地球科学进展 ›› 2016, Vol. 31 ›› Issue (9): 937 -945. doi: 10.11867/j.issn.1001-8166.2016.09.0937

上一篇    下一篇

基于气温的物质平衡模型的参数不确定性分析——以祁连山十一冰川为例
卿文武 1, 2( ), 刘俊峰 2, 杨钰泉 1, 陈仁升 2, 韩春坛 2   
  1. 1.兰州大学资源环境学院西部环境教育部重点实验室,甘肃 兰州 730000
    2.中国科学院寒区旱区环境与工程研究所黑河上游生态—水文试验研究站,甘肃 兰州 730000
  • 收稿日期:2016-06-10 修回日期:2016-08-20 出版日期:2016-09-20
  • 基金资助:
    高等学校博士学科点专项科研基金项目“高寒山区冰川消融估算实用方法探索——以黑河上游山区为例”(编号:20130211120035);国家自然科学基金项目“祁连山八一冰川融水汇流过程观测与模拟研究”(编号:41401073)资助

Uncertainty Analysis of the Parameters of the Temperature-index Method: A Case Study of Shiyi Glacier in Qilian Mountains

Wenwu Qing 1, 2( ), Junfeng Liu 2, Yuquan Yang 1, Rensheng Chen 2, Chuntan Han 2   

  1. 1.Key Laboratory of Western China's Environmental Systems(Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
    2.Qilian Alpine Ecology and Hydrology Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000,China
  • Received:2016-06-10 Revised:2016-08-20 Online:2016-09-20 Published:2016-09-20
  • About author:

    First author:Qing Wenwu(1982-), male, Loudi City, Hu’nan Province,Lecturer. Research areas include the hydrology and water resources in cold area.E-mail:qingww@lzu.edu.cn

  • Supported by:
    Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education “Glacier ablation estimation methods in the Heihe River Basin ” (No.20130211120035)the National Natural Science Foundation of China “An observational and numerical simulation of glacial runoff on Bayi Glacier in the Qilian Mountains”(No.41401073)

利用祁连山十一冰川东、西支2011年和2012年夏季加密冰川物质平衡和气象资料,评估了基于气温的物质平衡计算模型(单临界气温法和度日模型)在整条冰川的适用性,同时采用扰动分析法和GLUE法,对3个关键参数的敏感性和不确定性进行了分析。结果表明:模型能较好地模拟东、西支冰川的夏季物质平衡,在时空尺度上具有较好的适用性,但模拟结果存在一定不确定性;冰的度日因子(Kice)是影响2条支冰川物质平衡模拟精度的最敏感参数,其次是雪的度日因子(Ksnow),而固液态临界温度(Ts)不敏感;模型参数组的 “异参同效”现象明显,且3个参数的后验分布特征明显不同,但存在一个参数区间域,能较好保证模型预测的精度。

In order to assess the performance of the common temperature-index melt model at both spatial and temporal scale in Qilian Mountains, we performed the sensitivity and uncertainty analysis on the parameters of a common temperature-index method and evaluated the glacier mass balance on a small alpine glacier, which is separated into two relatively independent branches, with the daily mass balance and the meteorological data in the summer of 2011 and 2012. Sensitivity analysis was conducted by perturbation analysis and uncertainty analysis was carried out by Generalized Likelihood Uncertainty Estimation (GLUE) for different conditions. The results showed that the temperature-index method could properly capture the diurnal variability of the glacier mass balance. But strong equifinality of model parameter existsed in model calibration due to the uncertainty in the parameters. The model was very sensitive to changes in the value of Kice, followed by the Ksnow and Ts. It was also found that the GLUE approaches could estimate and derive the posterior distributions of 3 parameters properly. Moreover, there existed an acceptable range, which ensured high precision under different conditions.

