Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (2): 148-155    DOI: 10.11867/j.issn.1001-8166.2019.02.0148
    
基于单形进化优化算法的重力固体潮信号解混及谱相关分析
矣昕宝1,魏巍2,全海燕2,*()
1. 西双版纳职业技术学院师范学院(公课部),云南 西双版纳 666100
2. 昆明理工大学信息工程与自动化学院,云南 昆明 650500
Decimation and Spectrum Correlation Analysis of Gravity Solid Tide Signal Based on Surface-Simplex Swarm Evolution Optimization Algorithm
Xinbao Yi1,Wei Wei2,Haiyan Quan2,*()
1. Xishuangbanna Vocational Technical College Teachers College Public Section, Yunnan Xishuangbanna 666100, China
2. Faculty of Information and Automation, Kunming University of Science and Technology, Kunming 650500, China
 全文: PDF(1938 KB)   HTML
摘要:

为了揭示地球固体潮中谐波成分间的相关乘性调制关系与非相关叠加关系,并根据这些关系来分析重力固体潮信号中隐含的潮汐谐波。根据地球、月球与太阳旋转轨道的位置关系,建立了一个引潮力的正交分解模型。进一步,基于改进单形进化智能优化算法的独立分量分析的重力固体潮正交分解模型上,利用谱相关方法,对重力固体潮的独立成分进行谱相关分析,从而完整实现了潮汐谐波加性正交分解之后的乘性解调。最后,结合实际观测数据,并引入理论信号作为参考背景,利用以上模型与算法进行对比处理和分析。研究表明,所提出的模型与方法可以有效地实现潮汐谐波的正交分解,凸显能量较弱的长周期谐波分量,并从谱相关图谱中反映潮汐谐波调制关系的变化。

关键词: 重力固体潮分解模型独立成分分析谱相关潮汐谐波    
Abstract:

In order to reveal the correlation between the harmonic components in the earth's solid tidal wave and the non-correlation superposition relationship, and based on these relations, the tidal harmonic implicit in the gravitational solid tidal signal was analyzed. According to the position relationship among the Earth, the moon and the sun's rotating orbit, an orthogonal decomposition model of tidal force was established. Furthermore, on the orthogonal decomposition model of gravity solid tidal wave based on the independent component analysis of the improved SSSE intelligent optimization algorithm, the spectral correlation method was used to analyze the independent components of gravity solid tidal wave. Thus, the multiplicative demodulation after the orthogonal decomposition of the conformal wave was completely realized. Finally, the above model and algorithm were used to compare and analyze the actual observation data and the theoretical signal as reference background. The results show that the proposed model and method can effectively achieve the orthogonal decomposition of tidal harmonics, highlight the weak energy of the long period harmonics component, and reflect the change of tidal harmonic modulation relationship from the spectral correlation map.

Key words: Gravity solid tides    Decomposition model    Independent component analysis    Spectral correlation    Tidal harmonics.
收稿日期: 2018-06-28 出版日期: 2019-03-26
ZTFLH:  P312  
基金资助: 国家自然科学基金项目“提取重力固体潮信号中地球物理信息和地震前兆信息的关键信号处理算法研究”(编号:41364002)资助.
通讯作者: 全海燕     E-mail: quanhaiyan@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
矣昕宝
魏巍
全海燕

引用本文:

矣昕宝,魏巍,全海燕. 基于单形进化优化算法的重力固体潮信号解混及谱相关分析[J]. 地球科学进展, 2019, 34(2): 148-155.

