地球科学进展 ›› 2010, Vol. 25 ›› Issue (9): 981 -989. doi: 10.11867/j.issn.1001-8166.2010.09.0981

生态学研究 上一篇    下一篇

生物标志物重建浮游植物生产力及群落结构研究进展
丁玲,邢磊,赵美训   
  1. 1.海洋化学理论与工程技术教育部重点实验室,中国海洋大学,山东青岛 266100;2.中国海洋大学海洋有机地球化学研究所,山东青岛 266100
  • 收稿日期:2010-01-25 修回日期:2010-05-05 出版日期:2010-09-10
  • 通讯作者: 赵美训(1959-),男,山东莱阳人,教授,主要从事海洋有机地球化学方面研究.  E-mail:maxzhao@ouc.edu.cn
  • 基金资助:

    国家重点基础研究发展计划项目“我国陆架海生态环境演变过程、机制及未来变化趋势预测”(编号:2010CB428901);国家自然科学基金面上项目“过去十万年北太平洋表层水温与冰盖关系的空间和时间变化”(编号:40676032)和“近200年来东海和黄海泥质区浮游植物生态结构演变的生物标志物记录”(编号:40976042)资助.

Applications of Biomarkers for Reconstructing Phytoplankton Productivity and Community Structure Changes

Ding Ling, Xing Lei, Zhao Meixun *   

  1. 1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
    2. Insititute of Marine Organic Geochemistry,Ocean University of China, Qingdao 266100, China
  • Received:2010-01-25 Revised:2010-05-05 Online:2010-09-10 Published:2010-09-10

海洋浮游植物生产力和群落结构在地质年代中的变化对深入理解碳循环的演变规律和机理有着重要的意义。生物标志物方法作为一种较新的研究手段,其含量与比值的变化被广泛用于浮游植物生产力与群落结构变化的重建。讨论了生物标志物方法在各大洋及我国边缘海的应用现状,提出了生物标志物的细胞产生量及其在环境中的保存效率的2种主要不确定因素,使目前多参数生物标志物方法只能够半定量地重建古生产力与群落结构的变化。针对我国边缘海,提出有必要通过现场调查和实验室培养建立生物标志物含量(比值)与浮游植物生产力(群落结构)的定量关系式,以达到能够定量重建生产力和群落结构变化的目的。

Revealing variations for phytoplankton productivity and community structure is important for understanding ocean carbon change mechanisms. Variations of biomarker contents and ratios have been successfully used in reconstructing phytoplankton productivity and community structure changes. Reviews of applications of muti-biomarker approach in the open ocean and China′s marginal seas suggest that the two major uncertainties associated with cellular contents of biomarkers and preservation efficiency of different biomarkers in the environments have limited the application of biomarkers to the semiquantitative reconstruction of paleoproductivity and community structure changes. It is suggested that, in order to more accurately estimate paleoecosystem changes, future research needs  establishing the quantitative formula between biomarker content and productivity, and between biomarker ratios and community structure, by use of in-situ data and algal culture experiments.

中图分类号: 