中图分类号: 

图1 研究冰川及物质平衡观测点分布图(图中照片拍摄于2012年10月)
Fig.1 The map of the study glacier and the distribution of stakes (the above photo was taken in October 2012)
表1 模型参数和模拟结果表
Table 1 Parameters and results of the model
图2 十一冰川日物质平衡量实测值和模拟值对比
Fig.2 Contrast between the measured daily mass balance and the calculated with the method
图3 模型参数对评价系数 NSE的敏感性分析
Fig.3 Sensitivity analysis of the model parameters to NSE
图4 参数与似然值散点图(随机选取的5 000组后验参数)
Fig.4 Scatter plot of likelihood values for parameters(5 000 sets of random data)
图5 NSEK snowK ice不同组合下的分布
Fig.5 The NSE index for different combinations of calibration parameters
图6 K snowK ice组合最优参数范围
Fig.6 The optimum parameter range of parameters
[1] Shen Yongping, Liu Shiyin, Zhen Lili, et al.Fluctuations of glacier mass balance in watersheds of Qilian Mountain and their impact on water resources of Hexi Region[J]. Journal of Glaciology and Geocryology, 2001, 23(3):244-250.
[沈永平, 刘时银, 甄丽丽,等. 祁连山北坡流域冰川物质平衡波动及其对河西水资源的影响[J]. 冰川冻土, 2001, 23(3):244-250.]
[2] Liu Zhu,Li Zhongqin.Factors affecting the variation of glacier surface runoff-coefficient—A case study of Urumqi No.1 Glacier[J]. Advances in Earth Science, 2016, 31(1):103-112.
[刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素——以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1):103-112.]
[3] Yao Tandong, Liu Shiyin, Pu Jianchen,et al.Recent glacial retreat in High-Asia in China and its impact on water resources in Northwest China[J].Science in China (Series D), 2004, 34(6):535-543.
[姚檀栋, 刘时银, 蒲健辰,等. 高亚洲冰川的近期退缩及其对西北水资源的影响[J]. 中国科学:D辑, 2004, 34(6):535-543.]
[4] Qin Dahe, Ding Yongjian.Cryospheric changes and their impacts: Present, trends and key issues[J]. Advances in Climate Change Research, 2009, 5(4):187-195.
[秦大河, 丁永建. 冰冻圈变化及其影响研究——现状、趋势及关键问题[J]. 气候变化研究进展, 2009, 5(4):187-195. ]
[5] Chen Rensheng, Liu Shiyin, Kang Ersi, et al.Daily glacier runoff estimation methods: A case study of Koxkar Glacier[J]. Advances in Earth Science,2008, 23(9):942-951.
[陈仁升, 刘时银, 康尔泗,等. 冰川流域径流估算方法探索——以科其喀尔巴西冰川为例[J]. 地球科学进展, 2008, 23(9):942-951.]
[6] Qing Wenwu, Chen Rensheng, Liu Shiyin, et al.Research and application of two kinds of temperature index model on the Koxkar Glacier[J]. Advances in Earth Science, 2011, 26(4):409-416.
[卿文武, 陈仁升, 刘时银,等. 两类度日模型在天山科其喀尔巴西冰川消融估算中的应用[J]. 地球科学进展, 2011, 26(4):409-416.]
[7] Han Chuntan, Chen Rensheng, Liu Junfeng, et al.A discuss of the separating solid and liquid precipitations[J].Journal of Glaciology and Geocryology, 2010, 32(2):249-256.
[韩春坛, 陈仁升, 刘俊峰,等. 固液态降水分离方法探讨[J]. 冰川冻土, 2010, 32(2):249-256.]
[8] Chen Rensheng, Kang Ersi, Ding Yongjian.Some knowledge on and parameters of China’s alpine hydrology[J].Advances in Water Science,2014, 25(3):307-317.
[陈仁升, 康尔泗, 丁永建. 中国高寒区水文学中的一些认识和参数[J]. 水科学进展, 2014, 25(3):307-317.]
