K G. Role of increased marine silica input on paleo-pCO2 levels[J].Paleoceanography,2000, 15(3): 292-298. [42] Wang P, Tian J, Cheng X, et al. Exploring cyclic changes of the ocean carbon reservoir[J].Chinese Science Bulletin,2003, 48(23): 2 536-2 548. [43] Abrantes F, Meggers H, Nave S, et al. Fluxes of micro-organisms along a productivity gradient in the Canary Islands region (29°N):Implications for paleoreconstructions[J].Deep-Sea Research Part II, 2002, 49(17): 3 599-3 629. [44] Schubert C J, Villanueva J, Calvert S E, et al. Stable phytoplankton community structure in the Arabian sea over the past 200,000 years[J].Nature,1998, 394(6 693): 563-566. [45] Schulte S, Bard E. Past changes in biologically mediated dissolution of calcite above the chemical lysocline recorded in Indian ocean sediments[J].Quaternary Science Reviews,2003, 22(15/17): 1 757-1 770. [46] Dahl K A, Repeta D J, Goericke R. Reconstructing the phytoplankton community of the Cariaco basin during the Younger Dryas cold event using chlorin steryl esters[J].Paleoceanography,2004, 19(1): 19-29. [47] Zhao M, Mercer J L, Eglinton G, et al. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa[J].Organic Geochemistry,2006, 37(1): 72-97. [48] He J, Zhao M, Li L, et al. Biomarker evidence of relatively stable community structure in the northern south China sea during the last glacial and Holocene[J].Terrestrial, Atmospheric and Oceanic Sciences,2008, 19(4): 377-387. [49] Xing L, Zhao M, Zhang H, et al. Biomarker reconstruction of phytoplankton productivity and community structure changes in the middle Okinawa Trough during the last 15 ka[J].Chinese Science Bulletin,2008, 53(16): 2 552-2 559. [50] Zhao Meixun, Zhang Rongping, Xing Lei, et al. The changes of phytoplanktonic productivity and community structure in the Japan sea since the last glacial maximum[J].Periodical of Ocean University of China,2009, 39(5): 1 093-1 099.[赵美训, 张荣平, 邢磊,等.末次冰盛期以来日本海浮游植物生产力和群落结构变化[J]. 中国海洋大学学报, 2009, 39(5): 1 093-1 099.] [51] Hu Jianfang. Molecular Organic Geochemistry Approach for Reconstruction of the Paleoenvironment, Nansha Area, South China Sea Since the Last 30 ka Years[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2001.[胡建芳. 3万年来南沙海区古气候、古环境演变:分子有机地球化学研究[D]. 广州: 中国科学院广州地球化学研究所, 2001.] [52] Hu J, Peng P, Jia G, et al. Biological markers and their carbon isotopes as an approach to the paleoenvironmental reconstruction of Nansha area, south China sea, during the last 30 ka[J].Organic Geochemistry,2002, 33(10): 1 197-1 204. [53] Higginson M J, Maxwell J R, Altabet M A. Nitrogen isotope and chlorin paleoproductivity records from the northern south China Sea: Remote vs. local forcing of millennial and orbital-scale variability[J].Marine Geology,2003, 201(1/3): 223-250. [54] Shiau L J, Yu P S, Wei K Y, et al. Sea surface temperature, productivity, and terrestrial flux variations of the southeastern south China Sea over the past 800,000 years (IMAGES MD972142)[J].Terrestrial, Atmospheric and Oceanic Sciences,2008, 19(4): 363-376. [55] Xing Lei, Zhao Meixun, Zhang Hailong, et al. Biomarker records of phytoplankton community structure changes in the Yellow sea over the last 200 years[J].Periodical of Ocean University of China,2009, 39(2): 317-322.[邢磊, 赵美训, 张海龙,等. 二百年来黄海浮游植物群落结构变化的生物标志物记录[J]. 中国海洋大学学报, 2009, 39(2): 317-322.] [56] Huang C Y, Liew P M, Zhao M X, et al. Deep sea and lake records of the southeast Asian paleomonsoons for the last 25 thousand years[J].Earth and Planetary Science Letters,1997, 146(1/2): 59-72. [57] Kienast M, Calvert S E, Pelejero C, et al. A critical review of marine sedimentary δ13Corg-pCO2 estimates: New palaeorecords from the south China sea and a revisit of other low-latitude δ13Corg-pCO2 records[J].Global Biogeochemical Cycles,2001, 15(1): 113-127. [58] Zhao M, Huang C Y, Wang C C, et al. A millennial-scale UK'37 sea-surface temperature record from the south China sea (8°N)over the last 150 kyr: Monsoon and sea-level influence[J].Palaeogeography Palaeoclimatology Palaeoecology,2006, 236(1/2): 39-55. [59] Hu J, Zhang G, Li K, et al. Increased eutrophication offshore Hong Kong, China during the past 75 years: Evidence from high-resolution sedimentary records[J].Marine Chemistry, 2008, 110(1/2): 7-17. [60] Liu Ruiyu. On sustainable exploitation of marine biological resources in China[J].Science & Technology Review,2004, 11: 28-31.[刘瑞玉. 关于我国海洋生物资源的可持续利用[J]. 科技导报, 2004, 11: 28-31.] [61] Poynter J, Eglinton G. The biomarker concept: Strengths and weaknesses[J].Fresenius Journal of Analytical Chemistry,1991, 339(10): 725-731. [62] Wakeham S G, Hedges J I, Lee C, et al. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific ocean[J].Deep-Sea Research Part II,1997, 44(9/10): 2 131-2 162. [63] Sun M Y, Wakeham S G. A study of oxic/anoxic effects on degradation of sterols at the simulated sediment-water interface of coastal sediments[J].Organic Geochemistry,1998, 28(12): 773-784. [64] Sun M Y, Zou L, Dai J H, et al. Molecular carbon isotopic fractionation of algal lipids during decomposition in natural oxic and anoxic seawaters[J].Organic Geochemistry,2004, 35(8): 895-908. [65] Versteegh G J M, Zonneveld K A F. Use of selective degradation to separate preservation from productivity[J].Geology,2002, 30(7): 615-618. [66] Prahl F G, Muehlhausen L A, Zahnle D L. Further evaluation of longchain alkenones as indicators of paleoceanographic conditions[J].Geochimica et Cosmochimica Acta,1988, 52(9): 2 303-2 310. [67] Conte M H, Thompson A, Lesley D, et al. Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica[J].Geochimica et Cosmochimica Acta,1998, 62(1): 51-68. [68] Prahl F G, Wolfe G V, Sparrow M A. Physiological impacts on alkenone paleothermometry[J].Paleoceanography,2003, 18(2): doi:10. 1029/2002PA000803. [69] Malinverno E, Prahl F G, Popp B N, et al. Alkenone abundance and its relationship to the coccolithophore assemblage in Gulf of California surface waters[J].Deep-Sea Research Part I,2008, 55(9): 1 118-1 130. |