地球科学进展 ›› 2016, Vol. 31 ›› Issue (9): 926 -936. doi: 10.11867/j.issn.1001-8166.2016.09.0926

上一篇    下一篇

十年跨度中国滑坡和泥石流灾害风险评价对比分析
刘希林 1, 2( ), 庙成 1, 田春山 1, 邱锦安 1   
  1. 1.中山大学地理科学与规划学院, 广东 广州 510275
    2.广东省城市化与地理环境空间模拟重点实验室, 广东 广州 510275
  • 收稿日期:2016-06-03 修回日期:2016-08-20 出版日期:2016-09-20
  • 基金资助:
    国家自然科学基金项目“灾害风险基本问题与可接受风险研究——以泥石流灾害为例”(编号:41171407)资助

Comparative Analysis of Risk Assessment of Landslides and Debris Flows of China in 2000 and 2010

Xilin Liu 1, 2( ), Cheng Miao 1, Chunshan Tian 1, Jin’an Qiu 1   

  1. 1.School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
    2.Guangdong Province Key Laboratory of Urbanization and Geo-Simulation, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2016-06-03 Revised:2016-08-20 Online:2016-09-20 Published:2016-09-20
  • About author:

    First author:Liu Xilin (1963-), male, Xinshao County, Hu’nan Province, Professor. Research areas indude risk assessment and prediction of geomorphic hazards.E-mail:liuxilin@mail.sysu.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Basic problems of disaster risk and acceptable risk—Taking debris flow as an example”(No.41171407)

中国是滑坡和泥石流灾害频发和灾害损失严重的国家,滑坡和泥石流灾害风险评价对区域防灾减灾意义重大。以1 km×1 km栅格为基本评价单元,在GIS技术支持下,对比分析2000年和2010年中国滑坡和泥石流灾害风险分布及其空间变化。结果表明,2000年滑坡和泥石流灾害风险大致以黑河—腾冲人口密度分界线为界,界线西部以低度风险区为主,界限东部以中度和高度风险区为主。2010年低度风险区仍以此为界主要分布在中国西部,但高度风险区已明显越过界线向西扩展。10年跨度间,中度风险区、高度风险区和极高风险区面积均有增加,尤其以高度风险区面积比例增加最大。反之,低度风险区面积则大为减少并转变升高为中度风险区,中度风险区是各风险等级中变化面积最大、最不稳定且最为敏感的区域。由于高度风险区所占面积和比例较小,因此,除局部地区以外,整体上中国目前尚不属于滑坡和泥石流灾害高风险地区。随着未来10年中国经济的中高速发展,灾害易损度进一步升高,地区间经济差距逐步缩小,高度易损区与高度危险区重叠部分将逐步增大,因此中国滑坡和泥石流灾害风险将会继续升高,灾害风险变化总体形势趋于严峻。

Landslides and debris flows occurr in China frequently and cause disastrous losses of life and property. The risk assessment of landslides and debris flows and their spatial variations were comparatively analyzed in this paper, which has great significance for disaster prevention. This article selected 1 km×1 km grid as the assessment unit and with support of GIS technique, analyzed landslide and debris-flow risk distribution and their spatial variations from 2000 to 2010. The research results indicated that the spatial distribution of risk classes in 2000 and 2010 was obviously discrepant. Overall, taking the Heihe-Tengchong population density line as the boundary, the west of the line is mainly low risk area; the east of the line is mainly high risk area. Compared with the risk of 2000, the risk values of 2010 increased, with the high risk area and low risk area enlarged, moderate risk area reduced. The moderate risk area is the most unstable and sensitive risk area, and its risk class variation is significant. However, China is not a region with the high risk of landslide and debris-flow hazard at present. In the following next 10 years, the risk of landslides and debris flows in China will continue to increase.

中图分类号: 