[9] Shea J M, Moore R D, Stahl K.Derivation of melt factors from glacier mass-balance records in western Canada[J]. Journal of Glaciology, 2009, 55(189):123-130.
[10] Carenzo M, Pellicciotti F, Rimkus S, et al.Assessing the transferability and robustness of an enhanced temperature-index glacier-melt model[J]. Journal of Glaciology, 2009, 55(190):258-274.
[11] Pellicciotti F, Buergi C, Immerzeel W W, et al.Challenges and uncertainties in hydrological modeling of remote Hindu Kush-Karakoram-Himalayan (HKH) Basins: Suggestions for calibration strategies[J]. Mountain Research & Development, 2012, 32(1):39-50.
[12] Pellicciotti F, Helbing J, Rivera A, et al.A study of the energy balance and melt regime on Juncal Norte Glacier, semi-arid Andes of central Chile, using melt models of different complexity[J]. Hydrological Processes,2008, 22(19):3 980-3 997.
[13] Ragettli S, Pellicciotti F.Calibration of a physically-based, fully distributed hydrological model in a glacierized basin: On the use of knowledge from glacio-meteorological processes to constrain model parameters[J]. Water Resources Research,2012, 48(3):1 346-1 446.
[14] Macdougall A H.Distributed Energy-Balance Glacier Melt-Modelling in the Donjek Range of the St. Elias Mountains, Yukon Territory, Canada: Model Transferability in Space and Time[D]. Antigonish:ST. Francis Xavier University,2010.
[15] Macdougall A H, Flowers G E.Spatial and temporal transferability of a distributed energy-balance glacier melt model[J]. Journal of Climate,2011, 24(24):1 480-1 498.
[16] Macdougall A H, Wheler B A, Flowers G E.A preliminary assessment of glacier melt-model parameter sensitivity and transferability in a dry subarctic environment[J]. Cryosphere,2011, 5(4):1 011-1 028.
[17] Qiao Chengjun, He Xiaobo, Ye Baisheng.Study of the degree-day factors for snow and ice on the Dongkemadi Glacier, Tanggula Range[J].Journal of Glaciology and Geocryology, 2010, 32(2):257-264.
[谯程骏, 何晓波, 叶柏生. 唐古拉山冬克玛底冰川雪冰度日因子研究[J]. 冰川冻土, 2010, 32(2):257-264.]
[18] Cui Yuhuan, Ye Baisheng, Wang Jie, et al.Analysis of the spatial-temporal variations of the positive degree-day factors on the Glacier No.1 at the Headwaters of the Urumqi River[J]. Journal of Glaciology and Geocryology,2010,32(2):265-274.
[崔玉环, 叶柏生, 王杰,等. 乌鲁木齐河源1号冰川度日因子时空变化特征[J]. 冰川冻土, 2010, 32(2):265-274.]
[19] Fang Xiaoyu, Li Zhongqin, Bernd Wuennemann, et al.Physical energy-balance and statistical glacier melting models comparison and testing for Shiyi Glacier, Heihe River Basin, Qilian Mountains, China[J]. Journal of Glaciology and Geocryology,2015, 37(2):336-350.
[方潇雨, 李忠勤, Bernd Wuennemann,等. 冰川物质平衡模式及其对比研究——以祁连山黑河流域十一冰川研究为例[J]. 冰川冻土, 2015, 37(2):336-350.]
[20] Yang Yong, Chen Rensheng, Ji Xibin.Variations of glaciers in the Yeniugou watershed of Heihe River Basin from 1956 to 2003[J].Journal of Glaciology and Geocryology,2007, 29(1):100-106.
[阳勇, 陈仁升, 吉喜斌. 近几十年来黑河野牛沟流域的冰川变化[J]. 冰川冻土, 2007, 29(1):100-106.]
