Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (2): 140-147    DOI: 10.11867/j.issn.1001-8166.2019.02.0140
    
长链烷基二醇在海洋环境重建中的研究进展
侯笛1,2,张俊杰1,2,邢磊1,2,*(),周阳1,2
1. 中国海洋大学海洋化学理论与工程技术教育部重点实验室,山东 青岛 266100
2. 中国海洋大学海洋化学系,山东 青岛 266100
Progress of Long-Chain Alkyl Diols in Marine Environmental Reconstruction
Di Hou1,2,Junjie Zhang1,2,Lei Xing1,2,*(),Yang Zhou1,2
1. Key Laboratory of Marine Chemistry Theory and Technology,Ministry of Education,Ocean University of China,Qingdao 266100,China
2. Department of Marine Chemistry, Ocean University of China, Qingdao 266100,China
 全文: PDF(743 KB)   HTML
摘要:

长链烷基二醇类化合物(Long-chain alkyl diols)是指在碳链的1号位置和链中位置连接有羟基基团的类脂化合物,普遍存在于海洋、河流和湖泊环境中。由于这类化合物分布广泛、性质稳定不易降解、且检测手段较为简单,因此具有作为生物标志物的潜力,在生物地球化学领域引起了广泛的研究和关注。关于其生物来源尚未有定论,但是研究发现1,13-diols和1,15-diols可能主要来自真眼点藻,而14-diols主要来自硅藻Proboscia。目前根据长链烷基二醇建立的指标包括:硅藻生产力、上升流强度、盐度、温度、河流输入和表层海水营养盐浓度等,对古环境气候的重建有着重要的意义。归纳总结了目前长链烷基二醇指标的研究和应用进展,这有助于未来我国边缘海长链烷基二醇来源以及二醇指标的深入研究。

关键词: 长链烷基二醇指示意义生物标志物环境重建    
Abstract:

Long-chain alkyl diols contain an alkyl chain with alcohol groups at C1 and at the middle position of carbon chain, which exist widely in seas, rivers and lakes. It has been proven that these compounds are relatively resistant to degradation and have an extended occurrence in the geological record. In addition, they are relatively easy to identify. Therefore, long-chain alkyl diols can be used as potential biomarkers to trace the past change in paleoenvironment and paleoclimate. Although the sources of long-chain alkyl diols are still uncertain, the studies indicate that 1, 13 and 1, 15-diols are mainly produced by eustigmatophytes, while 14-diols are mainly from diatom Proboscia. So far, some proxies based on long-chain alkyl diols have been established to indicate the change in diatom productivity, upwelling intensity, salinity, sea surface temperature, riverine organic matter input and surface seawater nutrient concentration, which are significant for paleoenvironmental reconstruction. Current research and application of long-chain alkyl diols proxies were summarized, which would be helpful for further studying the source of long-chain alkyl diols and the application of relevant proxies in China’s marginal sea.

Key words: Long-chain alkyl diols    Indicative meaning    Biomarker    Environmental reconstruction.
收稿日期: 2018-09-28 出版日期: 2019-03-26
ZTFLH:  P593  
基金资助: 国家自然科学基金项目“基于长链烷基二醇指标的东海近岸区沉积有机质变化重建”(编号:41876073);国家重点研发计划项目“河口生态系统对大型水库调控的响应及应对策略”(编号:2016YFA0600904)资助.
通讯作者: 邢磊     E-mail: xinglei@ouc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
侯笛
张俊杰
邢磊
周阳

引用本文:

侯笛,张俊杰,邢磊,周阳. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2): 140-147.

Di Hou,Junjie Zhang,Lei Xing,Yang Zhou. Progress of Long-Chain Alkyl Diols in Marine Environmental Reconstruction. Advances in Earth Science, 2019, 34(2): 140-147.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.02.0140        http://www.adearth.ac.cn/CN/Y2019/V34/I2/140

图1  长链烷基二醇类化合物
指标名称 指示意义 计算公式 参考文献
Diol index 主要用来指示水体盐度的变化

D i o l i n d e x = [ C 30 1,15 - d i o l ]

/ [ C 30 1,15 - d i o l ] + [ C 32 1,15 - d i o l ] × 100

[1,7]
Diol index 1 指示上升流海区的上升流强度变化

D i o l i n d e x 1 = [ C 28 1,14 - d i o l ] + [ C 30 1,14 - d i o l ]

/ [ C 28 1,14 - d i o l ] + [ C 30 1,14 - d i o l ] + [ C 30 1,15 - d i o l ]

