Please wait a minute...
img img
高级检索
地球科学进展  2016, Vol. 31 Issue (9): 919-925    DOI: 10.11867/j.issn.1001-8166.2016.09.0919
研究论文     
EMD模态分量的谱相关分析法及其对重力固体潮信号的解调分析
全海燕, 刘艳*
昆明理工大学信息工程与自动化学院, 云南 昆明 650500
The Cyclic Spectrum Analysis of IMFs of EMD and Its Application to Gravity Tide
Quan Haiyan, Liu Yan
Kunming University of Science and Technology, Faculty of Information Engineering and Automation, Kunming 650500,China
 全文: PDF(2650 KB)   HTML
摘要: EMD方法分解得到的模态信号分量一般为调频调幅波。提出利用循环相关谱对EMD分解的模态分量进行解调,以分解出模态分量中的载波成分和被调制成分,从而实现对信号的加性分解和乘性解调,揭示信号中各成分分量的物理意义。在应用实验中,将该方法用于重力固体潮信号分析,完整提取出半日波分量、日波分量和半月波分量,并揭示出:在重力固体潮信号中,日波和半日波是加性叠加关系,半月波以乘性调制方式被同时调制到半日波分量和日波分量中,而且,它们之间的调制方式为抑制载波调制方式。
关键词: 解调EMD重力固体潮循环谱    
Abstract: IMFs sifted out by EMD are the FM-AM components. In the paper, by the cyclic spectrum analysis, IMFs are demodulated as the two periodic components which are identical to the intrinsic physical concepts. Using the method, the half-day-tide M2, the day-tide O1, and the half-month-tide Mf are extracted from the gravity tide signal, and a conclusion is drawn that the half-day-tide M2 and the day-tide O1 are primary components of gravity tide signal, and the half-month-tide Mf is modulated in the half-day-tide M2 and the day-tide O1.
Key words: EMD    Gravity tide.    Cyclic spectrum    Demodulation
收稿日期: 2016-06-05 出版日期: 2016-09-20
:  P312.4  
基金资助: 国家自然科学基金项目“提取重力固体潮信号中地球物理信息和地震前兆信息的关键信号处理算法研究”(编号:41364002)资助
通讯作者: 刘艳(1988-),女,安徽宿州人,硕士研究生,主要从事信号处理研究.E-mail:liuyan8785@163.com   
作者简介: 全海燕(1970-),男,云南石屏人,副教授,主要从事信号处理、智能优化研究.E-mail:quanhaiyan@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
全海燕
刘艳

引用本文:

全海燕, 刘艳. EMD模态分量的谱相关分析法及其对重力固体潮信号的解调分析[J]. 地球科学进展, 2016, 31(9): 919-925.

Quan Haiyan, Liu Yan. The Cyclic Spectrum Analysis of IMFs of EMD and Its Application to Gravity Tide. Advances in Earth Science, 2016, 31(9): 919-925.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2016.09.0919        http://www.adearth.ac.cn/CN/Y2016/V31/I9/919

[1] Xu Houze. The Tides of the Solid Earth[M].Wuhan: Hubei Science and Technology Press,2010.许厚泽.固体地球潮汐[M].武汉:湖北科学技术出版社,2010.]
[2] Cui Yueju, Li Jing,Wang Yanyan, et al . Application of gas remote sensing technique to earthquake monitoring[J]. Advances in Earth Science , 2015,30(12):284-294.
.地球科学进展,2015,30(12):284-294.]
[3] Wu Qingchang, Zhou Zhi, Liang Hong, et al .AM-FM model of gravity tide IMF and its non-linear data fitting[J]. Computer Engineering and Applications ,2009,45(30):138-142.
.计算机工程与应用,2009,45(30): 138-142.]
[4] Zhou Zhi,Shan Xiuming, Zhang Li, et al . The gravity tide of Kunming & Xiaguan based on the HHT[J]. Chinese Journal of Geophysics ,2008,51(3):836-844.
. 地球物理学报,2008,51(3):836-844.]
[5] Huang N E, Zheng Shen, Long S R, et al . The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society ,1998, 454: 903-995,doi:10.1098/rspa.1998.0193.
[6] Zhao Hua, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society ,2004,460(2 046):1 594-1 611.
[7] Huang N E, Man-Li C Wu, Long S R, et al .A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society ,2003,459:2 317-2 345,doi:10.1098/rcpa.2003.1123.
[8] Huang N E, Shen Z, Long S R, et al . A new view of nonlinear water waves: The Hilbert spectrum [J]. Annual Review of Fluid Mechanics ,1993, 31:417-457.
[9] Zhao Jinping, Huang Daji. Mirror extend and circular spline function for empirical mode decomposition Method[J]. Journal of Zhejiang University ( Science ),2001,2(3): 247-252.
[10] Gardner W A. Statistical Spectral Analysis: A Non-probabilistic Theory[M]. New Jersey: Prentice-Hall, 1987.
[11] Garden W A.Spectral correlation of modulated signals:Part 1-analog modulation[J]. IEEE Transactions on Communication ,1987,35(6):584-594.
[12] Garden W A.Exploitation of spectral redundancy in cyclostationary signals[J]. IEEE Signal Processing Magazine ,1991,8(2):14-36.
[13] Gardner W A. The spectral correlation theory of cyclostaionary time-series[J]. Signal Processing ,1986, 11(1): 13-16.
[14] Huang Zhitao. The Processing and Application of Cyclic Stationary Signals[M].Beijing:Science Press,2006:23-26.
.北京:科学出版社,2006:23-26.]
[15] Gardner W A.Introduction to Random Processing with Applications to Signals and Systems(Second Edition)[M].New York: McGraw-Hill, 1990.
[1] 许厚泽,孙和平 . 我国重力固体潮实验研究进展[J]. 地球科学进展, 1998, 13(5): 415-422.