[1] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(9): 859-869.
[2] Archer D, Winguth A, Lea D, et al. What caused the glacial/interglacial atmospheric pCO2 cycles?[J]. Reviews of Geophysics, 2000, 38(2): 159-189.
[3] Hedges J I, Baldock J A, Gelinas Y, et al. Evidence for non-selective preservation of organic matter in sinking marine particles[J]. Nature,2001, 409(6 822): 801-804.
[4] Armstrong R A, Lee C, Hedges J I, et al. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep-Sea Research Part II,2002, 49(1/3): 219-236.
[5] Thunell R C, Miao Q, Calvert S E, et al. Glacial-Holocene biogenic sedimentation patterns in the south China sea: Productivity variations and surface water pCO2[J].Paleoceanography,1992, 7(2): 143-162.
[6] Jian Zhimin, Wang Lvjiang, Kienast M. Late Quaternary surface paleoproductivity and variations of the east Asian monsoon in the south China sea[J].Quaternary Sciences,1999, (1): 32-40.[翦知湣, 王律江, Kienast M. 南海晚第四季表层生产力与东亚季风变迁[J]. 第四纪研究, 1999, (1): 32-40.]
[7] Lin H L, Lai C T, Ting H C, et al. Late Pleistocene nutrients and sea surface productivity in the south China sea: A record of teleconnections with northern hemisphere events[J].Marine Geology,1999, 156(1/4): 197-210.
[8] Loubere P. A multiproxy reconstruction of biological productivity and oceanography in the eastern equatorial Pacific for the past 30,000 years[J].Marine Micropaleontology,1999, 37(2): 173-198.
[9] Ragueneau O, Treguer P, Leynaert A, et al. A review of the Si cycle in the modem ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J].Global and Planetary Change,2000, 26(4): 317-365.
[10] Harris P G, Zhao M, Rosell-Mele A, et al. Chlorin accumulation rate as a proxy for Quaternary marine primary productivity[J].Nature,1996, 383(6 595): 63-65.
[11] Welschmeyer N A,Lorenzen C J. Chlorophyll budgets: Zooplankton grazing and phytoplankton growth in a temperate fjord and the central Pacific gyres[J].Limnology and Oceanography,1985, 30(1): 1-21.
[12] Longhurst A, Sathyendranath S, Platt T, et al. An estimate of global primary production in the ocean from satellite radiometer data[J].Journal of Plankton Research,1995, 17(6): 1 245-1 271.
[13] Eckardt C B, Pearce G E S, Keely B J, et al. A widespread chlorophyll transformation pathway in the aquatic environment[J].Organic Geochemistry,1992, 19(1/3): 217-227.
[14] Furlong E T, Carpenter R. Pigment preservation and remineralization in oxic coastal marine sediments[J].Geochimica et Cosmochimica Acta,1988, 52(1): 87-99.
[15] Calvert S E, Pedersen T F. Organic matter accumulation, remineralization and burial in an anoxic coastal sediment[C]//Whelan J K, Farrington J W, eds. Organic Matter: Productivity, Accumulation and Preservation in Recent and Ancient Sediments. New York: Columbia University Press, 1992: 231-263.
[16] Repeta D J, McCaffrey M A, Farrington J W. Organic geochemistry as a tool to study upwelling systems: Recent results from the Peru and Namibian shelves[C]//Summerhayes C P, Prell W L,Emeis K C, eds. Upwelling Systems: Evolution since the Early Miocene. London: Geological Society, 1992: 257-272.
[17] Summerhayes C P, Kroon D, Rosell-Mele A, et al. Variability in the Benguela current upwelling system over the past 70,000 years[J].Progress in Oceanography,1995, 35(3): 207-251.
[18] Altabet M A, Higginson M J, Murray D W. The effect of millennial-scale changes in Arabian sea denitrification on atmospheric CO2[J]. Nature,2002, 415(6 868): 159-162.
[19] Chen R F, Jiang Y, Zhao M. Solid-phase fluorescence determination of chlorins in marine sediments[J].Organic Geochemistry,2000, 31(12): 1 755-1 763.
[20] Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: A review of recent research developments[J].Organic Geochemistry,1998, 29(5/7): 1 163-1 179.