Xinbao Yi,Wei Wei,Haiyan Quan. Decimation and Spectrum Correlation Analysis of Gravity Solid Tide Signal Based on Surface-Simplex Swarm Evolution Optimization Algorithm. Advances in Earth Science, 2019, 34(2): 148-155.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.02.0148        http://www.adearth.ac.cn/CN/Y2019/V34/I2/148

图1  引潮力的正交分解模型
图2  重力固体潮信号
图3  独立分量
图4  地震时长周期波的循环相关谱
图5  未发生地震时的长周期循环相关谱
时间 理论信号谱相关频率/Hz 理论信号解调出的频率成分/Hz 理论计算频率/Hz
1995年2月1日至1996年3月1日 f 11 =2.350×10-7 5.880×10-8 6.3377×10-8
α 11 =1.762×10-7 4.112×10-7 4.2004×10-7
f 12 =4.406×10-7 5.880×10-8 6.3377×10-8
α 12 =3.818×10-7 8.224×10-7 8.4725×10-7
2000年1月1日至8月25日 f 21 =2.441×10-7 4.880×10-8 6.3377×10-8
α 21 =1.953×10-7 4.394×10-7 4.2004×10-7
f 22 =4.394×10-7 4.880×10-8 6.3377×10-8
α 22 =3.906×10-7 8.300×10-7 8.4725×10-7
f 23 =6.348×10-7 4.395×10-7 4.2004×10-7
α 23 =1.953×10-7 8.301×10-7 8.4725×10-7
2003年4月1日至11月1日 f 31 =4.326×10-7 5.410×10-8 6.3377×10-8
α 31 =3.785×10-7 8.111×10-7 8.4725×10-7
f 32 =6.489×10-7 4.326×10-7 4.2004×10-7
α 32 =2.163×10-7 8.652×10-7 8.4725×10-7
表1  理论谱相关频率
时间 实测信号的谱相关频率/Hz 实测信号解调出的频率成分/Hz 实测解调频率与理论信解调频率的误差率/ %
1995年2月1日至1996年3月1日 f 11 ' =1.762×10-7 8.8080×10-8 49.80
α 11 ' =8.812×10-8 2.6432×10-7 35.70
f 12 ' =4.406×10-7 8.8100×10-8 49.80
α 12 ' =3.525×10-7 7.9310×10-7 3.60
2000年1月1日至8月25日 f 21 ' =2.441×10-7 9.7600×10-8 100.00
α 21 ' =1.465×10-7 3.9060×10-7 11.10
f 22 ' =4.883×10-7 1.4650×10-7 200.20
α 22 ' =3.418×10-7 8.3010×10-7 0.01
f 23 ' =6.836×10-7 5.3710×10-7 22.20
α 23 ' =1.465×10-7 8.3010×10-7 0
2003年4月1日至211月1日 f 31 ' =4.326×10-7 1.0820×10-7 100.00
α 31 ' =3.244×10-7 7.5700×10-7 6.70
f 32 ' =5.948×10-7 3.2440×10-7 25.00
α 32 ' =2.704×10-7 8.6520×10-7 0
表2  长周期波的谱相关分析
1 Xu Houze . The Tides of the Solid Earth[M]. Wuhan: Hubei Science and Technology Press, 2010.
1 许厚泽 .固体地球潮汐[M].武汉:湖北科学技术出版社,2010.
2 Zhou Jiangcun , Sun Heping , Xu Jianqiao , et al . Tidal strain and tidal stress in the Earth’s interior[J]. Chinese Journal of Geophysics, 2013,56(11):3 779-3 786.
2 周江存,孙和平,徐建桥,等 .地球内部应变与应力固体潮[J],地球物理学报, 2013,56(11):3 779-3 786.
3 Melchior, Du Pinren . Solid Tide of Planetary Earth [M].Beijing: Science Press, 1984.
3 梅尔基奥尔,杜品仁 .行星地球的固体潮[M].北京:科学出版社,1984.
4 Zhang Li , Fu Rongshan , Zhou Zhi , et al . Extraction of seismic precursory information from gravity tide at Kunming station based on HHT[J]. Acta Seismological Sinica, 2007,29(2):222-226.
4 张立,傅容珊,周挚,等 .基于HHT提取重力固体潮的地震前兆信息[J].地震学报,2007,29(2):222-226.