[13]
Diol index 2 指示硅藻Proboscia的初级生产力以及上升流强度的变化

D i o l i n d e x 2 = [ C 28 1,14 - d i o l ] + [ C 30 1,14 - d i o l ]

/ [ C 28 1,14 - d i o l ] + [ C 30 1,14 - d i o l ]

+ [ C 28 1,13 - d i o l ] + [ C 30 1,13 - d i o l ]

[8,14]
Combined diol index 综合了Diol index 1和Diol index 2,更适合作为全球范围内上升流海区的上升流强度指标

C o m b i n e d d i o l i n d e x = [ C 28 1,14 - d i o l ] + [ C 30 1,14 - d i o l ]

/ [ C 28 1,14 - d i o l ] + [ C 30 1,14 - d i o l ] + [ C 28 1,13 - d i o l ]

+ [ C 30 1,13 - d i o l ] + [ C 30 1,15 - d i o l ]

[15]
LDI 指示表层海水温度的变化

L o n g c h a i n D i o l I n d e x L D I = [ C 30 1,15 - d i o l ]

/ [ C 28 1,13 - d i o l ] + [ C 30 1,13 - d i o l ] + [ C 30 1,15 - d i o l ]

[14,16,17]
FC321,15-diol 指示沿海地区河流有机质的输入

F C 32 1,15 - d i o l = [ C 32 1,15 - d i o l ] × 100

/ [ C 28 1,13 - d i o l ] + [ C 30 1,13 - d i o l ]

+ [ C 30 1,15 - d i o l ] + [ C 32 1,15 - d i o l ]

[18,19,20]
NDI 指示表层海水中年平均磷酸盐和硅酸盐浓度

N u t r i e n t D i o l I n d e x N D I = [ C 28 1,14 - d i o l ] + [ C 28 1 1,14 - d i o l ]

/ [ C 28 1,14 - d i o l ] + [ C 28 1 1,14 - d i o l ] + [ C 30 1,14 - d i o l ] + [ C 30 1 1,14 - d i o l ] + [ C 28 1,13 - d i o l ]

+ [ C 30 1,13 - d i o l ] + [ C 30 1,15 - d i o l ]