[21] Barrett S, Volkman J, Dunstan G, et al. Sterols of 14 species of marine diatoms (Bacillariophyta)[J].Journal of Phycology, 1995, 31(3): 360-368.
[22] Boon J J, Rijpstra W I C, de Lange F, et al. Black sea sterol: A molecular fossil for dinoflagellate blooms[J].Nature,1979, 277(5 692): 125-127.
[23] Zimmerman A R, Canuel E A. Sediment geochemical records of eutrophication in the mesohaline Chesapeake bay[J]. Limnology and Oceanography,2002, 47(4): 1 084-1 093.
[24] Henriksson A S, Sarnthein M, Eglinton G, et al. Dimethylsulfide production variations over the past 200 k.y. in the equatorial Atlantic: A first estimate[J].Geology, 2000, 28(6): 499-502.
[25] Ikehara M, Kawamura K, Ohkouchi N, et al. Variations of terrestrial input and marine productivity in the Southern ocean (48°S)during the last two deglaciations[J].Paleoceanography,2000, 15(2): 170-180.
[26] Ishiwatari R, Yamada K, Matsumoto K, et al. Organic molecular and carbon isotopic records of the Japan sea over the past 30 kyr[J].Paleoceanography,1999, 14(2): 260-270.
[27] Mangelsdorf K, Guntner U, Rullkotter J. Climatic and oceanographic variations on the California continental margin during the last 160 kyr[J].Organic Geochemistry,2000, 31(9): 829-846.
[28] Eglinton T I, Conte M H, Eglinton G, et al. Proceedings of a workshop on alkenone-based paleoceanographic indicators[J]. Geochemistry Geophysics Geosystems, 2001, 2(1): doi: 10.1029/2000GC000122.
[29] Volkman J K, Eglinton G, Corner E D S, et al. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi[J].Phytochemistry,1980, 19(12): 2 619-2 622.
[30] Wakeham S G, Peterson M L, Hedges J I, et al. Lipid biomarker fluxes in the Arabian sea, with a comparison to the equatorial Pacific ocean[J].Deep-Sea Research Part II,2002, 49(12): 2 265-2 301.
[31] Werne J P, Hollander D J, Lyons T W, et al. Climate-induced variations in productivity and planktonic ecosystem structure from the Younger Dryas to Holocene in the Cariaco basin, Venezuela[J].Paleoceanography,2000, 15(1): 19-29.
[32] Higginson M J, Altabet M A. Initial test of the silicic acid leakage hypothesis using sedimentary biomarkers[J].Geophysical Research Letters,2004, 31(18): L18303, doi:18310.11029/12004GL020511.
[33] Seki O, Ikehara M, Kawamura K, et al. Reconstruction of paleoproductivity in the sea of Okhotsk over the last 30 kyr[J]. Paleoceanography,2004, 19(1): PA1016, doi:1010.1029/2002PA000808.
[34] Xing Lei, Ding Ling, Zhao Meixun, et al. Centennial variations in sea surface temperature and productivity over the last 14ka from core PC-14 off Baja California[J].Oceanologia et Limnologia Sinica,2009, 40(7): 385-392.[邢磊, 丁玲, 赵美训,等. Baja California 边缘PC14岩芯海水表层温度及生产力变化的百年尺度记录[J]. 海洋与湖沼, 2009, 40(7): 385-392.]
[35] De Leeuw J, Irene W, Rijpstra C, et al. The occurrence and identification of C30, C31 and C32 alkan-1, 15-diols and alkan-15-one-1-ols in Unit I and Unit II Black sea sediments[J].Geochimica et Cosmochimica Acta,1981, 45(11): 2 281-2 285.
[36] Schouten S, Hoefs M J L, Sinninghe Damsté J S. A molecular and stable carbon isotopic study of lipids in late Quaternary sediments from the Arabian sea[J].Organic Geochemistry,2000, 31(6): 509-521.
[37] Sinninghe Damsté J S, Rampen S, Irene W, et al. A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in Quaternary marine sediments: Indicators for high-nutrient conditions[J]. Geochimica et Cosmochimica Acta,2003, 67(7): 1 339-1 348.
[38] Ferreira A M, Miranda A, Caetano M, et al. Formation of mid-chain alkane keto-ols by post-depositional oxidation of mid-chain diols in Mediterranean sapropels[J].Organic Geochemistry,2001, 32(2): 271-276.