5 Sue Yoshiki , Hayakawa Masashi . An approach to the validation of thermal and electromagnetic earthquake precursors: Effects of Earth tides[J]. Journal of Asian Earth Sciences,2011, 41(4/5):428-433.
6 Quan Haiyan , Liu Yan . The cyclic spectrum analysis of IMFs of EMD and its application to gravity tide[J]. Advances in Earth Science,2016,31(9):919-925.
6 全海燕, 刘艳 . EMD模态分量的谱相关分析法及其对重力固体潮信号的解调分析[J]. 地球科学进展, 2016, 31(9):919-925.
7 Metivier Laurent , Olivier de Viron, Clinton C P ,et al . Evidence of earthquake triggering by the solid Earth tides[J]. Earth and Planetary Science Letters, 2009,278:370-375.
8 Zhang Jing , Zhang Li . Short-term anomaly extracted from tidal deformation data before moderately strong earthquakes[J]. Earthquake,2003,23(3):71-78.
8 张晶,张立 .中强震前形变固体潮汐资料短期信息的提取[J].地震,2003,23(3):71-78.
9 Zhang Jing , Niu Anfu , Gao Fuwang , et al . On the imminent and short-term characteristics of earthquake anomalies obtained from the digital deformation observations[J]. Earthquake,2003,23(1):71-76.
9 张晶,牛安福,高福旺,等 .数字化形变观测提取的地震短临异常特征[J].地震, 2003,23(1):71-76.
10 Li Zhirong , Zhang Xiaodong . Relationship of tidal stress and large earthquakes[J]. Earthquake,2011,31(4):48-57.
10 李智蓉,张晓东 .潮汐应力与大震关系研究[J].地震,2011,31(4):48-57.
11 Yu Xianchuan , Hu Dan . Theory and Application of Blind Source Separation[M]. Beijing: Science Press,2011.
11 余先川,胡丹 .盲源分离理论与应用[M].北京:科学出版社,2011.
12 Li Xiliang . Application of High-order Statistics in Digital Data Analysis of Earthquake Precursors[D]. Hefei: University of Science and Technology of China,2009.
12 李希亮 .高阶统计量在地震前兆数字化资料分析中的应用[D].合肥:中国科学技术大学, 2009.
13 Quan H , Shi X . A surface-simplex swarm evolution algorithm[J]. Wuhan University Journal of Natural Sciences, 2017, 22(1):38-50.
14 Wang Hong . Mathematical relationships and physical functions of Sspectral correlation[J]. Acta Electronica Sinica, 2015,43(4):810-815.
14 王洪 .谱相关的数学关系与物理意义[J].电子学报, 2015,43(4):810-815.
15 Huang Zhitao . The Processing and Application of Cyclic Stationary Signals[M].Beijing: Science Press, 2006.
15 黄知涛 .循环平稳信号处理及应用[M].北京:科学出版社,2006.
16 Zuo Yan , Ji Linwang , Wang Jingjing , et al . Digitized tilt measured tidal and theoretical solid tidal ratio analysis[J]. Journal of Disaster Prevention and Reduction, 2011, 27(3): 44-49.
16 左艳,冀林旺,王晶晶,等 .数字化倾斜实测潮汐与理论固体潮汐的比分析[J].防灾减灾学报, 2011,27(3):44-49.
17 Fang Jun . Solid Tide [M]. Beijing: Science Press, 1985.
17 方俊 .固体潮[M].北京:科学出版社,1985.
[1] 邢德钊,全海燕. 基于ICA的引潮力互相关谱分析[J]. 地球科学进展, 2019, 34(1): 103-112.
[2] 全海燕, 刘艳. EMD模态分量的谱相关分析法及其对重力固体潮信号的解调分析[J]. 地球科学进展, 2016, 31(9): 919-925.
[3] 许厚泽,孙和平 . 我国重力固体潮实验研究进展[J]. 地球科学进展, 1998, 13(5): 415-422.