表1 回归分析中各变量的显著性检验
Table 1 Significance of the variables in regression analysis
图1 中国滑坡和泥石流灾害危险度
Fig.1 Hazardousness of landslides and debris flows in China
图2 2000年和2010年中国滑坡和泥石流灾害易损度
Fig.2 Vulnerability of landslides and debris flows of China in 2000 and 2010
表2 2000年和2010年中国滑坡和泥石流灾害易损度等级面积
Table 2 Area of vulnerability class of landslides and debris flows of China in 2000 and 2010
表3 2000年和2010年中国滑坡和泥石流灾害风险等级面积
Table 3 Area of risk class of landslides and debris flows of China in 2000 and 2010
图3 2000年和2010年中国滑坡和泥石流灾害风险
Fig.3 Risk of landslides and debris flows of China in 2000 and 2010
图4 2010年与2000年相比中国滑坡和泥石流灾害易损度等级变化
Fig.4 Vulnerability class variations of landslides and debris flows in China between 2000 and 2010
图5 2010年与2000年相比中国滑坡和泥石流灾害风险等级变化
Fig.5 Risk class variations of landslides and debris flows in China between 2000 and 2010
表4 2010年与2000年相比中国滑坡和泥石流灾害风险等级面积变化
Table 4 Area of risk class variations of landslides and debris flows in China between 2000 and 2010
表5 2010年与2000年相比中国滑坡和泥石流灾害易损度等级面积变化
Table 5 Area of vulnerability class variations of landslides and debris flows in China between 2000 and 2010
[1] Shi Peijun.Natural Disasters in China[M]. Berlin: Springer-Verlag, 2016.
[2] Zhou Hongjian, Wang Dandan, Yuan Yi, et al.New advances in statistics of large-scale natural disasters damage and loss: Explanation of “Statistical System of Large-scale Natural Disasters”[J].Advances in Earth Science, 2015, 30(5): 530-538.
[周洪建, 王丹丹, 袁艺, 等. 中国特别重大自然灾害损失统计的最新进展——《特别重大自然灾害损失统计制度》解析[J]. 地球科学进展, 2015, 30(5) : 530-538.]
[3] An Peijun, Li Li, Zhang Zhiqiang.A bibliometrical analysis of international landslide research[J]. Advances in Earth Science, 2011, 26(10): 1 116-1 124.
[安培浚, 李栎, 张志强. 国际滑坡、泥石流研究文献计量分析[J]. 地球科学进展, 2011, 26(10) : 1 116-1 124.]
[4] Carrara F.Multivariate models for landslide hazard evaluation[J]. Mathematical Geology, 1983, 15(3): 403-426.
[5] Wilson R, Crouch E A C. Risk assessment and comparisons: An introduction[J]. Science, 1987, 236(4 799): 267-270.
[6] Ren Luchuan.Advance in risk analysis for regional natural disasters[J]. Advances in Earth Science, 1999, 14(3): 242-246.
[任鲁川. 区域自然灾害风险分析研究进展[J]. 地球科学进展, 1999, 14(3): 242-246.]
[7] Liu Xilin.Gully-specific debris flow hazard assessment in China[J]. Chinese Geographical Science, 2003, 13(2): 112-118.
[8] China Earthquake Administration, Editorial Separtment of Journal of Natural Disasters. International Decade for Natural Disaster Reduction[M]. Beijing: Seismological Press, 1992.
[国家地震局震害防御司, 自然灾害学报编辑部. 国际减轻自然灾害十年计划的实施[M]. 北京: 地震出版社, 1992.]
[9] Alexander E D.Natural Disasters[M]. London: UCL Press Limited, 1993.
[10] Guzzetti F, Reichenbach P, Cardinali M, et al.Probabilistic landslide hazard assessment at the basin scale[J]. Geomorphology, 2005, 72(1/4): 272-299.
[11] Cutter S L, Boruff B J, Shirley W L.Social vulnerability to environmental hazards[J]. Social Science Quarterly, 2003, 84(2): 243-261.
[12] Liu Xilin, Zhang Dan.Comparison of two empirical models for gully-specific debris flow hazard assessment in Xiaojiang valley of southwestern China[J]. Natural Hazards, 2004, 31(1): 157-175.
[13] Pourghasemi H R, Moradi H R, Aghda S M F. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances[J]. Natural Hazards, 2013, 69(1): 749-779.