[39] Volkman J K, Barrett S M, Dunstan G A, et al. C30-C32 alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae[J].Organic Geochemistry,1992, 18(1): 131-138.
[40] Hinrichs K U, Schneider R R, Mueller P J, et al. A biomarker perspective on paleoproductivity variations in two late Quaternary sediment sections from the southeast Atlantic ocean[J].Organic Geochemistry,1999, 30(5): 341-366.
[41] Harrison K G. Role of increased marine silica input on paleo-pCO2 levels[J].Paleoceanography,2000, 15(3): 292-298.
[42] Wang P, Tian J, Cheng X, et al. Exploring cyclic changes of the ocean carbon reservoir[J].Chinese Science Bulletin,2003, 48(23): 2 536-2 548.
[43] Abrantes F, Meggers H, Nave S, et al. Fluxes of micro-organisms along a productivity gradient in the Canary Islands region (29°N):Implications for paleoreconstructions[J].Deep-Sea Research Part II, 2002, 49(17): 3 599-3 629.
[44] Schubert C J, Villanueva J, Calvert S E, et al. Stable phytoplankton community structure in the Arabian sea over the past 200,000 years[J].Nature,1998, 394(6 693): 563-566.
[45] Schulte S, Bard E. Past changes in biologically mediated dissolution of calcite above the chemical lysocline recorded in Indian ocean sediments[J].Quaternary Science Reviews,2003, 22(15/17): 1 757-1 770.
[46] Dahl K A, Repeta D J, Goericke R. Reconstructing the phytoplankton community of the Cariaco basin during the Younger Dryas cold event using chlorin steryl esters[J].Paleoceanography,2004, 19(1): 19-29.
[47] Zhao M, Mercer J L, Eglinton G, et al. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa[J].Organic Geochemistry,2006, 37(1): 72-97.
[48] He J, Zhao M, Li L, et al. Biomarker evidence of relatively stable community structure in the northern south China sea during the last glacial and Holocene[J].Terrestrial, Atmospheric and Oceanic Sciences,2008, 19(4): 377-387.
[49] Xing L, Zhao M, Zhang H, et al. Biomarker reconstruction of phytoplankton productivity and community structure changes in the middle Okinawa Trough during the last 15 ka[J].Chinese Science Bulletin,2008, 53(16): 2 552-2 559.
[50] Zhao Meixun, Zhang Rongping, Xing Lei, et al. The changes of phytoplanktonic productivity and community structure in the Japan sea since the last glacial maximum[J].Periodical of Ocean University of China,2009, 39(5): 1 093-1 099.[赵美训, 张荣平, 邢磊,等.末次冰盛期以来日本海浮游植物生产力和群落结构变化[J]. 中国海洋大学学报, 2009, 39(5): 1 093-1 099.]
[51] Hu Jianfang. Molecular Organic Geochemistry Approach for Reconstruction of the Paleoenvironment, Nansha Area, South China Sea Since the Last 30 ka Years[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2001.[胡建芳. 3万年来南沙海区古气候、古环境演变:分子有机地球化学研究[D]. 广州: 中国科学院广州地球化学研究所, 2001.]
[52] Hu J, Peng P, Jia G, et al. Biological markers and their carbon isotopes as an approach to the paleoenvironmental reconstruction of Nansha area, south China sea, during the last 30 ka[J].Organic Geochemistry,2002, 33(10): 1 197-1 204.
[53] Higginson M J, Maxwell J R, Altabet M A. Nitrogen isotope and chlorin paleoproductivity records from the northern south China Sea: Remote vs. local forcing of millennial  and orbital-scale variability[J].Marine Geology,2003, 201(1/3): 223-250.
[54] Shiau L J, Yu P S, Wei K Y, et al. Sea surface temperature, productivity, and terrestrial flux variations of the southeastern south China Sea over the past 800,000 years (IMAGES MD972142)[J].Terrestrial, Atmospheric and Oceanic Sciences,2008, 19(4): 363-376.
[55] Xing Lei, Zhao Meixun, Zhang Hailong, et al. Biomarker records of phytoplankton community structure changes in the Yellow sea over the last 200 years[J].Periodical of Ocean University of China,2009, 39(2): 317-322.[邢磊, 赵美训, 张海龙,等. 二百年来黄海浮游植物群落结构变化的生物标志物记录[J]. 中国海洋大学学报, 2009, 39(2): 317-322.]