[21] Wang Puyu, Li Zhongqin, Gao Wenyu, et al.Glacier changes in the Heihe River Basin over the past 50 years in the context of climate change resources science[J].Resources Science, 2011, 33(3):399-407.
[王璞玉, 李忠勤, 高闻宇,等. 气候变化背景下近50年来黑河流域冰川资源变化特征分析[J]. 资源科学, 2011, 33(3):399-407.]
[22] Sun Meiping, Liu Shiyin, Yao Xiaojun,et al.Glacier changes in the Qilian Mountains in the past half century based on the revised First and Second Chinese Glacier Inventory[J].Acta Geographica Sinica,2015, 70(9):1 402-1 414.
[孙美平, 刘时银, 姚晓军,等. 近50年来祁连山冰川变化——基于中国第一、二次冰川编目数据[J]. 地理学报, 2015, 70(9):1 402-1 414.]
[23] Cheng Guodong, Xiao Honglang, Fu Bojie, et al.Advances in synthetic research on the eco-hydrological process of the Heihe River Basin[J].Advances in Earth Science,2014, 29(4):431-437.
[程国栋, 肖洪浪, 傅伯杰,等. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.]
[24] Chen Hui, Li Zhongqin, Wang Puyu, et al.Change of glaciers in the central Qilian Mountain[J]. Arid Zone Research,2013, 30(4):588-593.
[陈辉, 李忠勤, 王璞玉,等. 近年来祁连山中段冰川变化[J]. 干旱区研究, 2013, 30(4):588-593.]
[25] Blasone R S, Vrugt J A, Madsen H, et al.Generalized Likelihood Uncertainty Estimation (GLUE) using adaptive markov chain monte carlo sampling[J]. Advances in Water Resources,2008, 31(4):630-648.
[26] Huang Guoru, Xie Hehai.Uncertainty analyses of watershed hydrological model based on GLUE method[J].Journal of South China University of Technology(Natural Science Edition),2007, 35(3):137-142.
[黄国如, 解河海. 基于GLUE方法的流域水文模型的不确定性分析[J]. 华南理工大学学报:自然科学版, 2007, 35(3):137-142.]
[27] Nash J E, Sutcliffe J V.River flow forecasting through conceptual models, Part 1. A discussion of principles[J].Journal of Hydrology,1970, 10(3):282-290.
[28] Xie Changwei.Analyses and Simulations of the Hydrological Characteristics of Keqikaer Glacier at the South Slope of Mt. Tumuer, West China[D]. Lanzhou:Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2006.
[谢昌卫. 托木尔峰南坡科其喀尔冰川区水文特征分析及模拟研究[D].兰州:中国科学院寒区旱区环境与工程研究所, 2006.]
[1] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[2] 刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素----以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1): 103-112.
[3] 彭建, 刘焱序, 潘雅婧, 赵志强, 宋治清, 王仰麟. 基于景观格局—过程的城市自然灾害生态风险研究:回顾与展望[J]. 地球科学进展, 2014, 29(10): 1186-1196.
[4] 卿文武,陈仁升,刘时银,韩海东,王建. 两类度日模型在天山科其喀尔巴西冰川消融估算中的应用[J]. 地球科学进展, 2011, 26(4): 409-416.
[5] 陈玲,阎广建,李静,余莹洁. 行播作物地面方向性测量的视场不确定性分析[J]. 地球科学进展, 2009, 24(7): 793-802.
[6] 唐学远,孙波,李院生,崔祥斌,李鑫. 南极冰盖研究最新进展[J]. 地球科学进展, 2009, 24(11): 1210-1218.
[7] 谢自楚,周宰根,李巧媛,王淑红. 高亚洲冰川系统物质平衡特征及其对全球变化响应研究进展与展望[J]. 地球科学进展, 2009, 24(10): 1065-1072.
[8] 吴涛,康建成,王芳,郑琰明. 全球海平面变化研究新进展[J]. 地球科学进展, 2006, 21(7): 730-737.
[9] 韩添丁;刘时银;丁永建;焦克勤. 天山乌鲁木齐河源1号冰川物质平衡特征[J]. 地球科学进展, 2005, 20(3): 298-303.
[10] 张秋文,张培震. 地震中长期预测研究的进展和方向[J]. 地球科学进展, 1999, 14(2): 147-152.
[11] 丁永建,刘时银,周文娟,炳宏涛. 北半球冰川物质平衡变化的若干特征及其气候意义[J]. 地球科学进展, 1996, 11(6): 590-596.
阅读次数
全文


摘要