[14] Zare M, Pourghasemi H R, Vafakhah M, et al.Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms[J]. Arabian Journal of Geosciences, 2013, 6(8): 2 873-2 888.
[15] Umar Z, Pradhan B, Ahmad A, et al.Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia[J]. Catena, 2014, 118: 124-135.
[16] Westen C J V, Castellanosa E, Kuriakose S L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview[J]. Engineering Geology, 2008, 102(3/4): 112-131.
[17] Kawagoe S, Kazama S, Sarukkalige R.Assessment of snowmelt triggered landslide hazard and risk in Japan[J]. Cold Regions Science and Technology, 2009, 58(3): 120-129.
[18] Gentile F, Bisantino T, Liuzzi G T.Debris-flow risk analysis in south Gargano watersheds (Southern-Italy)[J]. Natural Hazards, 2008, 44(1): 1-17.
[19] Zhang Chunshan, Zhang Yecheng, Zhang Lihai.Danger assessment of collapses, landslides and debris flows of geological hazards in China[J]. Journal of Geomechanics, 2004, 10(1): 27-32.
[张春山, 张业成, 张立海. 中国崩塌、滑坡、泥石流灾害危险度评价[J]. 地质力学学报, 2004, 10(1): 27-32.]
[20] Shi Peijun, Du Juan, Ji Mengxin, et al.Urban risk assessment research of major natural disasters in China[J].Advances in Earth Science,2006,21(2):170-177.
[史培军, 杜鹃, 冀萌欣, 等. 中国城市主要自然灾害风险评价研究[J]. 地球科学进展, 2006, 21(2): 170-177.]
[21] Blaikie P, Cannon T, Davis I, et al.At Risk: Natural Hazards, Peoples Vulnerability and Disasters[M]. London: Routledge, 1994.
[22] Shook G.An assessment of disaster risk and its management in Thailand[J]. Disasters, 1997, 21(1): 77-88.
[23] Shahabi H, Hashim M.Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment[J]. Scientific Reports, 2015, (5): 1-15.
[24] Oh H J, Pradhan B.Application of a neuro-fuzzy model to landslide susceptibility mapping for shallow landslides in a tropical hilly area[J]. Computers & Geosciences, 2011, 37(9): 1 264-1 276.
[25] Pradhan B, Lee S.Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland Malaysia[J]. Landslides, 2010, 7(1): 13-30.
[26] Guzzetti F, Carrara A, Cardinali M, et al.Landslide hazard evaluation: An aid to a sustainable development[J]. Geomorphology, 1999, 31(1/4): 181-216.
[27] Liu Xilin, Lei Junzhong.A method for assessing regional debris flow risk: An application in Zhaotong of Yunnan Province (SW China)[J]. Geomorphology, 2003, 52(3/4): 181-191.
[28] Liu Xilin, Yu Chengjun, Shang Zhihai.Risk mapping and spatial pattern of debris flow and landslide hazards in China[J]. Journal of Basic Science and Engineering, 2011, 19(5): 721-731.
[刘希林, 余承君, 尚志海. 中国泥石流、滑坡灾害风险制图与空间格局研究[J]. 应用基础与工程科学学报, 2011, 19(5): 721-731.]
[1] 王军,江琴. 长江经济带多灾种综合风险评价与防范的思考[J]. 地球科学进展, 2020, 35(8): 816-825.
[2] 宗庆霞, 窦磊, 侯青叶, 杨忠芳, 游远航, 唐志敏. 基于土地利用类型的土壤重金属区域生态风险评价:以珠江三角洲经济区为例[J]. 地球科学进展, 2017, 32(8): 875-884.
[3] 许妍, 曹可, 李冕, 许自舟. 海岸带生态风险评价研究进展[J]. 地球科学进展, 2016, 31(2): 137-146.
[4] 黄勋, 唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 2016, 31(10): 1047-1055.
[5] 宋焱,徐颂军,张勇,廖秀英,张林英,杨秀,杨文槐,冯晓丹. 白云山地表水重金属健康风险不确定性评价[J]. 地球科学进展, 2013, 28(9): 1036-1042.
[6] 况雪源,刘健,王红丽,提汝媛,王苏民. 近千年来中国区域降水模拟与重建资料的对比分析[J]. 地球科学进展, 2009, 24(2): 159-171.
[7] 李泽琴,侯佳渝,王奖臻. 矿山环境土壤重金属污染潜在生态风险评价模型探讨[J]. 地球科学进展, 2008, 23(5): 509-516.
[8] 孙歆,韦朝阳,王五一. 土壤中砷的形态分析和生物有效性研究进展[J]. 地球科学进展, 2006, 21(6): 625-632.
[9] 史培军,杜鹃,冀萌新,刘婧,王静爱. 中国城市主要自然灾害风险评价研究[J]. 地球科学进展, 2006, 21(2): 170-177.
[10] 付在毅,许学工. 区域生态风险评价[J]. 地球科学进展, 2001, 16(2): 267-271.
[11] 张学林,王金达,张 博,洪 梅. 区域农业景观生态风险评价初步构想[J]. 地球科学进展, 2000, 15(6): 712-716.
阅读次数
全文


摘要