[56] Huang C Y, Liew P M, Zhao M X, et al. Deep sea and lake records of the southeast Asian paleomonsoons for the last 25 thousand years[J].Earth and Planetary Science Letters,1997, 146(1/2): 59-72.
[57] Kienast M, Calvert S E, Pelejero C, et al. A critical review of marine sedimentary δ13Corg-pCO2 estimates: New palaeorecords from the south China sea and a revisit of other low-latitude δ13Corg-pCO2 records[J].Global Biogeochemical Cycles,2001, 15(1): 113-127.
[58] Zhao M, Huang C Y, Wang C C, et al. A millennial-scale UK'37 sea-surface temperature record from the south China sea (8°N)over the last 150 kyr: Monsoon and sea-level influence[J].Palaeogeography Palaeoclimatology Palaeoecology,2006, 236(1/2): 39-55.
[59] Hu J, Zhang G, Li K, et al. Increased eutrophication offshore Hong Kong, China during the past 75 years: Evidence from high-resolution sedimentary records[J].Marine Chemistry, 2008, 110(1/2): 7-17.
[60] Liu Ruiyu. On sustainable exploitation of marine biological resources in China[J].Science & Technology Review,2004, 11: 28-31.[刘瑞玉. 关于我国海洋生物资源的可持续利用[J]. 科技导报, 2004, 11: 28-31.]
[61] Poynter J, Eglinton G. The biomarker concept: Strengths and weaknesses[J].Fresenius Journal of Analytical Chemistry,1991, 339(10): 725-731.
[62] Wakeham S G, Hedges J I, Lee C, et al. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific ocean[J].Deep-Sea Research Part II,1997, 44(9/10): 2 131-2 162.
[63] Sun M Y, Wakeham S G. A study of oxic/anoxic effects on degradation of sterols at the simulated sediment-water interface of coastal sediments[J].Organic Geochemistry,1998, 28(12): 773-784.
[64] Sun M Y, Zou L, Dai J H, et al. Molecular carbon isotopic fractionation of algal lipids during decomposition in natural oxic and anoxic seawaters[J].Organic Geochemistry,2004, 35(8): 895-908.
[65] Versteegh G J M, Zonneveld K A F. Use of selective degradation to separate preservation from productivity[J].Geology,2002, 30(7): 615-618.
[66] Prahl F G, Muehlhausen L A, Zahnle D L. Further evaluation of longchain alkenones as indicators of paleoceanographic conditions[J].Geochimica et Cosmochimica Acta,1988, 52(9): 2 303-2 310.
[67] Conte M H, Thompson A, Lesley D, et al. Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica[J].Geochimica et Cosmochimica Acta,1998, 62(1): 51-68.
[68] Prahl F G, Wolfe G V, Sparrow M A. Physiological impacts on alkenone paleothermometry[J].Paleoceanography,2003, 18(2): doi:10. 1029/2002PA000803.
[69] Malinverno E, Prahl F G, Popp B N, et al. Alkenone abundance and its relationship to the coccolithophore assemblage in Gulf of California surface waters[J].Deep-Sea Research Part I,2008, 55(9): 1 118-1 130.

[1] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[2] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[3] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[4] 侯笛,张俊杰,邢磊,周阳. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2): 140-147.
[5] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[6] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[7] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[8] 石学法,鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737-750.
[9] 范代读,王扬扬,吴伊婧. 长江沉积物源示踪研究进展[J]. 地球科学进展, 2012, 27(5): 515-528.
[10] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[11] 陈中红, Moldowan J M,刘昭茜. 东营凹陷生物降解稠油甾烷分子的选择蚀变[J]. 地球科学进展, 2012, 27(10): 1108-1114.
[12] 赵军,姚鹏,于志刚. 海洋沉积物中色素生物标志物研究进展[J]. 地球科学进展, 2010, 25(9): 950-959.
[13] 吴德星,兰健. 中国东部陆架边缘海海洋物理环境演变及其环境效应[J]. 地球科学进展, 2006, 21(7): 667-672.
[14] 马安来;张水昌;张大江;金之钧. 生物降解原油地球化学研究新进展[J]. 地球科学进展, 2005, 20(4): 449-454.
[15] 朱介寿;曹家敏;蔡学林;严忠琼. 欧亚大陆及西太平洋边缘海岩石圈结构[J]. 地球科学进展, 2004, 19(3): 387-392.
阅读次数
全文


摘要