[21]
表1  基于长链烷基二醇化合物建立的指标及其指示意义
1 Versteegh G J M , Bosch H J , De Leeuw J W . Potential palaeoenvironmental information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids: A critical review[J]. Organic Geochemistry, 1997,27(1):1-13.
2 Leeuw J W D , Irene W , Rijpstra C , et al . The occurrence and identification of C30, C31 and C32 alkan-1, 15-diols and alkan-15-one-1-ols in Unit I and Unit II Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 1981,45(11):2 281-2 285.
3 Morris R J , Brassell S C . Long-chain alkanediols: Biological markers for cyanobacterial contributions to sediments[J]. Lipids, 1988,23(3):256-258.
4 Hinrichs K U , Schneider R R , Müller P J , et al . A biomarker perspective on paleoproductivity variations in two Late Quaternary sediment sections from the Southeast Atlantic Ocean[J]. Organic Geochemistry, 1999,30(5):341-366.
5 Jetter R , Riederer M . Long-chain alkanediols, ketoaldehydes, ketoalcohols and ketoalkyl esters in the cuticular waxes of Osmunda regalis fronds[J]. Phytochemistry, 1999,52(5):907-915.
6 Versteegh G J M , Jansen J H F , Schneider R R , et al . Mid-chain diols and keto-ols in SE atlantic sediments: A new tool for tracing past sea surface water masses[J]. Geochimica et Cosmochimica Acta, 2000,64(11):1 879-1 892.
7 Pinturier-Geiss L , Mejanelle L , Dale B , et al . Lipids as indicators of eutrophication in marine coastal sediments[J]. Journal of Microbiological Methods, 2002,48(2/3):239-257.
8 Willmott V , Rampen S W , Domack E , et al . Holocene changes in Proboscia diatom productivity in shelf waters of the north-western Antarctic Peninsula[J]. Antarctic Science, 2010,22(1):3.
9 Xu Yunping , Simoneit B , Jaffe R . Occurrence of long-chain n-alkenols, diols, keto-ols and sec-alkanols in a sediment core from a hypereutrophic, freshwater lake[J]. Organic Geochemistry, 2007,38(6):870-883.
10 Romero-Viana L , Kienel U , Sachse D . Lipid biomarker signatures in a hypersaline lake on Isabel Island (Eastern Pacific) as a proxy for past rainfall anomaly (1942-2006AD)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012,350/352(9):49-61.
11 Wang Qian , Zhou Haoda , Hu Jianfang , et al . Identification and potential environmental implication of long-chain alkyl diols in Huguangyan Maar Lake[J].Geochimica, 2013,42(2):188-195.
11 王倩, 周浩达,胡建芳,等 .湛江湖光岩玛珥湖中长链烷基二醇类化合物的检出及可能的环境意义[J]. 地球化学, 2013,42(2):188-195.
12 Zhu Xiaowei , Sun Yongge , Mao Shengyi , et al . The identification of long-chain diols and keto-ols in Site4B sediment from the Pearl River Mouth Basin and its implication[J].Earth Science Frontiers, 2014,24(6):321-334.
12 朱小畏,孙永革,茅晟懿,等 .珠江口盆地Site4B柱状沉积物中长链烷基二醇和酮醇类化合物的检出及意义[J].地学前缘, 2014,24(6):321-334.
13 Rampen S W , Schouten S , Koning E , et al . A 90 kyr upwelling record from the northwestern Indian Ocean using a novel long-chain diol index[J]. Earth and Planetary Science Letters, 2008,276(1):207-213.
14 Zhu Xiaowei , Jia Guodong , Mao Shengyi , et al . Sediment records of long chain alkyl diols in an upwelling area of the coastal northern South China Sea[J]. Organic Geochemistry, 2018,121:1-9.
15 Rampen S W , Willmott V , Kim J , et al . Evaluation of long chain 1,14-alkyl diols in marine sediments as indicators for upwelling and temperature[J]. Organic Geochemistry, 2014,76:39-47.
16 Rampen S W , Willmott V , Kim J , et al . Long chain 1,13- and 1,15-diols as a potential proxy for palaeotemperature reconstruction[J]. Geochimica et Cosmochimica Acta,2012,84:204-216.
17 Naafs B D A , Hefter J , Stein R . Application of the Long chain Diol Index (LDI) paleothermometer to the early Pleistocene (MIS 96)[J]. Organic Geochemistry, 2012,49:83-85.
18 de Bar M W , Dorhout D J C , Hopmans E C , et al . Constraints on the application of long chain diol proxies in the Iberian Atlantic margin[J]. Organic Geochemistry, 2016,101:184-195.
19 Lattaud J , Dorhout D , Schulz H , et al . The C32 alkane-1,15-diol as a proxy of late Quaternary riverine input in coastal margins[J]. Climate of the Past, 2017,13(8):1 049-1 061.
20 Lattaud J , Dorhout D , Schulz H , et al . The C32 alkane-1,15-diol as a proxy of late Quaternary riverine input in coastal margins[J]. Climate of the Past, 2017,13(8):1 049-1 061.
21 Gal J , Kim J , Shin K . Distribution of long chain alkyl diols along a south-north transect of the northwestern Pacific region: Insights into a paleo sea surface nutrient proxy[J]. Organic Geochemistry, 2018,119:80-90.
22 Leeuw J W D , Rijpstra W I C , Mur L R . The absence of long-chain alkyl diols and alkyl keto-1-ols in cultures of the cyanobacterium Aphanizomenon flos-aquae[J]. Organic Geochemistry, 1992,18(4):575-578.
23 Volkman J K , Barrett S M , Dunstan G A , et al . C30 C32 alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae[J]. Organic Geochemistry, 1992,18(1):131-138.
24 Volkman J K , Barrett S M , Blackburn S I . Eustigmatophyte microalgae are potential sources of C29 sterols, C22-C28 n-alcohols and C28-C32 n-alkyl diols in freshwater environments[J]. Organic Geochemistry, 1999,30(5):307-318.
25 Sinninghe Damsté J S , Rampen S , Irene W , et al . A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in quaternary marine sediments: Indicators for high-nutrient conditions[J]. Geochimica et Cosmochimica Acta,2003,67(7):1 339-1 348.
26 Rampen S W , Schouten S , Wakeham S G , et al . Seasonal and spatial variation in the sources and fluxes of long chain diols and mid-chain hydroxy methyl alkanoates in the Arabian Sea[J]. Organic Geochemistry,2007,38(2):165-179.
27 Rampen S W , Schouten S , Sinninghe Damsté J S . Occurrence of long chain 1,14-diols in Apedinella radians[J]. Organic Geochemistry, 2011,42(5):572-574.
28 Villanueva L , Besseling M , Rodrigo-Gámiz M , et al . Potential biological sources of long chain alkyl diols in a lacustrine system[J]. Organic Geochemistry, 2014,68:27-30.
29 Lattaud J , Kirkels F , Peterse F , et al . Long-chain diols in rivers: Distribution and potential biological sources[J]. Biogeosciences Discussions, 2018,15(13):1-24.
30 Gade H G . Horizontal and vertical exchanges and diffusion in the water masses of the oslo fjord[J]. Helgol?nder Wissenschaftliche Meeresuntersuchungen,1968,17(1):462-475.
31 Haven H L T , Baas M , Leeuw J W D , et al . Late Quaternary Mediterranean sapropels, I—On the origin of organic matter in sapropel S 7[J]. Marine Geology, 1987,75(1):137-156.
32 Haven H L T , Rullkotter J . Preliminary lipid analyses of sediments recovered during Leg 117[J]. Proceedings of the Ocean Drilling Program, Scientific Results,1991,117:561-569.
33 Haven H L T , Eglinton G , Farrimond P , et al . Variations in the content and composition of organic matter in sediments underlying active upwelling regimes: A study from ODP Legs 108, 112, and 117[J]. Geological Society London Special Publications, 1992,64(1):229-246.
34 Gelin F , Volkman J K , De Leeuw J W , et al . Mid-chain hydroxy long-chain fatty acids in microalgae from the genus Nannochloropsis[J]. Phytochemistry, 1997,45(4):641-646.
35 Lange C B , Romero O E , Wefer G , et al . Offshore influence of coastal upwelling off Mauritania, NW Africa, as recorded by diatoms in sediment traps at 2195m water depth[J]. Deep- Sea Research Part I: Oceanographic Research Papers, 1998,45(6):985-1 013.
36 Koning E , van Iperen J M , van Raaphorst W , et al . Selective preservation of upwelling-indicating diatoms in sediments off Somalia, NW Indian Ocean[J]. Deep-Sea Research Part I:Oceanographic Research Papers, 2001,48(11):2 473-2 495.
37 SmithS L . Understanding the Arabian Sea: Reflections on the 1994-1996 Arabian Sea Expedition[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001,48(6):1 385-1 402.
38 Wakeham S G , Peterson M L , Hedges J I , et al . Lipid biomarker fluxes in the Arabian Sea, with a comparison to the equatorial Pacific Ocean[J]. Deep-Sea Research Part II:Topical Studies in Oceanography, 2002,49(12):2 265-2 301.
39 Lisiecki L E , Raymo M E . A Plio-Pleistocene stack of 57 globally distributed benthic [delta]18O records[J]. ?Paleoceanography and Paleoclimatology, 2005,20(1):1-17.
40 Grootes P M , Stuiver M , White J W C , et al . Comparison of oxygen isotope records from the GISP2 and GRIP Greenlandice cores[J]. Nature, 1993,366(6 455):552-554.
41 Jouzel J , Vimeux F , Caillon N , et al . Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores[J]. Journal of Geophysical Research Atmospheres, 2003,108(D12):4 361-4 372.
42 Das S B , Alley R B . Rise in frequency of surface melting at Siple Dome through the Holocene: Evidence for increasing marine influence on the climate of West Antarctica[J]. Journal of Geophysical Research Atmospheres, 2008,113(D2).DOI:10.1029/2007JD008790.
doi: 10.1029/2007JD008790.
43 Pancost R D , Boot C S , Aloisi G , et al . Organic geochemical changes in Pliocene sediments of ODP Site 1083 (Benguela Upwelling System)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009,280(1):119-131.
44 Contreras S , Lange C B , Pantoja S , et al . A rainy northern Atacama Desert during the last interglacial[J]. Geophysical Research Letters, 2010,37(23):817-824.
45 Rampen S W , Schouten S , Schefu? E , et al . Impact of temperature on long chain diol and mid-chain hydroxy methyl alkanoate composition in Proboscia diatoms: Results from culture and field studies[J]. Organic Geochemistry, 2009,40(11):1 124-1 131.
46 Naafs B D A , Hefter J , Acton G , et al . Strengthening of North American dust sources during the late Pliocene (2.7Ma)[J]. Earth and Planetary Science Letters, 2012,317:8-19.
[1] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[2] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[3] 陈中红, Moldowan J M,刘昭茜. 东营凹陷生物降解稠油甾烷分子的选择蚀变[J]. 地球科学进展, 2012, 27(10): 1108-1114.
[4] 赵军,姚鹏,于志刚. 海洋沉积物中色素生物标志物研究进展[J]. 地球科学进展, 2010, 25(9): 950-959.
[5] 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9): 981-989.
[6] 马安来;张水昌;张大江;金之钧. 生物降解原油地球化学研究新进展[J]. 地球科学进展, 2005, 20(4): 449-454.
[7] 吴 莹,张 经,唐运千. 中国海洋有机地球化学研究的若干进展[J]. 地球科学进展, 1999, 14(3): 256-261.